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In a previous paper [8], the author studied modular 2-blocks of finite groups 
with quaternion or quasi-dihedral defect groups, using some results of Brauer 
[4, 51. To a certain point the analysis of 2-blocks with defect groups of maximal 
class is quite analogous, especially the determination of subsections for these 
blocks. 

The present paper contains two almost independent sections. In the first 
we study a class of p-groups called “generalized Redei groups” and classify 
then for p = 2. The definition of these is directly inspired by the properties 
of the 2-groups of maximal class, ‘which makes the analysis of the subsections 
possible in that case. Then in Section 2 we determine a complete set of repre- 
sentatives for the conjugacy classes of subsections for 2-blocks having a non- 
abelian generalized Redei defect group. In particular, this gives a fairly large 
lower bound on the number of ordinary characters in such a 2-block. 

1. GENERALIZED REDEI GROUPS 

DEFINITIONS. Let p be a prime integer and P be a finite p-group. We define 
a set dP of subgroups of P as follows: 

dP := (Q / Q C P, Q is nonabelian OY C,(Q) = Q}. 

(If C,(Q) = Q, then Q is a maximal abelian subgroup of P.) 

P is called generalized Redei if 

VQE.dp: 1 
1. INp(Q):Q/ <P, 

2. C,(Q) C Q. 

We denote the set of generalized Redei groups by K, (for a given prime p). 

By K,’ we denote the set of nonabelian elements in K, . 

P is called Redei if all proper subgroups of P are abelian, but P is nonabelian. 
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EXAMPLES. Abelian p-groups and Redei groups are generalized Redei. 
Z, {Z, E k’,’ for all primes p. Generalized quaternion groups, dihedral, and 
quasidihedral 2-groups belong to K,‘. 

PROPOSITION 1.1. Let P be a Redei group. Then one of the following hold 

(i) P c$ RJr, s) = (x, y J xp’ = yDS = 1, y-%3/ = &+)J7-‘), Y > 2, s 2 1. 

(ii) P c$ Ri,(r, s) = (x, y 1 x1” = yp’ = ~7’ = I, [x, y] = z>, r, s >, 1, 
7+5>,3. 

(iii) P c$ Qs , the quaternion group of order 8. 

This has been proved by Redei and is quoted in [7, p. 3091). We call the 
groups in (i) and (ii) for Redei groups of type (i) and (ii), respectively. 

LEMMA 1.2. Let P E K,‘. Then P has an abelian subgroup of index p. 

Proof. Since P is noncyclic it has at least two maximal subgroups MI and 
M2 . Then M, n M2 is a normal subgroup of P index p2. By condition 1 
MI n M, $ AP . So MI n M, is abelian and not maximal abelian. It is therefore 
contained in a larger abelian subgroup, which then must have index p in P. 

LEMMA I -3. If P E K, and Q is a subgroup of P, then Q E K, . 

Proof. If Q is abelian, the result is true. By an inductive argument we 
may assume that ( P : Q / = p and that Q is nonabelian. Let Q, E JX, . If 
Q1 is nonabelian then Q1 E JZP and we are done. Suppose Q1 is abelian and 
G(Q1)=91.AslP:Ql =P we have j C,(QJ : Q1 / = I or p. If C,(QJ = 
Q1 then Q1 E JZ~, so suppose 1 C,(QJ : Q1 1 = p. Then C,(QJ is abelian and 
therefore C,(Q& edP . Consequently, / iVP(CP(Q1)) : C,(QJ = p by condi- 
tion 1. Now CP(Q1) _C NP(Q1) C iVP(CP(Q1)) so we have a diagram as shown 
below: 

IV,(CP(QJ) 

NP(QJ 

/\ 
CdQd NdQ,) 

\/ 
Ql 

If / No(Ql) : Q1 1 2 p2, then Na(Q1) = NP(CP(Ql)), as by the above 
I Np(Cp(Qd : Ql I = P’. But NACP(QL)~)) contains Cp(Q1). This is a contradic- 
tion to the fact that CP(Q1) $ Q. 
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PROPOSITION 1.4. Let PE K,‘. Then / P : a(P)/ = pz, where D(P) is the 
Frattini subgroup of p. Therefore P is generated by two elements. 

