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In a previous paper [8], the author studied modular 2-blocks of finite groups
with quaternion or quasi-dihedral defect groups, using some results of Brauer
[4, 5]. To a certain point the analysis of 2-blocks with defect groups of maximal
class is quite analogous, especially the determination of subsections for these
blocks.

The present paper contains two almost independent sections. In the first
we study a class of p-groups called “‘generalized Redei groups™ and classify
then for p = 2. The definition of these is directly inspired by the properties
of the 2-groups of maximal class, which makes the analysis of the subsections
possible in that case. Then in Section 2 we determine a complete set of repre-
sentatives for the conjugacy classes of subsections for 2-blocks having a non-
abelian generalized Redei defect group. In particular, this gives a fairly large
lower bound on the number of ordinary characters in such a 2-block.

1. GenerAL1ZED ReDEI GROUPS

DerinrTiONs.  Let p be a prime integer and P be a finite p-group. We define
a set # p of subgroups of P as follows:

Mp = {0} QC P, Q is nonabelian or Cp(Q) = QO}.

(If Cp(Q) = O, then Q is a maximal abelian subgroup of P.)
P is called generalized Reder if

L INJQ): 0] <2,
vOeAr ) C0)CO.

We denote the set of generalized Redei groups by K, (for a given prime p).
By K, we denote the set of nonabelian elements in K .
P is called Redei if all proper subgroups of P are abelian, but P is nonabelian.
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ExampLes. Abelian p-groups and Redei groups are generalized Redei.
Z,0Z,e K, for all primes p. Generalized quaternion groups, dihedral, and
quasidihedral 2-groups belong to K,'.

PropositioN 1.1. Let P be a Redei group. Then one of the following hold
(i) PERrs)=<xy|a? =y =1 yay =2 r=2s>1
(i) P Ryr,s) =<wy|a” =97 =20 = I, [m3] =2, 7,5 > 1,
7y-+s >3
(i) Pk Qg, the quaternion group of order 8.

This has been proved by Redei and is quoted in [7, p. 309]. We call the
groups in (i) and (ii) for Redei groups of type (i) and (ii), respectively.

LevMa 1.2. Let Pe K,'. Then P has an abelian subgroup of index p.

Proaf. Since P is noncyclic it has at least two maximal subgroups M, and
M, . Then M, " M, is a normal subgroup of P index p2. By condition |
M, N\ M, ¢ #p.So M; " M, is abelian and not maximal abelian. It is therefore
contained in a larger abelian subgroup, which then must have index p in P.

Lemma 1.3. If Pe K, and Q is a subgroup of P, then Qe K, .

Proof. If Q is abelian, the result is true. By an inductive argument we
may assume that | P: Q| = p and that O is nonabelian. Let O, e #,. If
0, is nonabelian then Q, € #, and we are done. Suppose Q, is abelian and
Co(Q1) = Q1-As | P: Q] = pwehave | Cp(Qy) : Q1| = 1 orp. If Cp(Qy) =
O, then O, € A, so suppose | Cp(Qy) : Q5 | = p. Then Cp(Q,) is abelian and
therefore Cp(Q,) € #p . Consequently, | Np(Cp(Qy)) : Co(Q1)] = p by condi-
tion 1. Now Cp(0;) C Np(Qy) & Np(Cp((y)) so we have a diagram as shown
below:

Np(Cp(Qn))

Np(Q1)

Cr(Q1) No(Q1)
N,/

If [No(Q): Qi =47 then No(@) — No(CH(Qp), as by the above
[ No(Co(Qy)) : Q1 | = p* But Np(Cp(Q,)) contains Cp(Q,). This is a contradic-
tion to the fact that Co(Qy) € O.
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PropPosSITION [.4. Let Pe K,'. Then | P . O(P)| = p?, where O(P) is the
Frattini subgroup of p. Therefore P is generated by two elements.

