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This Letter investigates semiclassical backreaction of a conformally coupled massless scalar field on the
geometrical background of a nearly spinning cosmic string — the spin density is smaller than, but
arbitrarily close to, the dislocation parameter. As the spin density approaches the dislocation parameter,
it is shown that an ergoregion spreads indefinitely around the cosmic string, boosting along the string
axis the once static observers. Considering that the geometrical background contains closed timelike
curves when the spin density exceeds the dislocation parameter, it is argued that the appearance of the
ergoregion may be part of a chronology protection mechanism that takes place in related non-stationary
geometries.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Cosmic strings are objects which may play relevant role in as-
trophysics, cosmology, and fundamental physics [1,2]. It has long
been noticed that such objects offer a rich arena to investigate the
interplay between non-trivial global geometry and quantum field
theory [3,4]. Since gravitational fields generated by cosmic strings
correspond to locally flat backgrounds (geometrical analogs of the
Aharonov–Bohm setup), calculations usually turn out to be simpler
than those in locally curved spacetime, leading to quantum ef-
fects due to a nonvanishing global curvature. Recent investigations
on quantum fields around cosmic strings have addressed massive
fields, higher spins, various dimensions and boundary conditions,
among other issues (see, e.g., [5]).

As is well known, the geometry of spacetime outside an ordi-
nary cosmic string is given by the line element [1,6],

ds2 = dτ 2 − dr2 − α2r2 dθ2 − dξ2, (1)

where the disclination parameter α is related to the mass density
μ of the straight string by α = 1 − 4μ (units as in [4] will be used,
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i.e., G = c = 1). The coordinates in Eq. (1) have the same nature as
those in the Minkowski line element (when expressed in terms of
cylindrical coordinates), with an important difference that Eq. (1)
hides a conical singularity at r = 0, corresponding to a deficit an-
gle 2π(1 − α), if μ �= 0. According to the physics of formation of
ordinary cosmic strings, α is very close to one [1,2]. It should be
remarked that words such as “disclination” and “dislocation” have
been borrowed from condensed matter physics, where geometrical
aspects also appear (see, e.g., [7]).

The metric tensor in Eq. (1) is cylindrically symmetric and in-
variant under boosts along the symmetry axis [1,6]. Definition of a
new angle as,

ϕ := αθ, ϕ ∼ ϕ + 2πα, (2)

clearly shows that Eq. (1) corresponds to a locally flat vacuum
solution of the Einstein equations. If the requirement of boost in-
variance is relaxed, one is led to a generalization of Eq. (1) [8–10],

ds2 = (dτ + S dθ)2 − dr2 − α2r2 dθ2 − (dξ + κ dθ)2, (3)

containing two new parameters (which will be taken to be non-
negative): the spin density S , and the dislocation parameter κ .
When S > κ , Eq. (3) shows that the associated spacetime con-
tains closed timelike curves (CTCs), and therefore violates causal-
ity [taking dτ = dr = dξ = 0 in Eq. (3), CTCs are obtained if
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r <
√

S2 − κ2/α]. The locally flat character of Eq. (3) is revealed
by considering Eq. (2), T := τ + Sθ and Ξ := ξ + κθ , resulting

ds2 = dT2 − dr2 − r2 dϕ2 − dΞ2. (4)

Setting κ = 0 in Eq. (3) yields the geometry around a “spin-
ning cosmic string” [8], whose terminology has to do with the fact
that, by omitting the last term in Eq. (3), the resulting line ele-
ment corresponds to the geometry around a particle with spin S
in (2 + 1)-dimensions [11] (clearly both cases present CTCs). Set-
ting instead S = 0, Eq. (3) becomes the line element corresponding
to a “cosmic dislocation” [9].