Proof. Suppose the proposition is false and let P be a minimal counter- 
example. Then P is not Redei by Proposition 1.1, so P contains a maximal 
subgroup M, which is nonabelian. By induction hypothesis and the preceding 
lemma, / M : @(M)l = p2. Clearly Q(M) C D(P) _C M _C P, so 1 P : Q(P)’ = p3 
and @(P) = Q(M). Since every maximal subgroup of P lies in Ap , every 
such subgroup contains Z(P) by condition 2. Thus Z(P) C Q(P). By Lemma 1.2 
there exists an abelian subgroup A of P of index p in P. Let x E P - A. As 
P = (Y, A) we get that Z(P) = C,(x). Also x $Z(P), so C,(x) contains Z(P) 
properly. As j P : A I = p we have 1 C,(x) : Z(P)1 = 1 C,(x) : C,(x)1 = p. 
C,(X) is abelian, because it contains Z(P) as a subgroup of index p, so Cl,(x) E 
JH~ . Let Q = (Q(P), C,(X)). Then 1 Q : G(P)/ = / C,(x) : C,(x), = p. Con- 
sider the diagram below: 

P 

/\ 
/Q?\ AA 

CPW w > 

\/ 

Z(P) = C,(x) 

We have that 1 P : Q j = pa and as Q 1 @(P) > [P, P], Q CZI P. Consequently, 
Q is abelian by condition I. As C,(X)E&~, we get C,(x) = Q. Then 
/ P : C,(x)j L- j P : Q / = pz, a contradiction as C,(X) E Mp . 

LEMMA 1.5. Let p E K,’ and let A be an abelian subgroup of index p. Moreover 
letxEP-R. 

(i) Then xn E Z(P) and C,(x) = (x, C,(x)) = (x, Z(P)) EJ&‘~ . So in 
fact C,(y) E JXp for all y E P. 

(ii) The mapping v2: a -+ [a, x] is a homomorphism from A onto [P, P]. 
The kernel is Z(P), so A/Z(P) c [P, P]. 

Proof. (i) follows from general remarks in the proof of Proposition 1.4. 

is abelian. Using the commutator relations we get for all elements 

dab) = bb, xl = ia, dbP, xl = [a, xl[h xl = v&> v,(b), 
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so (pz is a homomorphism. Clearly Ker vr = C,(X) = Z(P). As P = (x, A) 
we see that every element in P can be written on the form axi, a E A, 0 < i < p. 
From the commutator relations it follows that any commutator element in P 
is a product of elements on the form [a, xi], a E A, 0 < i < p. However, 
[a, xi] = [a, , X] for a suitable a, E A, again by the commutator relations. 
This proves (ii). 

LEMMA 1.6. Let P E K,’ and Z C Z(P). Let r = P/Z. If M = M/Z E d%‘p , 
then ill E J&‘~ . 

Proof. Suppose M E -“cep . If M is nonabelian, then ICI is nonabelian, so 
ME ./HP . Suppose M is abelian. Then Cp(M) = M by definition of &p, so 
C,(M) _C M, because C,(M)/Z C Cp(M). Th en either C,(M) = M and therefore 
M maximal abelian, or C,(M) f M and therefore M nonabelian. In both 
cases 32 E &Yp . 

PROPOSITION 1.7. If P E K, and Z C Z(P), then P/Z E K, . 

Proof. Suppose false and let P be a minimal counterexample. Then we may 
assume i Z 1 = p. Let P = P/Z. F or ME&~ clearly 1 Np(M) : R j 2: p, 
because Xp(M)/Z = N,(M) and M E &p by Lemma 1.6. So it must be condi- 
tion 2 that is violated in P. There exists a M = M/Z E J&!~ such that CF(M) !$ .@. 
Let C,(Jl1) =-- N/Z. Then N $ M. We have that M is nonabelian. Otherwise 
Cp(fif) -= :W, as ME J&‘P , and then NC M, a contradiction. In particular 
M is nonabelian. By definition [M, N] C Z C Z(P). Also [M, N] # 1. Otherwise 
again NC C,(M) C M, as ME ~2’~ . Consequently [M, N] = Z. Also we note 
that ;2f c N. Otherwise M C Cp(M) = N/Z. We have C,(M) C N G N,(M). 
As ; N,(ilr) : M 1 < p we have N,(M) = M. N. By minimality P = M . N, 
so M is maximal in P. Also we have N Q P, because [N, M] = Z C N. For 
x E N - -lf we have C,(X) E J&‘~ by Lemma 1.5(i). So if N is abelian then 
NE -fld, . Thus in any case NE .Mp , so by condition 1, 1 P : N I = p. Suppose 
N is abelian. Then m C Cp(m), so m C Z(P) C P. As 1 P : N 1 = p this implies 
P to be abelian, a contradiction. Thus n’ and in particular N is nonabelian. 
Assume that there exists an x E N - M, such that [x, M] + 1. Then consider 
the homomorphism 9 from M onto Z defined by v(m) = [m, X] for all m E M. 
The kernel is C,(X). As x 4 M, also x $ G(P), so x $ A, where A is an abelian 
subgroup of P of index p. By Lemma 1.5(i) we conclude that C,(X) = Z(P). 
But then _1!fjZ(P) z Z, so / M : Z(P)/ = p, which implies that M is abelian, 
a contradiction. Consequently, M is centralized by all elements in N - M. 
However, A7 is generated by these elements. (Take X, EN - Q(P) and 
x2 E @p(P) - D(N). Then xixa E N - Q(P) and xi + xixa mod Q(N). By 
Proposition 1.4 we get N = (xi , ~rx~).) Again we have a contradiction. 