Proof. Suppose the proposition is false and let P be a minimal counter-
example. Then P is not Redei by Proposition 1.1, so P contains a maximal
subgroup M, which is nonabelian. By induction hypothesis and the preceding
lemma, | M : §(M)| = p? Clearly @Q(M)C HP)CMC P, so | P: ®(P) = p?
and @(P) = P(M). Since every maximal subgroup of P lies in .#,, every
such subgroup contains Z(P) by condition 2. Thus Z(P) C @(P). By Lemma [.2
there exists an abelian subgroup 4 of P of index p in P. Let xc P — A. As
P = <x, Ay we get that Z(P) = C(x). Also x ¢ Z(P), so Cp{x) contains Z(P)
properly. As [P:A| =p we have | Cp(x): Z(P)| = | Cp(x) : C(x)| =
Cp(x) is abelian, because it contains Z(P) as a subgroup of index p, so Cp(x) &
Mp . Let Q = (D(P), Cp(x)>. Then | O : O(P)} = | Cp(x) : C4(x); = p. Con-

sider the diagram below:

Cplx) @(P )

P

Z(P) = Cux)

We have that |P: Q| = p? and as Q 2P(P)2 [P, P], O <1 P. Consequently,
Q is abelian by condition 1. Co(x)e My, we get C ,,(x) Q. Then
| P:Cp(x) = |P:0Q| =2p%a contradlctlon as Cp(x) e Mp

LemMa 1.5. Let p e K, and let A be an abelian subgroup of index p. Moreover
letxe P — A.
(1) Then x?e Z(P) and Cp(x) = {x, C{x))> = {x, Z(P)>eMp. So in
fact Cp(y)e M p for all y e P.
(i) The mapping @,: a — [a, x] is a homomorphism from A onto [P, P].
The kernel is Z(P), so A|Z(P) =~ [P, P].

Proof. (i) follows from general remarks in the proof of Proposition 1.4.

(i) 4 is abelian. Using the commutator relations we get for all elements
a,bed

(Pac(ab) = [ab) x] = [a, x]b[b’ x] = [a, x][b’ x] = ‘pz(ab) q’w(b))
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s0 @, is a homomorphism. Clearly Ker ¢, = C,(x) = Z(P). As P = (x, 4}
we see that every element in P can be written on the form axi, ae 4,0 < { < p.
From the commutator relations it follows that any commutator element in P
is a product of elements on the form [a, ¥%], ac 4, 0 <7 << p. However,
[a, ] = [a;, x] for a suitable a, € 4, again by the commutator relations.
‘This proves (i1).

LimMa 1.6. Let Pe K, and Z C Z(P). Let P = P|Z. If M = M|Z € M5,
then M e Hp.

Proof. Suppose M e #p. If M is nonabelian, then M is nonabelian, so
Me .#, . Suppose M is abelian. Then Cs(M) = M by definition of 45, so
Co(M)C M, because Cp(M)/Z C Cp(M). Then either Cp(M) = M and therefore
M maximal abelian, or Cp(M) # M and therefore M nonabelian. In both
cases M e ..

ProrositioN 1.7. If Pe K, and Z C Z(P), then P[Zc K, .

Proof. Suppose false and let P be a minimal counterexample. Then we may
assume | Z| = p. Let P = P|Z. For Me M, clearly | Np(M): M| << p,
because Np(M)/Z = Np(M) and M € 4 p by Lemma 1.6. So it must be condi-
tion 2 that is violated in P. There exists a M = M|Z € .# psuch that Cp(M) € M.
Let Cp(M) == N/Z. Then N € M. We have that M is nonabelian. Otherwise
Cp(M) = M, as Me M, and then NC M, a contradiction. In particular
M is nonabelian. By definition [M, N]C Z C Z(P). Also [M, N] # 1. Otherwise
again NC Cp(M)C M, as M € 4 . Consequently [M, N] = Z. Also we note
that M € N. Otherwise M C Cp(M) = N/Z. We have Cp(M)CT N C Np(M).
As | Np(M): M| < p we have Np(M) = M - N. By minimality P = 3 - N,
so M is maximal in P. Also we have N <] P, because [N, M] = ZC N. For
xe N — M we have Cp(x)e.#p by Lemma 1.5(i). So if N is abelian then
Ne.#p. Thus in any case N € .#, , so by condition 1, | P: N | = p. Suppose
N is abelian. Then N C Cp(N), so NC Z(P)C P. As | P: N | = p this implies
P to be abelian, a contradiction. Thus N and in particular N is nonabelian.
Assume that there exists an x € N — M, such that [x, M] # 1. Then consider
the homomorphism ¢ from M onto Z defined by e(m) = [m, x] for all m e M.
The kernel is Cypy(x). As x ¢ M, also x ¢ @(P), so x ¢ A, where 4 is an abelian
subgroup of P of index p. By Lemma 1.5(i) we conclude that Cy(x) = Z(P).
But then M/Z(P) =~ Z, so | M : Z(P)| = p, which implies that M is abelian,
a contradiction. Consequently, M is centralized by all elements in N — M.
However, N is generated by these elements. (Take x, & N — @&(P) and
x, e O(P) — O(N). Then xxp,e N — P(P) and «x 5= x;x, mod D(N). By
Proposition 1.4 we get N = <x;, xyx,>.) Again we have a contradiction.

