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A theorem of N. Katz (1990) [Ka], p. 45, states that an irreducible
differential operator L over a suitable differential field k, which
has an isotypical decomposition over the algebraic closure of k,
is a tensor product L = M ⊗k N of an absolutely irreducible
operator M over k and an irreducible operator N over k having
a finite differential Galois group. Using the existence of the tensor
decomposition L = M ⊗N , an algorithm is given in É. Compoint and
J.-A. Weil (2004) [C-W], which computes an absolutely irreducible
factor F of L over a finite extension of k. Here, an algorithmic
approach to finding M and N is given, based on the knowledge
of F . This involves a subtle descent problem for differential
operators which can be solved for explicit differential fields k
which are C1-fields.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

C denotes an algebraically closed field of characteristic 0 and the differential field k is a finite
extension of (C(z), ∂ = d

dz ). The algebraic closure of k will be written as k. Let L ∈ k[∂] be a (monic)
differential operator. The operator L is called irreducible if it does not factor over k and absolutely
irreducible if it does not factor over k. Here we are interested in the following special situation:

L is irreducible and L factors over k as a product F1 . . . Fs of s > 1 equivalent (monic) absolutely irreducible
operators.
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There are algorithms for factoring L over k, i.e., as element of k[∂] [H1,H2,vdP-S]. Algorithms for
finding factors of order 1 in k[∂] are proposed in [S-U,H-R-U-W,vdP-S]. An algorithm for finding factors
of arbitrary order in k[∂] is given in [C-W].

According to N. Katz [Ka], Proposition 2.7.2, p. 45, the assumption on L implies that L is a tensor
product M ⊗ N of monic operators in k[∂] such that M is absolutely irreducible and the irreducible
operator N has a finite differential Galois group (or equivalently all its solutions are algebraic over k).
We will present a quick, down-to-earth proof of this in terms of differential modules over k. Further
we note that the converse statement is immediate because N decomposes over k as a “direct sum”
(least common left multiple) of operators ∂ − f ′

f with f ∈ k∗ .
The absolute factorization algorithm in [C-W] uses the existence of this tensor decomposition to

ensure its correctness but, in full generality, the problem of computing M and N is yet left open in
there. For M or N of small order, methods for detecting and computing M and N are given in [C-W,
N-vdP] and particularly in [H3] where additional references can be found. We will illustrate this (and
propose another method) at the end of the paper.

The problem which we address to produce the operators M, N ∈ k[∂] by some decision procedure
for M and N of arbitrary order. It follows from L = M ⊗ N that F1 ∈ k[∂] is equivalent to M (i.e.,
F1 descends to k). Let K1 ⊃ k be the smallest Galois extension such that F1 ∈ K1[∂] (or equivalently
K1 is the field extension of k generated by all the coefficients of all Fi ). One might think that the
equivalence between F1 and M , seen as elements of K1[∂], takes place over K1. However, in general,
a (finite) extension K ′ ⊃ K1 is needed for this equivalence. The title of this paper refers to this descent
problem.1

Our method for finding K ′ is as follows. First the smallest extension K ⊃ K1 is computed which
guarantees that the factors F1, . . . , Fs are equivalent over the field K . Using these equivalences, a
certain 2-cocycle c for Gal(K/k) with values in C∗ , i.e. the obstruction for the descent of F1, is com-
puted. Since k is a C1-field, the 2-cocycle c becomes trivial over a finite (cyclic) computable extension
K ′ ⊃ K : we give a construction of K ′ in Section 3.1.2, particularly part (4) of Remark 3.4 which pro-
duces first order operators having the same obstruction to descent and for which the problem can be
solved. Finally, once K ′ is found, the computation of M, N is easily completed.

In the sequel we will use differential modules because these are more natural for the problem.
A translation in terms of differential operators is presented at the moment that actual algorithms are
involved since the latter are frequently phrased in terms of differential operators.

The following notation is used. The trivial 1-dimensional differential module over a field K is K e
with ∂e = 0. This module will be denoted by 1 or 1K . For a differential module A over K of dimension
a one writes det A for the 1-dimensional module Λa A.

2. A version of Katz’ theorem

In the proof we will use the following notion of twist of a differential module.
Let Gal(K/k) be the Galois group of any Galois extension K of k (finite or infinite). Let A be a

differential module over K and σ ∈ Gal(K/k). The twist σ A is equal to A as additive group, has the
same ∂ as A, but its structure as K -vector space is given by λ ∗ a := (σ−1λ) · a for λ ∈ K , a ∈ A.

The elements σ ∈ Gal(K/k) act in a natural way on K [∂] by the formula σ(
∑

n an∂n) = ∑
n σ(an)∂n .

If one presents A as K [∂]/K [∂]F (with F monic), then σ A = K [∂]/K [∂]σ(F ).
An isomorphism φ(σ ) : σ A → A can also be interpreted as a C-linear bijection Φ(σ ) : A → A,

commuting with ∂ and such that Φ(σ )(λa) = σ(λ) · Φ(a). In other words Φ(σ ) is σ -linear isomor-
phism.

Proposition 2.1. Let L be a differential module over k. Suppose that:

(1) The field of constants C of k is algebraically closed, k has characteristic zero and k is a C1-field.

1 Techniques for arithmetic descent were proposed in [H-P], where the case of a differential field k with non-algebraically
closed constant field is handled.
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(2) L is irreducible and L := k ⊗k L decomposes as a direct sum
⊕s

i=1 Ai of isomorphic irreducible differential
modules over k.

Then there are modules M, N over k such that L ∼= M ⊗k N, M is absolutely irreducible and the irreducible
module N has a finite differential Galois group. The pair (M, N) is unique up to a change (M ⊗k D, N ⊗k D−1)

where D has dimension 1 and D⊗t is the trivial module for some t � 1.