COROLLARY. IfPEKZ,undN<3P,thmP/NEK,. 



SUBSECTIONS FOR Z-BLOCKS 501 

This follows by a straightforward inductive argument. 

LEMMA 1.8. Let P E K,‘. The following statements are equivalent: 

(i) P is a Redei group. 

(ii) P has more than one abelian subgroup of index p. 

(iii) 1 P : Z(P)] = p2, i.e., Z(P) = Q(P). 

Proof. (i) * (ii) is trivial by definition. 

(ii) * (iii): Let A, and A, be 2 different abelian subgroups of index p 
in P. Let 2 = A, n A,. Then as Ai _C Co(Z), i = 1,2, and P = (A, , A,), 
we get 2 C Z(P). As 1 P : 2 j = p2 and / P : Z(P)1 > p, (iii) follows. 

(iii) + (i): Let 1M b e any maximal subgroup of P. Then IM contains 
G(P) = Z(P) as a subgroup of index p. Therefore M is abelian. 

Remark. From (I@, (i) o (iii) and from Lemma 1.5(ii) it follows that 
P is Redei if and only if j [P, P] 1 = p. 

DEFINITION. P E K, is called strongly generalized Redei, if [P, P] is cyclic. 
The set of strongly generalized Redei-groups is denoted SK, . The subset of 
nonabelian groups is denoted SK,‘. Clearly Redei groups belong to SK,‘. 
However, for p odd, Z, 2 Z, E K,’ - SK,‘. 

PROPOSITION 1.9. K, = SK, , i.e., for P E K, , [P, P] is cyclic. 

Proof. Suppose the proposition is false and let P be a minimal counter- 
example. So P is non-Redei. Let z E Z(P) - 1. By Proposition 1.7 P = 
P/(z) E K2 . Moreover, P is nonabelian by the above remark. By induction 
hypothesis, [p, p] = [P, P] . (z)/(z) z [P, P]/([P, P] n (z)) is cyclic. So we 
get [P, P] n (z) # 1. In particular 

QR,(W)) _c [P, PI. (*> 

Let z E Z(P) n [P, P] be of order 2. Then [P, P]/(z) is cyclic, so [P, P] = 
<x1) x (z), as [P, P] is noncyclic. Suppose that ( x1 j > 2. Let z2 be the 
involution in (zr). Then (z2) char [P, P] char P, so z, E Z(P) n [P, P]. But 
P/(z2) has then a noncyclic commutator subgroup, a contradiction. Thus 

[P, P] is elementary abelian of order 4. (**I 

By (*) we conclude that either Z(P) is cyclic or Z(P) I [P, P]. In the last case, 
P is of class 2, and we get a contradiction using [I, Lemma 1.21. So Z(P) is 
cyclic. By Lemma 1.5(ii) above and (**), 1 P : Z(P)] = 8. As Z(P) is cyclic, 
P/Z(P) is nonabelian. Moreover, if A is the abelian subgroup of index 2 in P, 
then A/Z(P) g [P, P] is elementary abelian. 
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Now P/Z(P) is nonabelian of order 8 and contains an elementary abelian 
subgroup of order 4. Therefore P/Z(P) is dihedral. Let M/Z(P) be the cyclic 
subgroup of index 2 in P/Z(P). Then M # A and M is abelian. By Lemma 1.8 
P is Redei, a contradiction. 

Remark to proof. Only in the last few lines above is it used, that the prime 
is 2. For odd p, P/Z(P) can be nonabelian and of exponent p. 

LEMMA 1.10. Let P E SK, , p an arbitrary prime. Then P is of class 2 ;f and 
only if P is Redei. 

Proof. We need only show that P of class 2 implies P Redei. Suppose 
not and let P be a minimal counterexample. Then all proper nonabelian 
subgroups of P are Redei. Let M be a nonabelian subgroup of P of index p. 
M is Redei, so 1 M : Z(M)] = p2. However, from Lemma 1.5(i) it follows 
that Z(M) = Z(P), so 1 P : Z(P)1 = p3. As P is of class 2, P/Z(P) is abelian. 
If A is the abelian subgroup of P of index p, then A/Z(P) g [P, P] is cyclic 
of order p2. Therefore P/Z(P) is abelian of type (p”,p). This shows, that 
P/Z(P) has more than one cyclic subgroup of order p2, so P has more than 
one abelian subgroup of index p. Lemma 1.8 gives a contradiction. 