CoroLLarY. If Pe K, and N <1 P, then PINe K, .
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This follows by a straightforward inductive argument.

Lemma 1.8. Let Pe K,'. The following statements are equivalent:
(1) P is a Rede: group.
(1) P has more than one abelian subgroup of index p.
(i) | P: Z(P)| = p? ie., Z(P) = D(P).
Proof. (i) = (ii) is trivial by definition.
(i) = (ii): Let 4, and 4, be 2 different abelian subgroups of index p
in P. Let Z= A4, N A,. Then as 4;CCyx(Z), i = 1,2, and P = {4,, 4y,
we get ZC Z(P). As |P: Z | = p? and | P : Z(P)| > p, (iii) follows.

(iii) = (i): Let M be any maximal subgroup of P. Then M contains
®(P) = Z(P) as a subgroup of index p. Therefore M is abelian.

Remark. From (1.8), (i) < (i) and from Lemma 1.5(ii) it follows that
P is Redei if and only if |[P, P]| = p.

DerintTioN. Pe K, is called strongly generalized Redei, if [P, P] is cyclic.
The set of strongly generalized Redei-groups is denoted SK,, . The subset of
nonabelian groups is denoted SK,’. Clearly Redei groups belong to SK,' .
However, for p 0odd, Z,?Z,c K, — SK,/.

PropostTioN 1.9. K, = SK,, i.e., for Pe K, , [P, P] 1s cyclic.

Proof. Suppose the proposition is false and let P be a minimal counter-
example. So P is non-Redei. Let ze Z(P) — 1. By Proposition 1.7 P =
Pj(z) € K, . Moreover, P is nonabelian by the above remark. By induction
hypothesis, [P, P] = [P, P] - {z)[{z)> =~ [P, P]/([P, P] N {2)) is cyclic. So we
get [P, P] N <{z) % 1. In particular

(ZP)C [P, P]. (%)

Let 2 Z(P)N [P, P] be of order 2. Then [P, P]/(z) is cyclic, so [P, P] =
{2y X (2>, as [P, P] is noncyclic. Suppose that |z | > 2. Let 2, be the
involution in {2;). Then {(2,> char [P, P] char P, so z,€ Z(P) N [P, P]. But
Pj{z,> has then a noncyclic commutator subgroup, a contradiction. Thus

[P, P] is elementary abelian of order 4. (%)

By (*) we conclude that either Z(P) is cyclic or Z(P) 2 [P, P]. In the last case,
P is of class 2, and we get a contradiction using [1, Lemma 1.2]. So Z(P) is
cyclic. By Lemma 1.5(ii) above and (xx), | P: Z(P)| = 8. As Z(P) is cyclic,
P/Z(P) is nonabelian. Moreover, if A4 is the abelian subgroup of index 2 in P,
then A/Z(P) = [P, P] is elementary abelian.
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Now P/Z(P) is nonabelian of order 8 and contains an elementary abelian
subgroup of order 4. Therefore P/Z(P) is dihedral. Let M/Z(P) be the cyclic
subgroup of index 2 in P/Z(P). Then M # A and M is abelian. By Lemma 1.8
P is Redei, a contradiction.

Remark to proof. Only in the last few lines above is it used, that the prime
is 2. For odd p, P/Z(P) can be nonabelian and of exponent p.

Lemma 1.10. Let Pe SK,,, p an arbitrary prime. Then P is of class 2 if and
only if P is Redei.

Proof. We need only show that P of class 2 implies P Redei. Suppose
not and let P be a minimal counterexample. Then all proper nonabelian
subgroups of P are Redei. Let M be a nonabelian subgroup of P of index p.
M is Redei, so | M : Z(M)| = p* However, from Lemma 1.5(i) it follows
that Z(M) = Z(P), so | P: Z(P)| = p® As P is of class 2, P/Z(P) is abelian.
If A is the abelian subgroup of P of index p, then A/Z(P) ~ [P, P] is cyclic
of order p% Therefore P/Z(P) is abelian of type (2 p). This shows, that
P/Z(P) has more than one cyclic subgroup of order p2, so P has more than
one abelian subgroup of index p. Lemma 1.8 gives a contradiction.