Proof. Write A = A1 and let Gal denote the Galois group of k/k. For any σ ∈ Gal, the twisted module
σ A is a submodule of σ (k ⊗k L). As the latter module is isomorphic to k ⊗k L, there is a σ -linear
isomorphism Φ(σ ) : A → A.

This induces a 2-cocycle c for Gal with values in C∗ , defined by Φ(στ) = c(σ , τ ) · Φ(σ ) · Φ(τ).
Since k is a C1-field, the 2-cocycle is trivial ([Se], II-9, §3.2). After multiplying the isomorphisms
{Φ(σ )} by suitable elements in C∗ , one obtains descent data {Φ(σ ) | σ ∈ Gal} satisfying the descent
condition Φ(στ) = Φ(σ ) · Φ(τ) for all σ ,τ ∈ Gal(k/k). Define M := {a ∈ A | Φ(σ )a = a for all σ ∈
Gal}. It is easily verified that M is a differential module over k and that the canonical morphism
M := k ⊗k M → A is an isomorphism.

Consider now Hom∂ (M, L). This is a vector space, isomorphic to C s and provided with an action
of Gal. Then k ⊗C Hom∂ (M, L) is a trivial differential module over k provided with an action of Gal.
It is a submodule of the differential module Hom(M, L). Taking invariants under Gal one obtains a
differential module

N := (
k ⊗C Hom∂ (M, L)

)Gal
over k which is a submodule of Hom(M, L).

The canonical morphism k ⊗ N → k ⊗C Hom∂ (M, L) is an isomorphism and thus the differential Galois
group of N is finite.

The canonical morphism of differential modules M ⊗k Hom(M, L) → L, namely m ⊗ 	 	→ 	(m), can
be restricted to a morphism f : M ⊗k N → L. By construction the induced morphism M ⊗k N → L is
an isomorphism and thus so is f .

The descent data {Φ(σ ) | σ ∈ Gal} for A are not unique. They can be changed into {h(σ )Φ(σ ) |
σ ∈ Gal} where h : Gal → C∗ is any continuous homomorphism. We note that the image of h is a
subgroup μt of the t-th roots of unity for some t . Consider the trivial differential module ke with
∂e = 0 and with Gal action given by σ e = h(σ )e for all σ ∈ Gal. By taking the invariants under Gal
one obtains a 1-dimensional module D over k such that the canonical morphism k ⊗ D → ke is an
isomorphism and respects the actions of Gal. Further D⊗t is the trivial differential module 1.

The differential module obtained with the new descent data can be seen to be M ⊗k D and thus N
will be changed into N ⊗ D−1. From this observation the last statement of the proposition follows. �
Remarks 2.2. The non-unicity of the pair (M, N) can be restricted by the condition that det N = 1.
Then only a change (M ⊗ D, N ⊗ D−1) is possible with D⊗s = 1.

3. Algorithmic approach

First we make the relation between differential modules and differential operators explicit. Let A
be a differential module and a ∈ A a cyclic vector. One associates to this the monic differential oper-
ator op(A,a) ∈ k[∂] of minimal degree satisfying op(A,a)a = 0. The morphism k[∂] → A, which maps
1 to a, induces an isomorphism k[∂]/k[∂]op(A,a) → A.

Let B ⊂ A be a submodule. This yields a factorization op(A,a) = L R with R ∈ k[∂] is the monic
operator of minimal degree such that Ra ∈ B . One observes that R = op(A/B,a + B).

Further L ∈ k[∂] is the operator of minimal degree satisfying Lb = 0, where b := Ra. Clearly b is
a cyclic vector for B and L = op(B,b).

Moreover, any factorization op(A,a) = L R with monic L, R corresponds in this way to a unique
submodule B ⊂ A, namely B = k[∂]Ra.
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Let k′ be an algebraic extension of k. Then the above bijection extends to a bijection between the
(monic) factorizations of op(A,a) in k′[∂] and the submodules of k′ ⊗k A.

As before, L denotes an irreducible differential module over k such that k ⊗ L is a direct sum of s > 1 copies
of an absolutely irreducible differential module.

Choose 	 ∈ L, 	 �= 0. Since L is irreducible, 	 is a cyclic vector. We assume the knowledge of a fac-
torization op(L, 	) = F .R with monic F , R ∈ k[∂] and F absolutely irreducible, given by [C-W]. Using this
information we will describe the computation leading to a tensor product decomposition L = M ⊗ N .

3.1. The special case dim M = 1

Assume that the irreducible L is equal to M ⊗k N with dim M = 1, dim N = s > 1 and k ⊗k N is
trivial. Thus the Picard–Vessiot extension K + of N is a finite extension of k and can be considered
as a subfield of k. The (covariant) solution space V of N is equal to ker(∂, K + ⊗k N). The differential
Galois group G+ = Gal(K +/k) acts on V and there is a canonical isomorphism K + ⊗C V → K + ⊗k N .
Moreover, M := k ⊗k M is not a trivial module (equivalently, the differential Galois group of M is
infinite and then equal to the multiplicative group Gm).

There is a trivial way to produce a decomposition L = M ⊗k N . Indeed, write op(L, 	) = (∂ s +
as−1∂

s−1 + · · · + a0). Then the tensor product decomposition op(L, 	) = (∂ + as−1
s ) ⊗ (∂ s + bs−2∂

s−2 +
· · · + b0), for suitable elements bi ∈ k, solves already the problem, since (as one easily sees) all the
solutions of ∂ s−1 + bs−2∂

s−2 + · · · + b0 are in k. However, the aim of this subsection is to describe
in this easy situation an algorithm for obtaining the pair (M, N), up to a change (M ⊗ D, D−1 ⊗ N),
which works with small modifications for the general case.