PROPOSITION 1 .l 1. Let P E SK,‘. Then P is Redei or metacyclic. 

Proof. Again let P be a minimal counterexample. By the remark after 
Lemma 1.8 we have i[P, PI\ > p. T k a e z E @(P’) n Z(P) of order p. By a 
result of Blackburn (see [7, p. 3361) P/(z) = P is not metacyclic. So by induction -- 
it must be Redei. So I[P, PJI = p. As [P, P] = [P, P]/(z) we get I[P, P]j = p2. 
By Proposition 1.4(ii) 1 P : Z(P)] = p3. P/Z(P) . IS nonabelian, as P is not of class 
2. If A is abelian, 1 P : A ) = p, then A/Z(P) s [P, P] is cyclic of order p2. 
So P/Z(P) has a cyclic subgroup of index p. For p odd it has more than one 
such subgroup, so P is Redei by Lemma 1.8, a contradiction. The same holds 
if P/Z(P) is quaternion of order 8. So P/Z(P) is dihedral of order 8. 

Pick x E P - A and a E A, such that ([x, a]) = [P, P], and let P, = 
(x, [a, ~1). Clearly P, Q P. Also P, is nonabelian, since otherwise P would 
be of class 2. P, # P, as P, is metacyclic. So / P : P, 1 = 2. We conclude 
that P, n A = Q(P) h as at most two generators. However, by a result of 
Blackburn [2, Theorem 3.21, A must have at least three generators. If not, 
all subgroups of P would be metacyclic. Therefore A = G(P) x (z,), where 
1 zr / = 2, by a straightforward argument. Now [@i(P), x] = [P, , P] has 
order 2. Also [.zr , X] has order 2. Therefore [A, X] = [P, P] is of exponent 2, 
a contradiction. 

This proposition, of course, makes it almost straightforward to actually 
determine explicitly SK,’ for any prime p. This is done in Proposition 1.12. 
Since K2 = SK, by Proposition 1.9, the 2-groups listed in Proposition 1.12 
are all possible nonabelian generalized Redei 2-groups. 
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PROPOSITION 1.12. Let P E SK,‘. 

(i) For p odd, P is Redei. 

(ii) For p = 2, P is R d e e-i or of one of the following types: 

P * PJY, s) = (x, y 1 xzr = yZS = 1, y-%3/ = x-l), r > 3, s > 1 

p Q P2(r, 4 = (X> Y I x2’ = y2* z 1, y-ixy = X-i+@), r > 3, .s >, 1 

P * P&r, s) = (x, y 1 x2’--’ = y2+’ = z, 22 = 1, y-ixy = x-l), 

Y, s > 2, r $ s >, 5 

p * p4+, s) = (x, y 1 x2’-’ = y2"-' = z, ,g = 1, y-lxy = x-1+2’-‘), 

7 > 3, s > 3. 

Proof. Suppose that P is not Redei. By the preceding proposition, P is 
metacyclic. By [7, Satz III, Il.21 

P = (x, y 1 x9’ = 1, yps = Xr+, y-ixy = xk), 

where t > 0, kP* EZ 1 (modpr) and pt(k - 1) = 0 (modpr). 
Let A be the abelian subgroup of index p in P. Then either x $ A or y $ A. 

Suppose that x $ A. Then xp E Z(P) by Lemma 1.5(i). This means that ~9 = 
y-Wy = xkp, so k = 1 (modpr-l). Then also kp = 1 (modpr), whence 
y” E Z(P). This implies that I P : Z(P)/ = / P : (xp, y”)l = p2, so P is Redei. 
by Lemma 1.8, a contradiction. Consequently x E A, so y $ A. Thus yP E Z(P). 
This implies that for p odd k = 1 + ~$9~~ for 0 < u < p - 1. Again 
xv E Z(P), a contradiction. This proves (i). Let p = 2. Then we may choose 
k as -1, - 1 + 2?-l or 1 + 2r-l. In the last case P is Redei. In the first two 
cases only x2’-’ is centralized by y, so t = r or r - 1. In each of the cases, 
t = r and t = r - 1, we have two possibilities for k, giving the four cases 
listed in (ii). 

Finally, a rather special result, which is needed in Section 2. 

LEMMA 1.13. Let P E K,‘. Then Aut(P) is a 2-group, unless P is Redei of 
type (ii) with r = s or P is quaternion of order 8. In these cases Aut(P) contains 
an automorphism of order 3, which centralizes [P, P] and acts fixed point free 
on Pl[P, PI. 