ProrosiTioN 1.11. Let Pe SK,'. Then P is Redei or metacyclic.

Proof. Again let P be a minimal counterexample. By the remark after
Lemma 1.8 we have |[P, P]| > p. Take 2 ®(P') N Z(P) of order p. By a
result of Blackburn (see [7, p. 336]) P/{z> = P'is not metacyclic. So by induction
it must be Redei. So |[P, P]| = p. As [P, P] = [P, P]/{z)> we get |[P, P]| = p=.
By Proposition 1.4(ii) | P : Z(P)| = p* P/Z(P) is nonabelian, as P is not of class
2.1f A is abelian, | P: A | = p, then A/Z(P)~ [P, P]is cyclic of order p2
So P/Z(P) has a cyclic subgroup of index p. For p odd it has more than one
such subgroup, so P is Redei by Lemma 1.8, a contradiction. The same holds
if P/Z(P) is quaternion of order 8. So P/Z(P) is dihedral of order 8.

Pick xe P — 4 and ac A4, such that {[x,e]> =[P, P], and let P, =
{x, [a, x]). Clearly P, < P. Also P, is nonabelian, since otherwise P would
be of class 2. P, # P, as P, is metacyclic. So | P: P,| = 2. We conclude
that P, N A = @(P) has at most two generators. However, by a result of
Blackburn [2, Theorem 3.2], 4 must have at least three generators. If not,
all subgroups of P would be metacyclic. Therefore 4 = ®(P) x <{z,), where
|2, | =2, by a straightforward argument. Now [®(P),x] = [P,, P] has
order 2. Also [z, x] has order 2. Therefore [4, x] = [P, P] is of exponent 2,
a contradiction.

This proposition, of course, makes it almost straightforward to actually
determine explicitly SK,’ for any prime p. This is done in Proposition 1.12.
Since K, = SK, by Proposition 1.9, the 2-groups listed in Proposition 1.12
are all possible nonabelian generalized Redei 2-groups.
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ProrosrTioN 1.12. Let Pe SK,/'.

(i) For p odd, P is Redei.
(ii) For p = 2, P is Redei or of one of the following types:

PgrPrs)=<yla¥ =y =1 vy =1, r=3s>1

P Pyr,s) =<,y |a¥ =92 =L,y lay =7, 7 >3,5>1

P Pyr,s) = <(x,y | a7 =927 = 5,22 = 1, ylay = a1,
r,s=2r+s>=5

P Pyr,s) = <(x,y | 2% =327 =z,22 = |, ylay = a2,

r>=3s>3.

Proof. Suppose that P is not Redei. By the preceding proposition, P is
metacyclic. By [7, Satz III, 11.2]

P={x,y|a? =1, y?" = a2, y~lpy — &F,

where ¢ > 0, 7 = 1 (mod p7) and pi(k — 1) = 0 (mod p").

Let A4 be the abelian subgroup of index p in P. Then either x¢ 4 or y ¢ 4.
Suppose that x ¢ A. Then x? € Z(P) by Lemma 1.5(i). This means that x? =
ylxPy = x*? so k=1 (modp™!). Then also k?=1 (mod p"), whence
y? € Z(P). This implies that | P: Z(P)| = | P : (7, y7)| = p?, so P is Redei
by Lemma 1.8, a contradiction. Consequently x € 4, so y ¢ 4. Thus y? € Z(P).
This implies that for p odd k=14 up™! for 0 <u <p — 1. Again
x? € Z(P), a contradiction. This proves (i). Let p = 2. Then we may choose
kas —1, —1 21 or 1 + 21, In the last case P is Redei. In the first two
cases only x2” is centralized by ¥, so t =7 or r — 1. In each of the cases,
t =7 and t =7 — 1, we have two possibilities for &, giving the four cases
listed in (ii).

Finally, a rather special result, which is needed in Section 2.

Lemma 1.13. Let Pe K,'. Then Aut(P) is a 2-group, unless P is Redei of
type (ii) with r = s or P is quaternion of order 8. In these cases Aut(P) contains
an automorphism of order 3, which centralizes [P, P] and acts fixed point free
on P[P, P].