After fixing a non-zero element 	 ∈ L, the module is represented by the monic operator op(L, 	).
The first step is to produce the smallest subfield K ⊂ k (containing k) such that op(L, 	) decomposes in
K [∂] as a product F1 · · · Fs of (monic) equivalent operators of degree 1.

The (monic) left-hand factors F = ∂ + u ∈ k[∂] of op(L, 	) correspond to the 1-dimensional sub-
modules of

k ⊗ L = M ⊗k (k ⊗k N) = M ⊗k (k ⊗C V )

and these are the M ⊗k (k ⊗C W ) where W runs in the set of the 1-dimensional subspaces of V . The
same can be done with k replaced by K + . Therefore u ∈ K + and K0 := k(u) ⊂ K + . More precisely,
let St(W ) ⊂ G+ be the stabilizer of W . This is the subgroup of G+ leaving F invariant and thus
K0 = (K +)St(W ) ⊂ K + .

Now we suppose that a (monic) left-hand factor F = ∂ +u of op(L, 	) is known and explain how to obtain K
from this. Let K1 ⊂ k be the normal closure of K0. Then K1 ⊗k L contains a 1-dimensional submodule
that we will call again D . The submodule

∑
σ∈Gal(K1/k) σ (D) of K1 ⊗k L is invariant under the action

of Gal(K1/k). Since L is irreducible,
∑

σ∈Gal(K1/k) σ (D) = K1 ⊗k L and it follows that K1 ⊗k L is a direct
sum of 1-dimensional submodules. As a consequence, op(L, 	) factors as F1 · · · Fs in K1[∂].

A priori, the factors Fi = ∂ + ui ∈ K1[∂] need not be equivalent. For i < j we consider a non-zero

element f i j ∈ k satisfying
f ′
i j

f i j
= ui − u j . Put K = K1({ f i j}). Then K ⊃ k is the smallest field such that

op(L, 	) factors as F1 · · · Fs ∈ K [∂] where the monic degree one factors Fi are equivalent.
Clearly K ⊂ K + . From the condition that K is minimal such that K ⊗k N is a direct sum of iso-

morphic 1-dimensional submodules and the irreducibility of N , it follows easily that the center Z of
G+ ⊂ GL(V ) is the finite cyclic group (C∗ · idV ) ∩ G+ and that K = (K +)Z .

Remarks 3.1.

(1) The field K and the above algorithm for K do not change if L is replaced by D ⊗k L, where D is
a 1-dimensional module satisfying D⊗t = 1 for some t � 1.
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(2) The fields K0 and K1 depend on the given left-hand factor of degree 1 of op(L, 	). We illustrate
this by an example where the differential Galois group G+ ⊂ GL(C3) is generated by the matrices

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ and

⎛
⎝ a 0 0

0 b 0
0 0 c

⎞
⎠ with a6 = b6 = c6 = 1.

If this left-hand factor corresponds to Ce1 (or Ce2 or Ce3), then its stabilizer is the subgroup of
the diagonal matrices in G+ . Otherwise it is just the center Z . In the first case K1 �= K and in the
last one K1 = K .

3.1.1. The 2-cocycle c and descent fields
Now we have arrived at the situation where K ⊗k L is a direct sum of s copies of a known 1-

dimensional differential module D = M ⊗k E over K , where E is an, a priori, unknown 1-dimensional
submodule of K ⊗k N . We want to produce a field extension K ′ ⊃ K such that K ′ ⊗K D descends to k.

Let D correspond to the operator ∂ − u. Then, for σ ∈ Gal(K/k), the operator ∂ −σ(u) corresponds

to σ D . There are elements fσ ∈ K ∗ such that σ(u) − u = f ′
σ

fσ
. One obtains a 2-cocycle c for Gal(K/k)

with values in C∗ by fστ = c(σ , τ ) · fσ · σ fτ for all σ ,τ ∈ Gal(K/k). The class of the 2-cocycle c in
H2(Gal(K/k), C∗) is the obstruction for the descent of D (or, equivalently, for the descent of E).

Indeed, if D descends to k, then one can represent D by ∂ −u with u ∈ k. On the other hand, if the
class of c is trivial, then after changing the { fσ } one has fστ = fσ · σ fτ . By Hilbert 90, there exists
F ∈ K ∗ with fσ = σ F

F for all σ ∈ Gal(K/k). Then ∂ − u is equivalent to ∂ − u + F ′
F . Further u − F ′

F lies
in k, since it is invariant under Gal(K/k).

The exact sequence 1 → Z → G+ pr→ Gal(K/k) → 1 induces a 2-cocycle with values in Z , in
the following way. Let φ : Gal(K/k) → G+ be a section, i.e., pr ◦ φ(g) = g for all g ∈ Gal(K/k).
Then d, defined by φ(g1 g2) = d(g1, g2)φ(g1)φ(g2), is a 2-cocycle with values in Z . The class of d
in H2(Gal(K/k), Z) is independent of the choice of the section φ. As before, Z is identified with a
subgroup of C∗ . Thus d induces an element of H2(Gal(K/k), C∗). We note that the homomorphism
H2(Gal(K/k), Z) → H2(Gal(K/k), C∗) is, in general, not injective.

Lemma 3.2. The cocycles c and d have the same image in H2(Gal(K/k), C∗). This image does not depend of
the choice of N. Let s = dim N. Then the image of cs in H2(Gal(K/k), C∗) is trivial.

Proof. Let D , as before, be given by ∂ − u with u ∈ K . Write u = F ′
F with F ∈ (K +)∗ . Let φ : G → G+

be a section. Then σ(u)−u = φ(σ )F ′
φ(σ )F − F ′

F = f ′
σ

fσ
where fσ := φ(σ )F

F . One easily sees that fσ is invariant
under Z and thus fσ ∈ K ∗ . The equality fστ = c(σ , τ ) fσ σ fτ implies φ(στ )F = c(σ , τ )φ(σ )φ(τ )F .
Hence d(σ , τ ) = c(σ , τ ).