In fact, when S �= κ , Eq. (3) describes either a cosmic disloca-
tion, or a spinning cosmic string. For S < κ , the following Lorentz
transformation in the τ–ξ plane,

t = τ − vξ√
1 − v2

, z = ξ − vτ√
1 − v2

, v := S/κ, (5)

leads to

ds2 = dt2 − dr2 − α2r2 dθ2 − (dz + κ ′ dθ)2, (6)

describing the geometry of a cosmic dislocation with dislocation
parameter

κ ′ :=
√

κ2 − S2. (7)

If, on the other hand, S > κ , replacing v in Eq. (5) by κ/S , Eq. (3)
is recast as

ds2 = (dt + S ′ dθ)2 − dr2 − α2r2 dθ2 − dz2, (8)

corresponding to a spinning cosmic string with spin density S ′ :=√
S2 − κ2.
The fact that vacuum fluctuations typically diverge when CTCs

are about to form (for a review see [12]) has led to the chronol-
ogy protection conjecture [13], according to which the laws of
physics do not allow the appearance of “time machines” (if vacuum
fluctuations are strong, backreaction effects could modify the orig-
inal geometry preventing the formation of CTCs). Although Eq. (3)
describes a stationary geometry, the parameters can be adjusted
in order to simulate a scenario where CTCs were about to form,
namely, considering S < κ and taking S → κ . This approach has
been used in [14], showing that the vacuum expectation value of
the energy momentum tensor of a massless scalar field diverges
in the coordinate systems of Eqs. (3) and (4), when S → κ . How-
ever, it remains finite when expressed in terms of the coordinates
in Eq. (6) (this is expected since, when κ ′ → 0, Eq. (6) approaches
the line element of an ordinary cosmic string, for which vacuum
fluctuations behave well [3]) [15]. It might appear that the diver-
gent effect in the coordinate system of Eq. (3) is purely due to
some relativistic factor coming from Eq. (5); but that is not the
case. The expressions for vacuum fluctuations in the background
of a cosmic dislocation carry a certain function which presents a
mild divergence when its argument vanishes. The transformation
from the coordinates in Eq. (6) to those in Eq. (3) activates this
divergence. As has been shown in [14], if the mentioned function
were not divergent for a vanishing argument, as S approached κ
the vacuum expectation value of the energy momentum tensor in
the coordinate system of Eq. (3) would remain finite, suggesting
violation of chronology protection.

At first sight the study of the “strong” backreaction effects on
the metric tensor in Eq. (3) seems to be intractable (the procedure
possibly becomes not reliable by refeeding Einstein’s equations
with “strong” vacuum fluctuations). However, taking into account
the fact that backreaction on the metric tensor in Eq. (6) is “weak”
[4,16], one could first solve the problem in the coordinate system
of Eq. (6), then translating the results to that of Eq. (3), via Eq. (5).
This approach will be implemented in the following sections.
It should be added that vacuum fluctuations in the geometry
of a spinning cosmic string [17,18] [cf. Eq. (8)] are pathological
due to the presence of CTCs (the corresponding spacetime is non-
globally hyperbolic, and the usual quantization procedures lead
to divergent vacuum fluctuations in all frames [18]). CTCs also
spoil unitarity of quantum mechanics in the corresponding (2+1)-
dimensional geometry [19].

In the next section, the study of semiclassical backreaction
around a cosmic dislocation [16] is extended, and used in the
following section to compute quantum corrections in the met-
ric tensor in Eq. (3), when S approaches κ from below (“nearly
spinning cosmic string”). The effects on static observers are de-
termined, showing the appearance of a region around the cosmic
string, whose features resemble those of the ergosphere of a rotat-
ing black hole. A summary and further discussion are presented in
the last section.

2. Backreaction around cosmic dislocations

In order to study semiclassical backreaction of a conformally
coupled massless scalar field φ on the geometry of a cosmic dislo-
cation [16], it is convenient to consider in Eq. (6) new coordinates,
Z := z + κ ′θ and Eq. (2),

ds2 = dt2 − dr2 − r2 dϕ2 − dZ 2, (9)

with (t, r,ϕ, Z) ∼ (t, r,ϕ + 2πα, Z + 2πκ ′). In terms of the local
inertial coordinate system in Eq. (9), the general form of the vac-
uum expectation value of the energy momentum tensor for φ is
given by [15],