Proof. By Proposition 1.4, | P: ®(P)| = 4, so by a result of P. Hall [7,
Satz I11, 3.19], | Aut(P)|,» = 1 or 3. Suppose that the last case occur, ¢ € Aut(P),
| ¢| = 3. ¢ permutes the three maximal subgroups of P cyclically, so in
particular they are all abelian, i.e., P is Redei. Suppose that P is not quaternion
of order 8. If P is Redei of type (i), the maximal subgroups of P are abelian
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of type (27,25-1), (271, 2%) and (2max(r.s) Jmin(r.9-1) Then we must have
r = s. Thus P/[P, P] is abelian of type (2"-%, 27) and [[P, P]| = 2. But then
Aut(P) is a 2-group, because Aut(P/[P, P]) and Aut([P, P]) are 2-groups, a
contradiction. So P is Redei of type (i1). Again we see, that 7 = 5. Then we can
define ¢ by ¢(x) =y, @(y) = x~y~1. P/[P, P] is abelian of type (27, 27), so
any automorphism on P/[P, P] of order 3 must be fixed point free.

It should be mentioned that all generalized Redei p-groups have been
classified by D. Rocke.

2. THE SUBSECTIONS

Let G be a finite group and B be a 2-block of G having a nonabelian defect
group D, which is a generalized Redei 2-group. Then it is possible to list a
set S of representatives for the conjugacy classes of subsections for B using
[5, 6C]. The determination of S is somewhat more difficult than in [4, 8],
mainly because some special cases have to be considered. We also calculate
[ S| in all cases, since | S| is a lower bound for the number A(B) of ordinary
irreducible characters in B. In most cases there is a natural one-to-one cor-
respondance between the set of conjugacy classes of D and the set S. The
author would like to conjecture, that in many cases | S| = k(B), and therefore
I(B) = 1, i.e., B has only one modular irreducible character.

The notation is as in [4, 8].

Let us note the following properties:

Lemma 2.1. Let De K,'. Then

(i) D has an abelian subgroup A of index 2.
(ii) Any subgroup of D belongs to K, .
(iti) | D: D(D)| = 4, where D(D) is the Frattini subgroup.
(tv) If ue D — A, then w*e Z(D) and Cp(u) = {u, Z(D)). So for any
ue D — Z(D) Cp(u) is abelian and in fact Cp(u)e M .

(v) D has three conjugacy classes of maximal abelian subgroups.

LemMa 2.2. The structure of the maximal abelian subgroups of elements
in Ky':

Ry(r, 5): (27, 2571), (271, 2¢), (2max(r.s) pminGr.a)=1) center: (271, 28-1),

Ry(r, s): (27, 2571, 2), (27, 257, 2), (271, 25, 2), center: (271, 2571, ).

Py(r, 5): (27, 257Y), (2, 29), (2, 29), center: (2, 2571).

Py(r, s): (27, 2%71), (2, 28), (2, 2%) for s > 1, (4) for s = 1, center: (2, 2°71).

Py(r, s): (2max(r.s=1) pmintr.s=D-1) (3s) (2%), center: (2°71).

Py(r, 5): As Py(r, s).
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We assume in the rest of this section that B is a 2-block for the finite group
G with a defect group D of order 2" which belongs to K,’ and that b is a root
of B in DCgy(D).

Lemma 2.3.  Any double chain for B is special. In particular,
aUD, b) = (D, b).

Proof. 'This follows from [8, (1.8)] and the definition of a generalized
Redei group, since GU(D, b) C A, .

LemMa 2.4. GUD, by = My, except possibly when D == Py(r,2) (D gener-
alized quaternion) or D =~ Py(r, 1) (D quasi-dihedral). Then O{(D,b) need not
contain the self-centralizing cyclic subgroups of order 4.

Proof. If D is a Redei group this follows from [8, (1.7)]. So suppose D =~
P,(r, s). Then any nonabelian subgroup of D has a 2-group as an automorphism
group, except if D has a quaternion subgroup of order 8, by Lemma 1.13.
This happens only for Py(r, 1) and Py(r, 2). Let # be the set of subgroups of D
which are nonabelian and not quaternion of order 8. # satisfies the conditions
of [8, (1.9)]. Consequently # C (D, b) and T(bz) = Np(R) Ci(R) for all
ReZ.