Replacing N by (∂ − v)⊗k N with v ∈ k, induces the change of ∂ −u into ∂ −u − v . Since σ(u + v)−
(u + v) = σ(u) − u, the element c and its image in H2(Gal(K/k), C∗) are unchanged.

Suppose that N is chosen such that det N = 1. The cocycle d has values in μs , since dim N = s.
Thus the image of ds in H2(Gal(K/k), C∗) is trivial and the same holds for cs . �
Definition 3.3. Let (K , c) be a Galois extension K/k and c a 2-cocycle for Gal(K/k) with values in C∗
and such that cs is a trivial 2-cocycle. A descent field for (K , c) is a Galois extension K ′ ⊃ k contain-
ing K , such that the induced 2-cocycle c′ for Gal(K ′/k), defined by c′(g1, g2) = c(pr g1,pr g2), yields
a trivial element in H2(Gal(K ′/k), C∗). Here pr : Gal(K ′/k) → Gal(K/k) denotes the natural map.

The assumption that k is a C1-field implies the existence of a descent field for every pair (K , c). In-
deed, by [Se], II §3, the cohomological dimension of Gal(k/k) is 1 and therefore H2(Gal(k/k),μ∞) = 1,
where μ∞ denotes the torsion subgroup of C∗ . One has H2(Gal(K/k), C∗) = H2(Gal(K/k),μ∞) and
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lim−→ H2(Gal(K ′/k),μ∞) = H2(Gal(k/k),μ∞) = {1}, where the direct limit is taken over all Galois exten-
sions K ′ ⊃ k, containing K . Hence for every class c ∈ H2(Gal(K/k), C∗) there exists a Galois extension
K ′ ⊃ k, containing K , such that the image of c in H2(Gal(K ′/k), C∗) is 1.

Our contribution is now to produce a descent field for (K , c) by some algorithm.

3.1.2. A decision procedure constructing a descent field for (K , c)
Since k is a C1-field, H2(Gal(K/k), K ∗) is trivial ([Se], II-9, §3.2) and this implies the existence of

elements { fσ | σ ∈ Gal(K/k)} ⊂ K ∗ satisfying fστ = c(σ , τ ) · fσ · σ fτ for all σ ,τ ∈ Gal(K/k).
Suppose that c is given in the form fστ = c(σ , τ ) fσ σ fτ with { fσ } ⊂ K ∗ . (This is trivially true for the

present case dim M = 1. For the general case, Remarks 3.4 part (4) describes a decision procedure
producing suitable { fσ }, a key step in the construction.) Then the following algorithm produces a descent
field.

One has f ′
στ

fστ
= f ′

σ
fσ

+ σ(
f ′
τ

fτ
) and since H1(Gal(K/k), K ) = 0 there is an element v ∈ K such that

f ′
σ

fσ
= σ(v) − v for all σ ∈ Gal(K/k); explicitly

v = −1

[K : k]
∑

τ∈Gal(K/k)

f ′
τ

fτ
.

One observes that c is the obstruction for descent of the operator ∂ − v .
Further −mv = G ′

G with G = ∏
τ∈Gal(K/k) fτ and m = [K : k]. Hence the field K (

m
√

G) contains the
Picard–Vessiot field of ∂ − v and is a descent field.

A less brutal way to compute a descent field is as follows. Since the cocycle cs is trivial, there are
computable elements {d(σ ) | σ ∈ Gal(K/k)} ⊂ C∗ satisfying d(στ ) = c(σ , τ )sd(σ )d(τ ). The elements

{ f s
σ

d(σ )
} form a 1-cocycle. Since H1(Gal(K/k), K ∗) = {1}, one can effectively compute F ∈ K ∗ such that

f s
σ

d(σ )
= σ F

F for all σ ∈ Gal(K/k) (see [Se2], Chapitre X, §1, Prop. 2). One observes that v − 1
s

F ′
F ∈ k

since it is invariant under Gal(K/k). The field extension K ′ = K (
s
√

F ) has the property that (∂ − v) is
equivalent to ∂ − v + 1

s
F ′
F over K ′ . Hence K ′ is a descent field.

Remarks 3.4.

(1) We note that the above algorithm proves, by considering 1-dimensional differential modules
over K , the existence of a descent field only using that H2(Gal(K/k), K ∗) = {1} (see Lemma A.1
for the general statement).

(2) Instead of assuming that the 2-cocycle cs is trivial, we may consider a class c ∈ H2(Gal(K/k),μ∞),
where μ∞ ⊂ C∗ denotes, as before, the group of the roots of unity. Any finite group G occurs as
some Gal(K/k). Therefore the group H2(Gal(K/k),μ∞) is in general not trivial and the descent
problem, i.e., finding an extension K ′ ⊃ K such that the image of c in H2(Gal(K ′/k),μ∞) is 1,
is non-trivial. However for a cyclic Gal(K/k) one has H2(Gal(K/k),μ∞) = {1} ([Se2], VIII, §4). In
particular, non-trivial examples for the descent problem tend to be complicated.

(3) We ignore how to compute or characterize all minimal descent fields for a given pair (K , c).
(4) Computing elements fσ ∈ K ∗ satisfying fστ = c(σ , τ ) · fσ · σ fτ appears to be far from trivial.