Proof. By Proposition 1.4, I P : D(P)1 = 4, so by a result of P. Hall [7, 
Satz III, 3.191, ( Aut(P)j,, = 1 or 3. Suppose that the last case occur, v E Aut(P), 
I v ] = 3. y permutes the three maximal subgroups of P cyclically, so in 
particular they are all abelian, i.e., P is Redei. Suppose that P is not quaternion 
of order 8. If P is Redei of type (i), the maximal subgroups of P are abelian 
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of type (2’, 28-1), (2r-l, 2”) and (2ma(r*s), 2min(7~s)-1). Then we must have 
r = s. Thus P/[P, P] is abelian of type (2?-l, 2’) and l[P, P]l = 2. But then 
Aut(P) is a 2-group, because Aut(P/[P, P]) and Aut([P, P]) are 2-groups, a 
contradiction. So P is Redei of type (ii). Again we see, that T = s. Then we can 
define v by v(x) = y, p’(y) = z-ly-l. P/[P, P] is abelian of type (2’, 29, so 
any automorphism on P/[P, P] of order 3 must be fixed point free. 

It should be mentioned that all generalized Redei p-groups have been 
classified by D. Rocke. 

2. THE SUBSECTIONS 

Let G be a finite group and B be a 2-block of G having a nonabelian defect 
group D, which is a generalized Redei 2-group. Then it is possible to list a 
set S of representatives for the conjugacy classes of subsections for B using 
[5, 6C]. The determination of S is somewhat more difficult than in [4, 81, 
mainly because some special cases have to be considered. We also calculate 
/ S j in all cases, since / S 1 is a lower bound for the number h(B) of ordinary 
irreducible characters in B. In most cases there is a natural one-to-one cor- 
respondance between the set of conjugacy classes of D and the set S. The 
author would like to conjecture, that in many cases ) S 1 = K(B), and therefore 
Z(B) = 1, i.e., B has only one modular irreducible character. 

The notation is as in [4, 81. 
Let us note the following properties: 

LEMMA 2.1. Let D E K2’. Then 

(i) II has an abelian subgroup A of index 2. 

(ii) Any subgroup of D belongs to Kz . 

(iii) / D : Q(D)/ = 4, where Q(D) is the Frattini subgroup. 

(iv) If u E D - A, then u2 E Z(D) and C,(u) = (u, Z(D)). So for any 
u E II - Z(D) C,(u) is abelian and in fact C,(u) E Ai’* . 

(v) D has three conjugacy classes of maximal abelian subgroups. 

LEMMA 2.2. The structure of the maximal abelian subgroups of elements 
in K2’: 

R,(Y, s): (2”, 25-l), (27-1, 29, (2mrwr(T*s), 2min(T,s)-1), center: (2+-l, 28-1). 

R,(r, s): (27, 2s-1, 2), (2?, 25-1, 2), (2T--1,2”, 2), center: (2T-1,25-l, 2). 

Pl(Y, s): (2’, 25-l), (2, 29, (2, 29, centeY: (2, 2”-1). 

P&, s): (2’, 25-7, (2, 29, (2, 2”) for s > 1, (4) for s = I, cater: (2,29. 

P&, 4: (2 max(r,a-l), 2min(r.s-1)-l), (2”), (2”), center: (2.7-l). 

P&, s): As P&, s). 
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We assume in the rest of this section that B is a 2-block for the finite group 
G with a defect group D of order 2” which belongs to K,’ and that b is a root 
of B in DC,(D). 

LEMMA 2.3. Any double chain for B is special. In particular, 

@(D, b) = &,(D, b). 

Proof. This follows from [8, (1.8)] and the definition of a generalized 
Redei group, since a(D, b) C J&‘~ . 

LEMMA 2.4. M(D, 6) = A,, except possibly when D g P3(r, 2) (D gener- 
alized quaternion) OY D G P2(r, 1) (D quasi-dihedral). Then CW,D, b) need not 
contain the self-centralizing cyclic subgroups of order 4. 

Proof. If D is a Redei group this follows from [8, (1.7)]. So suppose D g 
Pi(r, s). Then any nonabelian subgroup of D has a 2-group as an automorphism 
group, except if D has a quaternion subgroup of order 8, by Lemma 1.13. 
This happens only for P2(r, 1) and P3(r, 2). Let 2 be the set of subgroups of D 
which are nonabelian and not quaternion of order 8. W satisfies the conditions 
of [8, (1.9)]. Consequently Z! C @,(D, b) and T(b,) = N,(R) C,(R) for all 
RE.G% 

Let’R E &’ and let Q be a subgroup of R of index 2, such that C,(Q) C Q. 
We show that Q E LZ(D, b), which will finish the proof. By [3, (3D)] it will 
suffice to show 

N,(R) C,(R) n G(Q) = RWR)- 

This follows from an elementary consideration using that C,(Q) C Q. The 
exceptional cases in Lemma 2.4 are described in [8, (2.4)]. 