Let Re Z and let O be a subgroup of R of index 2, such that Cp(Q) C Q.
We show that Q € (D, b), which will finish the proof. By [3, (3D)] it will

suffice to show

Np(R) Co(R) N RC(Q) = RCx(R).

This follows from an elementary consideration using that Cg(Q)C Q. The
exceptional cases in Lemma 2.4 are described in [8, (2.4)].

LemMa 2.5. Assume that Aut(D) is a 2-group. Then if U, Ve U(D,b)
we have U ~ V if and only if U and V are conjugate in D. Here ~ denotes
strong conjugacy.

Proof. Let
(D, b) = (Dy , bo), (D1, by),..., (D, , b)) = (U, by)
be the double chain from D to U. We may assume r > 1. Since the above
double chain is special by Lemma 2.3, U and V' are conjugate in the complex

T = T(b,_,) - T(b,). We show that

For 0 <i <r — 1: T(8;) = D;1,Co(D;) = Np(D;) Ce(D,); (D4 = D). (%)
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If Aut(D,) is a 2-group, this is easily verified, using that the chain is special
and that T(3,)/Cs(D,) is isomorphic to a subgroup of Aut(D,).

If Aut(D,) is not a 2-group, then i = r — | and D; is quaternion of order 8.
However, then the double chain from D to D,_; does not stop, so by (2.6)
condition (x) is fulfilled.

From (%) we get immediately that 7' = Cg(D,_,)D, so U~ V.

The proof of the next result is similar to [8, (2.6)] and we omit it.

LeMMA 2.6, Suppose that Aut(D) is not a 2-group, t.e., D o~ Ry(r,7) or D
quaternion of order 8. Then | T(b) : DCs(D)! is 1 or 3, and the following conditions
are equivalent:

() |7(): DC(D) = 3.
(iiy Al three maximal subgroups of D are strongly conjugate.

(ii) Two maximal subgroups are strongly conjugate.

Next a general lemma.

LemMa 2.7. Let A be an abelian 2-group of type (24,..., 2%). Then Aut(A)
is a 2-group if and only if i, ,..., 1, are all different.

Proof. A homocyclic 2-group of type (2%, 29, 7 2= | has an automorphism
of order 3, so the only-if part is true. Suppose 7, ,..., #, are all different and that
« is an 2'-automorphism of A. By [6, Theorem 5.2.2], 4 is a direct product
of homocyclic subgroups each admitting «. By assumption they must be cyclic,
so « acts trivially on them. Thus « = 1.

LemMA 2.8. Assume that D is not isomorphic to Ry(r,r — 1), Ryr,2) or
Ry(2, 1). If Q is an abelian subgroup of index 2 in D, then T(by) = DC(Q).

Proof. By Lemma2.3| T(by) : DC¢(Q) is odd. Thus, if Aut(Q) is a 2-group,
the lemma is proved. In Lemma 2.2 we can see in which cases Aut(Q) is not
a 2-group, using Lemma 2.7. It can be easily checked, that since we are excluding
Ry(r,r — 1), Ry(r,2), and Ry(2,1), [D, D] = [D, Q1 C D(Q), the Frattini
subgroup. Thus D acts trivially on Q/®(Q). Since any automorphism of odd
order of Q acts nontrivially on Q/®(Q), we deduce that DC(Q) <1 T(bo).
Let us now note that

Z(D) ={ue Q|| Csu) N T(by) : Co(Q) is even}. (*)
Clearly, the inclusion C holds. On the other hand, if # belongs to the right-hand

side, then | T(bg) : Co(u) N T(by)! is odd, and since DC{Q)/Ce(Q) is the
only Sylow 2-subgroup of T'(by)/Ce(Q), we get D C Cg(u), so ue Z(D).
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Now (x) shows that Z(D) is T(by)-invariant. However, by inspection we
see that neither Q/Z(D) nor Z(D) are homocyclic, using Lemma 2.2. Con-
sequently T'(bg)/Cs(Q) is a 2-group by [6, Theorem 5.3.2], and the lemma is
proved.

LemMa 2.9. If D =~ Ry(r, 2), r > 4 the conclusion of Lemma 2.8 still holds.
It also holds if D o~ Ry(3, 2), if Q is of type (25, 2, 2).