A possible method, which uses explicitly the C1-property of k, is the following. Starting with the
2-cocycle c, there is a well known construction (see [G-S]) of an algebra A = ⊕

σ∈G K [σ ], where
G = Gal(K/k), of dimension m = #G = [K : k] over K , defined by the rules:

[σ ] · λ = σ(λ) · [σ ] for λ ∈ K , σ ∈ G,

[σ1σ2] = c(σ1,σ2)[σ1] · [σ2].
Then A is a central simple algebra with center k. Since k is a C1-field there exists an isomorphism
I : A → Matr(m,k). The latter algebra can be identified (by standard Galois theory) with the group
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algebra K [G] = ⊕
K · σ . Suppose that we knew already elements fσ ∈ K ∗ satisfying fστ = c(σ , τ ) ·

fσ · σ fτ . Then I0 : A 	→ K [G], given by I0(
∑

λσ [σ ]) = ∑
λσ fσ .σ is an isomorphism and is also K -

linear. By the Skolem–Noether theorem, any isomorphism I of k-algebras has the form I(
∑

λσ [σ ]) =
x−1{∑λσ fσ .σ }x, where x is an invertible element of Matr(m,k). Our aim is to compute a K -linear
isomorphism and in that case x commutes with K and therefore belongs to K ∗ . Now I has the form
I(

∑
λσ [σ ]) = ∑

λσ fσ .
σ (x)

x .σ and thus any K -linear isomorphism A → K [G] has the form [σ ] 	→ gσ σ
for suitable elements gσ ∈ K ∗ . It follows that gστ = c(σ , τ ) · gσ · σ gτ .

The computation of the isomorphism I uses the reduced norm Norm of A (see e.g. [F,Pi] or [R],
Section 4, which adapts to C1 fields). With respect to a basis of A over k, the reduced norm is a
homogeneous form of degree m in m2 variables. Again the C1 property of k asserts that there are
non-trivial solutions a ∈ A, a �= 0 for Norm(a) = 0. An explicit calculation of such a is possible (but
rather expensive). Applying this several times one obtains the isomorphism I : A → Matr(m,k).

Example 3.5. Consider the case where K ⊃ k has degree 2 and c is a 2-cocycle for G = {1, σ } with
values in K ∗ .

One easily sees that the 2-cocycle can be given by c(1,1) = c(1, σ ) = c(σ ,1) = 1 and c(σ ,σ ) =
α−1 ∈ k∗ . The K -linear morphism φ : A := K [1] ⊕ K [σ ] → K [G] = K ⊕ Kσ should have the form
φ([1]) = 1, φ([σ ]) = f σ with f ∈ K ∗ . We have to find f . Now the condition is α = f σ( f ). Write
K = k ⊕ kw with w2 ∈ k∗ and write f = a + bw . Then we have to solve a2 − b2 w2 = α. Consider
the equation X2

1 − X2
2 w2 − X2

3α = 0. By the C1-property of k there is a solution (x1, x2, x3) �= 0. Now
x3 �= 0, since w2 ∈ k∗ is not a square. Then we can normalize to x3 = 1 and the problem is solved.

(5) For dim N = 2 and M of any dimension we will give in Appendix A an easier algorithm for descent
fields, not using the 2-cocycle c explicitly (and recall the former algorithms of [H3,C-W,N-vdP]).

(6) Let again a Galois extension k ⊂ K with Galois group G and 2-cocycle c ∈ H2(G, C∗) be given. The
2-cocycle class has finite order (dividing s) and corresponds to a short exact sequence 1 → Z →
G+ → G → 1, where Z is a finite cyclic group, lying in the center of G+ . Suppose that the Galois
extension k ⊂ K + with group G+ is such that (K +)Z = K . Then the image of c in H2(G+, C∗) is
trivial and the descent condition holds for the field K + . The C1-property of the field k guarantees
the existence of K + , however there seems to be no explicit algorithm, based on the C1-property,
producing a K + . Examples A.4 are based on this remark.

(7) Finally, we note that H2(Gal(K/k),μs) = 1 if g.c.d.([K : k], s) = 1. In that case there is no field
extension needed for the descent.

3.2. Description of the algorithm for the general case

We will search for a decomposition L = M ⊗ N with det N = 1. The module k ⊗ L can be written
as M ⊗k (k ⊗k N) = M ⊗k (k ⊗C V ) where V is the solution space of N . The absolutely irreducible
left-hand factors F of op(L, 	) correspond to the 1-dimensional subspaces W of V .

We suppose that at least one F is given. Let K0 ⊃ k denote the field extension generated by
the coefficients of F . Let K1 be the normal closure of K0. For each σ ∈ Gal(K1/k) one considers the
absolutely irreducible left-hand factor σ(F ). This factor is over k equivalent to F . We have to compute
the field extension of K1 needed for this equivalence.

An algorithm in terms of differential modules (which easily translates in terms of differential op-
erators) is based upon the following lemma.

Lemma 3.6. Let A be an irreducible differential module over k. Then the differential module Hom(A, A) over
k has only one 1-dimensional submodule, namely k · idA .

Proof. It is possible to prove this by using [N-vdP] and irreducible representations of semi-simple Lie
algebras.

However, a more down-to-earth proof is the following. Let V be the solution space of A. This is
a C-vector space of dimension equal to a := dimk A, equipped with a faithful irreducible action of
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the differential Galois group G of A. The group G is connected since k is algebraically closed. A 1-di-
mensional submodule of Hom(A, A) corresponds to a 1-dimensional subspace C f of HomC (V , V ),
invariant under the action of G . There is a homomorphism c : G → C∗ such that g f g−1 = c(g) · f
holds for all g ∈ G . The kernel of f is G-invariant and is {0} since the representation is irreducible.
The action of G on Hom(Λa V ,Λa V ) is trivial. In particular, the isomorphism Λa( f ) : Λa V → Λa V is
invariant under G . Also g(Λa( f ))g−1 = c(g)a ·Λa( f ) and c(g)a = 1. Since G is connected, c(g) = 1 for
all g ∈ G . Thus f is G-invariant and is a multiple of idV since the representation is irreducible. �
Corollary 3.7. The differential module

T (σ ) := Hom
(

K1[∂]/K1[∂]σ(F ), K1[∂]/K1[∂]F
)

over K1 has a single 1-dimensional submodule A(σ ). Moreover, the Picard–Vessiot field of A(σ ) is a finite
cyclic extension K ′

1 ⊂ k of K1 .