LEMMA 2.5. Assume that Aut(D) is a 2-group. Then if U, V E OY(D, 6) 
we have U * V if and only if U and V are conjugate in D. Here w denotes 
strong conjugacy. 

Proof. Let 

(D, 6) = (Do > h,), (4 , bd,..., CD, 9 b,) = (U, bu) 

be the double chain from D to U. We may assume Y 3 1. Since the above 
double chain is special by Lemma 2.3, U and V are conjugate in the complex 
T = T(b,-,) ..a T(b,). We show that 

For 0 < i < Y - 1: T(bJ = DiJG(DJ = N,(D,) C,(Di); (D-1 = DO). (*I 
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If Aut(D,) is a 2-group, this is easily verified, using that the chain is special 
and that T(bJC,(DJ is isomorphic to a subgroup of Aut(D,). 

If Aut(D,) is not a 2-group, then i = Y - 1 and Di is quaternion of order 8. 
However, then the double chain from D to D,-, does not stop, so by (2.6) 
condition (*) is fulfilled. 

From (*) we get immediately that T = Co(D,_,)D, so U mD k: 
The proof of the next result is similar to [8, (2.6)] and we omit it. 

LEMMA 2.6. Suppose that Aut(D) is not a 2-group, i.e., D s R,(r, r) or D 
quaternion of order 8. Then 1 T(b) : DC,(D)1 is 1 OY 3, and the following conditions 
are equivalent: 

(i) 1 T(b) : DC,(D)1 = 3. 

(ii) All three maximal subgroups of D are strongly conjugate. 

(iii) Two maximal subgroups are strongly conjugate. 

Next a general lemma. 

LEMMA 2.7. Let A be an abelian 2-group of type (2il,..., 2ik). Then Aut(A) 
is a 2-group if and only if i1 ,..., ik are all dt@rent. 

Proof. A homocyclic 2-group of type (2i, zi), i > 1 has an automorphism 
of order 3, so the only-if part is true. Suppose iI ,..., ik are all different and that 
01 is an 2’-automorphism of A. By [6, Theorem 52.21, A is a direct product 
of homocyclic subgroups each admitting 01. By assumption they must be cyclic, 
so 01 acts trivially on them. Thus 01 = 1. 

LEMMA 2.8. Assume that D is not isomorphic to R,(Y, Y - I), R,(Y, 2) OY 
R,(2, 1). If Q is an abelian subgroup of index 2 in D, then T(bo) = DC,(Q). 

Proof. By Lemma 2.3 1 T(bo) : DC,(Q)1 is odd. Thus, if Aut(Q) is a 2-group, 
the lemma is proved. In Lemma 2.2 we can see in which cases Aut(Q) is not 
a 2-group, using Lemma 2.7. It can be easily checked, that since we are excluding 
R,(r, Y - l), R&Y, 2) and 1142, l), [D, D] = [D, Q] _C D(Q), the Frattini 
subgroup. Thus D acts trivially on Q/@(Q). Since any automorphism of odd 
order of Q acts nontrivially on Q/@(Q), we deduce that DC,(Q) 4 T(bo). 
Let us now note that 

Z(D) = (u E Q ) 1 Co(u) n T(bo) : Co(Q)] is even}. (*) 

Clearly, the inclusion C holds. On the other hand, if u belongs to the right-hand 
side, then 1 T(b,) : C,(u) n T(bo)l is odd, and since DCo(Q)/C,(Q) is the 
only Sylow 2-subgroup of T(bo)/C,(Q), we get D _C Co(u), so u E Z(D). 
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Now (v) shows that Z(D) is T(bo)-invariant. However, by inspection we 
see that neither Q/Z(D) nor Z(D) are homocyclic, using Lemma 2.2. Con- 

sequently Th>/~~(Q) is a 2-group by [6, Theorem 5.3.21, and the lemma is 
proved. 

LEMMA 2.9. If D s R,(r, 2), r > 4 the conclusion of Lemma 2.8 still holds. 
It also holds if D z R,(3, 2), if Q is of type (23, 2, 2). 