Proof. Assume that Q is of type (27,2,2), r >3, and that | T(dy):
DCQ)| == 3. Since [D, 0] is not contained in &(Q), we get that T(b,)/Ce(Q)
is dihedral of order 6. Let pe T(bg) — Cs(Q), such that | pCe(Q)] = 3 (as
element of T(by)/Co(Q)). By [6, Theorem 5.2.2] we may write Q = Q) X Q,,
where Q, is p-invariant, O, is elementary abelian of order 4 and Q, is cyclic
of order 2". We note that Cy(p) = Q,. Letve D — Q. Then Q,* = Co(p?) =
Colp) = ©Q,, since p? = p~1 (mod Cx(Q)). Thus O, <0 D. This is a contradic-
tion, since D has no normal cyclic subgroup of order 27,

LevMa 2.10. Let Q be an abelian subgroup of index 2 in D. The following
conditions are equivalent: Let u € Q.

() ewi=| T(bo) N Co(w) : Co(Q)| is even.

(i) u is conjugate in T(by) to an element of Z(D).

Proof. (ii) = (i): Suppose u! € Z(D), t € T(by). Then
ey = | T(bo) N Co(u) : Ce(Q)] = | T(bo) N Cou') : Ce(Q).

However, D C T'(by) N Cg(ut), so e, is even.

(i) = (ii): Assume e, even. Put M = T(by). Then b* = pYN6™ hag
a larger defect group than Q by [3, (6A)]. Let D, be a defect group for b*.
Then D, is also a defect group for (b*)M = b,™. Since D is also a defect group

for boM, we get Dy ~,, D. Since ue Z(D,), u is M-conjugate to an element
in Z(D).

ProprosiTiON 2.11. Suppose D is not one of the following groups:

Pi(r, 1), Py(r, 1), Py(r, 2), Ry(2, 1), Ro(r, v — 1), 7 = 2, Ry(r,7), 7 = 2,
quaternion order 8.
Then we can construct a set S of representatives for the conjugacy classes of sub-

sections for B as follows: Let K be a complete set of representatives for the conjugacy
classes of elements in D. Then

S = U { 655G

zeK

If |D| = 2" and | Z(D)| = 2°, then | K | = | S| = 272 -3 . 2a-1,
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Proof. Since we have made some exclusions in the statement of the proposi-
tion, we have the following:

(i) #p = 0(D,b) (Lemma 2.4).

(ii) For all Qe y: T(by) = Np(Q) Cs(0Q) (Lemmas 2.9 and 2.10 and
the proof of Lemma 2.4).

For Py(r, 1) and Py(r, 2), (i) may fail and for the rest (and Py(r, 1)) (ii) may fail
(cf. Lemma 2.2). If Q is any proper nonabelian subgroup of D, then O has three
maximal subgroups by Lemma 2.1, and two of these are conjugate in N(Q).
Moreover, Q is contained in a unique maximal subgroup of D. An inductive
argument shows that two nonabelian subgroups of the same order lying in
the same maximal subgroup of D are conjugate in D. Let 4, 4,, and A4, be
representatives for the conjugacy classes of maximal abelian subgroups of D.
|D:A| =2 Write | D: A;| = 2% and deﬁne subgroups M,; of D, 7 = 1, 2,
j=1,.,k as follows: M, =A4,, My;=NpM;;1), j= L., k—1,
i = 1, 2. Then by Lemma 2.5

= (D, A, M;,i=1,2j=1,.k

is a set of representatives for the strong conjugacy classes of elements in (Zy(D, b).
We apply [5, (6C)]. For Q € W we determine a set I, for the T'(by)-conjugacy
classes of the set

{ueZ(Q) | e. = | T(bo) Co(w) : QCe(Q) is odd}.

For any Q € W we have T(by) = Np(Q) Ce(Q) by (ii) above. If O = D then
obviously I, = Z(D).

O = A4: By Lemma 2.10, ¢, is odd if and only if ue 4 — Z(D). So I, can
be chosen as a set of representatives for the D-conjugacy classes in A — Z(D).

O=M;,7i=1,2,1 <j <<k — 1: Then M,; is nonabelian and Z(M;;) =
Z(D). So for any u € Z(M) e, is even. I, is empty.

O = M, : For elements in Q — Z(D) e, is odd. We can choose [, as a set
of representatives for M, ,_,-conjugacy classes of My — Z(D). (M, = D).
Put I = Jgew Lo - Let us show that any element of D is D-conjugate to exactly
one element in I. This is clear for elements in Z(D) = I, . Let ue D — Z(D).
By Lemma 2.1, Cp(u) is abelian and conjugate in D to A, M,; , or M, . So
u is D-conjugate to an element in one of these groups, i.e., to an element of 1.