Proof. S := k ⊗K1 T (σ ) is isomorphic to Hom(M, M), where M := k ⊗k M . By Lemma 3.6, S has a
unique 1-dimensional submodule, say, B . By uniqueness, B is invariant under the action of Gal(k/K1)

on S and has therefore the form k ⊗K1 A(σ ) for some submodule A(σ ) of T (σ ). The uniqueness of
A(σ ) is clear.

Further k ⊗ A(σ ) is isomorphic to the trivial differential module k · idM . Thus the Picard–Vessiot
field K ′

1 is a finite extension of K1 and this extension is cyclic since A(σ ) has dimension 1. �
By factorization the 1-dimensional submodule A(σ ) can be obtained. The Picard–Vessiot field of

A(σ ) is a finite cyclic extension K ′
1 ⊂ k of K1. Then ker(∂, K ′

1 ⊗ T (σ )) has dimension 1 over C and a
generator φ(σ ) of this kernel is an isomorphism φ(σ ) : K ′

1[∂]/K ′
1[∂]σ(F ) → K ′

1[∂]/K ′
1[∂]F .

The field K ⊂ k is the compositum of the Picard–Vessiot fields of all A(σ ). We note that K is the
field called “stabilisateur” in [C-W]. The isomorphisms φ(σ ) : K [∂]/K [∂]σ(F ) → K [∂]/K [∂]F are now
also known, they are K -rational solutions of the modules K ⊗K1 A(σ ). The 2-cocycle c for Gal(K/k)

with values in C∗ has the property that cs is trivial by the assumption that det N = 1. Then, as in
Section 3.1, one can construct a cyclic extension K ′ ⊃ K such that the module K ′[∂]/K ′[∂]F descends
to k. The result is called M .

The module N is obtained by computing the unique irreducible direct summand of M∗ ⊗k L hav-
ing dimension s. Indeed, this direct summand of M∗ ⊗k L = M∗ ⊗k M ⊗k N = Hom(M, M) ⊗k N is
(k · idM) ⊗k N ∼= N .

3.2.1. An example for the construction of a descent field
Consider the irreducible operator

L = ∂4 + (−4 + 8z)

z2 − 1
∂3 + (53z2 − 40z − 1)

4(z2 − 1)2
∂2 + (5z3 − z2 − 13z − 3)

2(z2 − 1)3
∂ + 61z2 + 64z + 67

16(z2 − 1)4
.

The algorithm of [C-W] produces the following absolutely irreducible right-hand factor

L1 = ∂2 + (3u + 4z2 − 26z + 24)

2(z2 − 1)(4z − 5)
∂ + (−3z − 6)u + 45z2 − 40 z − 13

4(z2 − 1)2(4z − 5)
,

where u2 = z2 − 1. It is isomorphic to its conjugate L2 over K = k(Φ) with Φ4 − 2zΦ2 + 1 = 0 (or
Φ = √

z − u ). Explicitly, there exists S ∈ K [∂] such that L2.R = S.L1 with

R = (1 − 2z + 2u)

Φ(4z − 5)

(
2(z2 − 1)∂ − z − 2

)
,

i.e. R maps a solution of L1 to a solution of L2.
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Let G = Gal(K/k), acting via σ1(Φ) = Φ , σ2(Φ) = −Φ , σ3(Φ) = 1/Φ , σ4(Φ) = −1/Φ . The 2-co-
cycle c is given by c(σ2, σ3) = c(σ2, σ4) = c(σ4, σ3) = c(σ4, σ4) = −1 (and c(σi, σ j) = 1 otherwise).

Remark 3.4 part (4) (see also Example A.3 in Appendix A) produce the elements fσ which are, re-
spectively, 1,1,Φ,Φ; hence the construction from Section 3.2.1 shows that K ′ = K (

√
Φ ) is a descent

field. An anihilating operator for
√

Φ is

N = ∂2 + z

z2 − 1
∂ − 1/16

(
z2 − 1

)−1

(one could find it by writing K ′ as a k[∂]-module and decomposing it).
Decomposing L ⊗ N� (over k), we then obtain

M = ∂2 − 2

z − 1
∂ + 35z + 37

16(z + 1)(z − 1)2

and L1 is isomorphic over K ′ to M . At the end of Appendix A, we give alternative (easier) methods to
handle such small order examples.
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Appendix A

The following lemma makes the relation between 2-cocycles and descent for one-dimensional
differential modules more explicit. We present some examples and present an algorithm producing
descent fields for the case dim N = 2.

Lemma A.1. Let k be a differential field having the properties: the field of constants C is algebraically closed
and has characteristic 0; k is a C1-field.

Let K/k be a Galois extension ( finite or infinite). The collection H(K ) of the (isomorphy classes of the) 1-
dimensional differential modules A over K , satisfying σ A ∼= A for all σ ∈ Gal(K/k), forms a group with respect
to the operation tensor product. Let h(K ) ⊂ H(K ) denote the subgroup consisting of the modules of the form
K ⊗k B, where B is a 1-dimensional differential module over k.

There is a canonical isomorphism H(K )/h(K ) → H2(Gal(K/k), C∗).

Proof. The first statement is obvious. Let the differential module K e with ∂e = ue lie in H(K ). Then

for any σ ∈ Gal(K/k) there is an element fσ ∈ K ∗ such that σ(u) − u = f ′
σ

fσ
. Define the 2-cocycle c by

fστ = c(σ , τ ) · fσ · σ fτ for all σ ,τ ∈ Gal(K/k). Replacing the fσ by d(σ ) fσ , with d(σ ) ∈ C∗ , changes
the 2-cocycle into an equivalent one. Tensoring K e with an element of h(K ) changes u into u + v
with v ∈ k and this does not effect the fσ . Thus the above construction defines a homomorphism
H(K )/h(K ) → H2(Gal(K/k), C∗).