PPOOf. 4ssume that Q is of type (2’, 2,2), Y > 3, and that j T(bo) : 
DC,(Q)I = 3. Since [D, Q] is not contained in D(Q), we get that T@o)/C,(Q) 
is dihedral of order 6. Let p E T(bo) - C,(Q), such that / PC,(Q)/ = 3 (as 
element of T(bo)/C,(Q)). By [6, Th eorem 5.2.21 we may write Q = Q1 x Qs , 
where Qi is p-invariant, Qr is elementary abelian of order 4 and Qs is cyclic 
of order 2’. We note that Co(p) = Qs . Let ~1 E D - Q. Then Qsv = Co(,“) = 
Co(,) = Q2 9 since pV = p-l (mod C,(Q)). Thus Qs 4 D. This is a contradic- 
tion, since D has no normal cyclic subgroup of order 2’. 

LEMMA 2.10. Let Q be an abelian subgroup of index 2 in D. The following 
conditions are equivalent: Let u E Q. 

(i) e,, := / T(bo) n Co(u) : Co(Q)1 is even. 

(ii) u is conjugate in T(bo) to an element of Z(D). 

Proof. (ii) + (i): Suppose ut E Z(D), t E T(bo). Then 

e, = I T(b) n W4 : CG(Q>I = I Wd n G@“> : G(Q)l. 
However, D _C T(bo) n Co(ut), so e, is even. 

(i) > (ii): Assume eU even. Put M = T(bo). Then b* = b~ncoc”’ has 
a larger defect group than Q by [3, (6A)]. Let D, be a defect group for b*. 
Then D, is also a defect group for (b*)+’ = b o”. Since D is also a defect group 
for bo”, we get D, wM D. Since u E Z(D,), u is M-conjugate to an element 
in Z(D). 

PROPOSITION 2.11. Suppose D is not one of the following groups: 

Pl(r, I), P&, l), P3(r, 21, R,(L 11, R,(r> r - l), r 3 2, R,(r, r), r 2 2, 

quaternion order 8. 

Then we can construct a set S of representatives for the corzjugacy classes of sub- 
sections for B as follows: Let K be a complete set of representatives for the conjugacy 
classes of elements in D. Then 

S = u {(x, b#)l. 
XEK 

If 1 D I = 2” and / Z(D)1 = 2”, then j K ~ = ! S 1 = 2”-2 + 3 * 2a-l. 
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Proof. Since we have made some exclusions in the statement of the proposi- 
tion, we have the following: 

(i) J&‘, = a(D, b) (Lemma 2.4). 
(ii) For all Q EJ?‘~ : T(b,) = No(Q) C,(Q) (Lemmas 2.9 and 2.10 and 

the proof of Lemma 2.4). 

For Pz(r, 1) and Ps(r, 2), (i) may fail and for the rest (and Pz(r, 1)) (ii) may fail 
(cf. Lemma 2.2). If Q is any proper nonabelian subgroup of D, then Q has three 
maximal subgroups by Lemma 2.1, and two of these are conjugate in ND(Q). 
Moreover, Q is contained in a unique maximal subgroup of D. An inductive 
argument shows that two nonabelian subgroups of the same order lying in 
the same maximal subgroup of D are conjugate in D. Let A, A, , and A, be 
representatives for the conjugacy classes of maximal abelian subgroups of D. 
) D : A 1 = 2. Write j D : Ai 1 = 2”, and define subgroups Mij of D, i = 1,2, 
j = 1 k, as follows: ,...1 Mi, = Ai , M,, = iV,(M,,j+l), j = I,..., k - 1, 
i = 1,2. Then by Lemma 2.5 

W={D,A,Mij,i= 1,2,j= l,..., k} 

is a set of representatives for the strong conjugacy classes of elements in Q?,(D, b). 
We apply [5, (6C)]. For Q E W we determine a set Io for the T(bo)-conjugacy 

classes of the set 

{u E Z(Q) I e, = I WO) C.&d : QG(Q)l is odd). 
For any Q E W we have T(bo) = ND(Q) C,(Q) by (ii) above. If Q = D then 
obviously Io = Z(D). 

Q = A: By Lemma 2.10, e, is odd if and only if u E A - Z(D). So IA can 
be chosen as a set of representatives for the D-conjugacy classes in A - Z(D). 

Q = M,, , i = 1,2, 1 < j < k - 1: Then &Iii is nonabelian and Z(M,) = 
Z(D). So for any zl E Z(Mij) e, is even. I, is empty. 