So we need only show that || is the number of conjugacy classes in D. Let
| D| =27 | Z(D)| = 2% Then

T = 20 4+ (271 — 29) - 2 - J(20H1 — 29) = 22 4 3. 201,
On the other hand, we may write D as a disjoint union of subsets

D — Z(D)U (4 — Z(D) U (My, — B(D) U (My, — B(D)).
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Each of these subsets is D-invariant. For xe M; — ®(D) | Cp(x)| = 2°*1,
so the set M; — @(D) contains 2%~ conjugacy classes. For xe 4 — Z(D),
Cs(x) = A. So D contains

20 4 J(2n-1 —20) £ 20 — Q2 4 3201 — | ]|

conjugacy classes. This proves the proposition.
In the following results S is again a set of representatives for the conjugacy
classes of subsections for B.

ProrosiTiON 2.12.  Suppose D ~= Ry(r, r) or D is quaternion of order 8.

(i) If | T(d) : DCx(D)| == 1, then S can be chosen as in Proposition 2.11.

(ii) If | T(}) : DCy(D)| = 3, then let A be a maximal subgroup in D.
Let K be a set of D-conjugacy classes in A. Then

S = U {(x bSO

x€K
If|D| =2" then | S| = 271 — 2n3,

Proof. (i) is proved like Proposition 2.11. (ii): By Lemma 2.6, W == {D, A4}.
Again I, = Z(D). By Lemma 2.10, 1, is a set of representatives for D-conjugacy
classes in A4 — Z(D). The result follows.

PROPOSITION 2.13.  Suppose D = Ry(r,r — 1), r == 3. Let A be the subgroup
of type (271,271, 2).

() If T(b,) = DCy(A), then S can be chosen as in Proposition 2.11.

(i) If | T(by) : DCs(A)| = 3, let K be a set of representatives for the
D-conjugacy classes in (D — Ay Z(D). Then S can be chosen similar to the
preceding propositions.

Proof. (i) is proved as Proposition 2.11. For r = 3 we apply Lemma 2.9.

(ii): If A, and A4, are the maximal subgroups in D different from A4,
then W ={D, 4, 4, , 4,}. From the subgroups different from A4 we get
subsections as in Proposition 2.11. Let us show that there are no subsections
from A. Let peT(b,) — Ce(4), | pCs(4) =3 in T(b,)/Cs(A4). We can
write 4 = BC, where B is homocyclic of type (2r-1,2™1), | C| = 2 and B
and C are p-invariant. Since CC Z(D), Z = Z(D)N B is of index 2 in B.
Z is not p-invariant, because then p would stabilize the normal series A D B2 Z
of A, contrary to [6, Theorem 5.3.2]. Consequently B = Z U Z° U Z*, so
A = Z(D) U Z(Dy U Z(DY'. Thus no element in A satisfies the inertial
condition by Lemma 2.10.
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ProposiTION 2.14. Let D ~ R,(2,1) and let A be the elementary subgroup
of order 8. Let e, = | T(b,): DCx(A)|. Then e, =1, 3 or 7. If e, = 1, the
conclusion of Proposition 2.11 holds. If e, = 3 or 7 the conclusion of Proposition
2.13(ii) kolds.

The proof is similar to that of Proposition 2.15 and we omit it.

The only cases left are D dihedral (Py(r, 1), Ry(2, 1)) or generalized quaternion
(Py(r, 2)) or quasidihedral (Py(r, 1)). These have been handled in [4, 8]. Thus
the subsections have been determined in all cases.

One may try to continue the analysis to determine explicitly the number
of characters in 2-blocks with a generalized Redei defect group. But apparently
serious difficulties arise. In the analysis of the decomposition numbers too
many cases have to be considered. Perhaps a different approach to the problem
would be useful. The author has been able to prove results of the following

type:

Suppose D =~ P,(r,s), where 1 <{s —1 <r. Let, in the presentation
of Proposition 1.12, 4 = {x, *> and 2 = »*"", Assume that x is not fused to
x'z in Ng(A) for any i. Then

k(B) = 27452 1. 3-251  [(B) = |
ky(B) = | D : [D, D]| =251, ky(B) = k(B) — ko(B).
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