This homomorphism is injective since the triviality of the 2-cocycle class c implies that fστ =
fσ · σ fτ . Since H1(Gal(K/k), K ∗) = {1} there is an F ∈ K ∗ with fσ = σ F

F for all σ . Thus σ(u) − u =
σ( F ′

F ) − F ′
F and u := u − F ′

F is invariant under Gal(K/k) and belongs to k. Now K e = K · e with
e := F −1e and ∂e = ue. Thus K e belongs to h(K ).

The homomorphism is surjective. Indeed, consider a 2-cocycle c for Gal(K/k) with values in C∗ .
Since H2(Gal(K/k), K ∗) = {1} there are elements fσ ∈ K ∗ such that fστ = c(σ , τ ) · fσ · σ fτ for all

σ ,τ ∈ Gal(K/k). Then f ′
στ

fστ
= f ′

σ
fσ

+ σ(
f ′
τ

fτ
) and since H1(Gal(K/k), K ) = {0} there is an element u ∈ K

such that σ(u) − u = f ′
σ

fσ
for all σ ∈ Gal(K/k). Thus the class of c is the image of the module K e with

∂e = ue, belonging to H(K ). �
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Example A.2. Let k = C(z) and K = C(t) with t2 = z. Let σ be the non-trivial element in Gal(K/k).
The module K e with ∂e = ue belongs to h(K ) if and only if

u = w + 1

2t

∑
α �=0

dα
√

α

z − α
with all dα ∈ Z and w ∈ k.

(We note that
√

α denotes an arbitrary choice of a square root for α ∈ C∗ .) This follows from the
computation: if K ∗ � F = tn0

∏
β �=0(t − β)nβ , then

F ′

F
= n0

2t2
+

∑
β2 �=0

nβ + n−β

2(t2 − β2)
+ 1

2t

∑
β2 �=0

nββ − n−ββ

t2 − β2
.

Consider now K e with ∂e = ue, belonging to H(K ). Write u = a + 1
2t b with a,b ∈ k. By assumption

−1
t b = σ(u) − u has the form G ′

G for some G ∈ K ∗ . Write G = tm0
∏

β �=0(t − β)mβ , then, using the

above formula, one finds that m0 = 0 and m−β = −mβ . Thus b = ∑
α �=0

m√
α

√
α

z−α , where α = β2 (and
some choice of

√
α is made). According to the above result, one has that K e lies in h(K ). Therefore

H(K )/h(K ) = {0}. This is in accordance with H2(Gal(K/k), C∗) = {1} (since Gal(K/k) is cyclic).

Example A.3. The group D2 ∼= (Z/2Z)2 has the property that H2(D2, C∗) contains an element of
order 2. In order to obtain this element for an obstruction to descent we consider the following
differential fields

k = C(z) ⊂ K = C(t) ⊂ K ′ = C(s) with z = t2 + t−2, t = s2.

The group Gal(K/k) = {1,a,b,ab} ∼= D2 where the elements a, b are given by a(t) = −t and b(t) =
t−1. One considers the differential module K e with ∂e = ue and u = 1

4(t2−t−2)
= s′

s . One observes

that a(u) − u = 0 and b(u) − u = (t−1)′
t−1 . Thus we may take f1 = 1, fa = 1, fb = t−1, fab = t−1. The

corresponding 2-cocycle c has values in {±1} and fab = c(a,b) · fa · a fb holds with c(a,b) = −1. It
is easily verified that c ∈ H2(D2, C∗) is not trivial. The module K ′ ⊗K e is trivial since u = s′

s and
therefore descends to k. In particular K ′ is a descent field for (K , c).

We note that for a finite group G , acting trivially on C∗ , the cohomology group H2(G, C∗) is called
the Schur multiplier of G . This group is well studied, see [Su].

Examples A.4. A construction of many examples of the type L = M ⊗k N under consideration, involving
a non-trivial descent problem, is the following.

Suppose that G+ is given as a finite irreducible subgroup of GL(V ) where dimC V = n > 1 and that
the center Z of G+ is non-trivial. Further, assume that a Galois extension K + ⊃ k = C(z) with Galois
group G+ is given. Then K := (K +)Z is a Galois extension of k with group G := G+/Z .

Consider the differential module K + ⊗C V over K + , defined by ∂( f ⊗ v) = f ′ ⊗ v for f ∈ K + ,
v ∈ V . This is a trivial differential module. The action of G+ on K + ⊗C V is defined by σ( f ⊗ v) =
σ( f ) ⊗ σ(v). This action commutes with ∂ .

Define N := (K + ⊗C V )G+
. This is an irreducible differential module over k with Picard–Vessiot

field K + . The subfield K is the smallest field such that K ⊗k N is a direct sum of isomorphic copies
of a 1-dimensional differential module D over K . In particular σ D ∼= D for all σ ∈ Gal(K/k). The 2-
cocycle attached to D is non-trivial if there is no subgroup H ⊂ G+ mapping bijectively to G . More
precisely, K + is a smallest field over which the 2-cocycle becomes trivial if and only if no proper
subgroup H of G+ maps surjectively to G .
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Take now any absolutely irreducible differential module M of dimension m > 1 over k. Then L :=
M ⊗k N has the required properties. For dim N = 2 there is a rich choice of examples and there are
similar explicit cases for n = 3, see [vdP-U].

Example A.5. Algorithms for the descent field for the case dim N = 2.
Let L = M ⊗ N be given with M absolutely irreducible and an irreducible N with dim N = 2,

det N = 1 and finite differential Galois group G+ . For this case, methods for finding N (hence the
descent field) and M are proposed, e.g. in [H3,C-W,N-vdP] (and references therein).