Q = Mik : For elements in Q - Z(D) e, is odd. We can choose IO as a set 
of representatives for Mi,,-,-conjugacy classes of Mik - Z(D). (Mi, = 0). 
Put I = lJoswIo . Let us show that any element of D is D-conjugate to exactly 
one element in 1. This is clear for elements in Z(D) = ID . Let u E D - Z(D). 
By Lemma 2.1, C,(u) is abelian and conjugate in D to A, M,, , or Mzk . So 
u is D-conjugate to an element in one of these groups, i.e., to an element of I. 
So we need only show that 1 I / is the number of conjugacy classes in D. Let 
1 D 1 = 2”, / Z(D)1 = 2”. Then 

/I j = p + I#"-1 - 29 + 2 .&(p+l-p) == p-2 + 3 .20-l. 

On the other hand, we may write D as a disjoint union of subsets 

D = Z(D) u (A - Z(D)) u (Ml1 - Q(D)) u (M2, - Q(D)). 
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Each of these subsets is D-invariant. For x E Mi, - Q(D) 1 C,(x)/ = 2a+1, 
so the set M,, - Q(D) contains 2+1 conjugacy classes. For x E A - Z(D), 
Co(x) = A. So D contains 

2a + 3(2”-1 - 2”) + 2a = 2”-2 + 3 - 2a-1 = 1 I j 

conjugacy classes. This proves the proposition. 
In the following results S is again a set of representatives for the conjugacy 

classes of subsections for B. 

PROPOSITION 2.12. Suppose D s R,(r, Y) or D is quaternion of order 8. 

(i) If 1 T(b) : DC,(D)1 = 1, then S can be chosen as in Proposition 2.11. 

(ii) If 1 T(b) : DC,(D)1 = 3, th en let A be a maximal subgroup in D. 
Let K be a set of D-conjugacy classes in A. Then 

If j D 1 = 2”, then 1 S j = 2”-l - 2”-3. 

Proof. (i) is proved like Proposition 2.11. (ii): By Lemma 2.6, W = (D, A). 
Again ID = Z(D). By Lemma 2.10, IA is a set of representatives for D-conjugacy 
classes in A - Z(D). The result follows. 

PROPOSITION 2.13. Suppose D s R ( 2 r, Y - l), Y 3 3. Let A be the subgroup 
of type (2’-l, 2+l, 2). 

(i) If T(b,) = DC,(A), then S can be chosen as in Proposition 2.11. 

(ii) If j T(b,) : DC,(A)/ = 3, let K be a set of representatiwes for the 
D-conjugacy classes in (D - A) U Z(D). Then S can be chosen similar to the 
preceding propositions. 

Proof. (i) is proved as Proposition 2.11. For Y = 3 we apply Lemma 2.9. 

(ii): If A, and A, are the maximal subgroups in D different from A, 
then W = {D, A, A,, A,}. From the subgroups different from A we get 
subsections as in Proposition 2.11. Let us show that there are no subsections 
from A. Let p G T(b,) - C,(A), 1 p&(A)1 = 3 in T@,)/&(A). We can 
write A = DC, where B is homocyclic of type (2+l, 27-1), 1 C / = 2 and B 
and C are p-invariant. Since CC Z(D), Z = Z(D) n B is of index 2 in B. 
Z is not p-invariant, because then p would stabilize the normal series A 2 B 1 Z 
of A, contrary to [6, Theorem 5.3.21. Consequently B = Z u ZQ u ZQ', so 

A = Z(D) U Z(D)0 U Z(D)o’. Thus no element in A satisfies the inertial 
condition by Lemma 2.10. 
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PROPOSITION 2.14. Let D s R,(2, 1) and let A be the elementary subgroup 
of order 8. Let e, = 1 T(b,) : DC,(A)\. Then e, = 1, 3 or 7. If e, = 1, the 
conclusion of Proposition 2.11 holds. If eA = 3 or 7 the conclusion of Proposition 
2,13(ii) holds. 

The proof is similar to that of Proposition 2.15 and we omit it. 
The only cases left are D dihedral (Pl(y, l), R,(2, 1)) or generalized quaternion 

(Ps(r, 2)) or quasidihedral (Pz(r, 1)). These have been handled in [4, 81. Thus 
the subsections have been determined in all cases. 

One may try to continue the analysis to determine explicitly the number 
of characters in 2-blocks with a generalized Redei defect group. But apparently 
serious difficulties arise. In the analysis of the decomposition numbers too 
many cases have to be considered. Perhaps a different approach to the problem 
would be useful. The author has been able to prove results of the following 
type: 

Suppose D s Pl(r, s), where 1 < s - 1 < Y. Let, in the presentation 
of Proposition 1.12, A = (x, y2> and z = y2”-l. Assume that x is not fused to 
xi2 in N,(A) for any i. Then 

k(B) = 29+-2 + 3 . 2s-1, Z(B) = 1 

h,,(B) = j D : [D, D]l = 2S-1, k,(B) = h(B) - h,(B). 
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