Below is another nice method, adapted to our case. We have

G+ ∈ {
DSL2

k , ASL2
4 , SSL2

4 , ASL2
5

} ⊂ SL(2, C)

with center Z = {±( 1 0
0 1

)}
and there is no proper subgroup of G+ mapping onto G := G+/Z ∈

{Dk, A4, S4, A5}. According to Lemma 3.2, the 2-cocycle class c = d ∈ H2(G, C∗) is non-trivial. The
method of Section 3 provides the field K with Gal(K/k) = G , from the data op(L, 	) and an absolutely
irreducible monic left-hand factor F of op(L, 	).

The (unknown) group G+ is a subgroup of SL(V ) with dimC V = 2. Write W = sym2 V and let
S ∈ sym2(W ) be a generator of the kernel of sym2(W ) → sym4(V ). Then S is a non-degenerate
symmetric form of degree two. The homomorphism ψ : SL(V ) → SL(W ), defined by A 	→ A ⊗s A, has
kernel

{±( 1 0
0 1

)}
and its image is {B ∈ SL(W ) | S is invariant under B}. One observes that ψ(G+) = G .

Conversely, for any subgroup G ⊂ SL(W ) preserving the form S , one has that ψ−1(G) = G+ .
Let a ∈ K be a general element, then the orbit Ga is a basis of K/k and the C-vector space with

basis Ga is the regular representation of G . This vector space contains an irreducible representation W
of G of dimension three. In each of the cases for G , there exists a (unique) non-degenerated symmetric
form S on W which is invariant under G .

The unique monic differential operator T3 ∈ K [∂] of degree 3 which is 0 on W belongs to k[∂]
because W is invariant under G . This operator (or the corresponding differential module) is equivalent
to the second symmetric power of an operator T2 ∈ k[∂] (which can be found using [H3]). Let K̃
denote the Picard–Vessiot field of T2. Then [K̃ : K ] = 2. Let V ⊂ K̃ denote the space of solutions
of T2. Then W = {v1 v2 | v2, v2 ∈ V } = sym2 V . The differential Galois group of T2 is ψ−1(G) and thus
isomorphic to G+ . Hence K̃ is a descent field for (K ,d) and then also for (K , c). Using this descent
field one computes M and N .

Yet another observation (though less practical) is that J.J. Kovacic’s fundamental algorithm for order
2 equations [Ko], could also be applied to L = M ⊗ N . For example, the symmetric power symm+1(L)

contains an irreducible factor over k, which is projectively isomorphic to M , for m = 2,4,6,12 for the
cases G+ = DSL2

k , ASL2
4 , SSL2

4 , ASL2
5 . More refined factorization patterns may be established for each of

these cases.

Example A.6. The referee’s example. The operator

L4 = ∂4 + 6z

z2 − 1
∂3 + 1971z2 − 947

288(z2 − 1)2
∂2 + 27z

32(z2 − 1)2
∂ + 9

4096(z2 − 1)2

has the absolutely irreducible right-hand factor

L2 = ∂2 + 3z − α + 1

6(z2 − 1)
∂ + 3

64(z2 − 1)
,

where α is a root of T 4 + 12(z − 1)T 2 − 32(z − 1)T − 12(z − 1)2 = 0.
There are the following methods:
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(1) By [C-W,H3]. L4 = M ⊗ N with det M = det N = 1. The two factors of Λ2L4 = sym2(M) ⊕ sym2(N)

are easily computed and, using [H3], one finds M and N .
(2) By [N-vdP], Theorem 6.2. One computes F ∈ sym2(L4) with ∂ F = 0, F �= 0 and a 2-dimensional

isotropic subspace for F . From the last part of the proof of [N-vdP], Theorem 6.2 one reads off M
and N .

(3) Example A.5 works here as follows. K0 = k(α) and its normal closure K1 has Galois group A4 and
K = K1. The C-vector space W spanned by A4α has dimension 3. The operator T3 = ∂3 + a2∂

2 +
a1∂ + a0 ∈ k[∂] with solution space W is determined by the equation T3(α) = 0. This yields

T3 = ∂3 + 3z − 1

(z + 1)(z − 1)
∂2 + 27z + 5

36(z + 1)2(z − 1)2
∂ − 9z + 23

36(z + 1)2(z − 1)3
.

The operator

T2 = ∂2 + 3z − 1

3(z + 1)(z − 1)
∂ − 3z − 11

48(z + 1)(z − 1)2

satisfies sym2(T2) = T3 and its Picard–Vessiot field (an extension of k of degree 24) is a descent
field. A minimum polynomial of an algebraic solution of T2 is

P = Y 8 + 1

3
(z − 1)Y 4 + 4

27
(z − 1)Y 2 − 1

108
(z − 1)2.

It factors over k(α) as

(
Y 2 + α

6

)(
Y 6 − α

6
Y 4 + 1

3

(
z − 1 + α2

12

)
Y 2 − α3

216
− 1

18
(z − 1)α + 4

27
(z − 1)

)
,

which illustrates the fact that K + is obtained from K1 by adjunction of a square root, here
√

−α
6

(in fact, adjoining any solution of T2 would do).

Continuation of our method (decomposing L4 ⊗ T ∗
2 over k) then yields

M = ∂2 − 1

3

(−1 + 3x)

x2 − 1
∂ + 1

192

189x2 − 96x + 227

(x2 − 1)2

and we may check that

(M ⊗ T2).
((

x2 − 1
)
∂
) = ((

x2 − 1
)
∂ + 4x

)
.L4.

As solutions of both M and T2 can be expressed in terms of special functions (e.g. using the methods
of van Hoeij), this allows to solve L4 in terms of algebraic and special functions.
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