〈
T μ

ν

〉
(r) =

⎛
⎜⎝

〈T t
t〉 0 0 0

0 〈T r
r〉 0 0

0 0 〈T ϕ
ϕ〉 〈T ϕ

Z 〉
0 0 r2〈T ϕ

Z 〉 〈T Z
Z 〉

⎞
⎟⎠ , (10)

with two components related as

〈
T Z

Z
〉 = 〈

T t
t
〉 + κ ′2

r6
h̄ fα

(
κ ′2/r2), (11)

where 2π h̄ is the Planck constant, and

fα(x) := −1

2

∞∫
0

dλ

∞∑
n=1

1

[cosh2(λ/2) + n2π2x]3

× n2[λ2 − π2(4α2n2 − 1)]
[π2(2αn + 1)2 + λ2][π2(2αn − 1)2 + λ2] . (12)

As x → 0, fα(x) → +∞; but the divergence is mild since xfα(x) →
0 in this limit [14].

When the cosmic dislocation is absent, i.e., α = 1 and κ ′ = 0,
〈T μ

ν〉 vanishes. If κ ′/r � 1, one has approximately,

〈
T μ

ν

〉
(r) = h̄

r4

⎛
⎜⎝

−A 0 0 0
0 −A 0 0
0 0 3A κ ′B/r2

0 0 κ ′B −A

⎞
⎟⎠ , (13)

where A(α) := (α−4 − 1)/1440π2 and B(α) is defined as in
Eq. (20) of [15] [B(α = 1) = 1/60π2]. When κ ′ = 0, Eq. (13) re-
duces to the form long known in the literature corresponding to
an ordinary cosmic string [3]. Subleading contributions in Eq. (13)
must be considered if α = 1 and κ ′ �= 0.

It should be remarked that the study of vacuum polarization
around a cosmic dislocation has been implemented using the vac-
uum associated with the time coordinate t in Eq. (6). (In fact, by
observing Eqs. (3) and (6), one sees that the generators of trans-
lations in τ and in t are globally timelike Killing vector fields
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that commute, and therefore defining the same vacuum state [20].)
This appears to be a natural choice of vacuum, since when κ ′ = 0
and α = 1, the corresponding Feynman propagator becomes the
Minkowski propagator [15].

Observing the most general form of a static and cylindrically
symmetric line element [21], one now allows quantum perturba-
tions γμν(r) (which are assumed to be linear in h̄) of the back-
ground metric tensor in Eq. (9),

ds2 = (1 + γtt)dt2 + (−1 + γrr)dr2 − r2 dϕ2

+ 2γZϕ dZ dϕ + (−1 + γZ Z )dZ 2, (14)

involving four unknown functions of r. Einstein’s equations Rμ
ν =

−8π〈T μ
ν〉 are then fed with traceless (since spacetime is locally

flat) 〈T μ
ν〉 in Eq. (10), leading to the following set of linearized

Einstein’s equations

r2γtt,rr + rγtt,r = 16πr2〈T t
t
〉
, (15)

rγrr,r + rγtt,r − rγZ Z ,r = 16πr2〈T ϕ
ϕ

〉
, (16)

r2γϕ Z ,rr − rγϕ Z ,r = −16πr4〈T ϕ
Z
〉
, (17)

r2γZ Z ,rr + rγZ Z ,r = −16πr2〈T Z
Z
〉
. (18)

The equation involving 〈T r
r〉 has been omitted, since it follows

from Eqs. (15), (16) and (18), and by considering that 〈T μ
ν〉 is

convariantly conserved.
Eqs. (15), (17) and (18) have the form of Euler’s equation

x2 y′′ + axy′ = G(x), whose general solution can be written as

y(x) = c1 + c2x1−a + 1

a − 1

x∫
β

G(u)

u

[
1 −

(
x

u

)1−a]
du (19)

if a �= 1, or

y(x) = c1 + c2 log x +
x∫

β

G(u)

u
log

(
x

u

)
du (20)

if a = 1. Eqs. (19) and (20) contain arbitrary constants c1 and c2,
and a point β that can be conveniently chosen.

The solutions of Eqs. (15) and (18) can be read from Eq. (20),

γtt = 16π

∞∫
r

u
〈
T t

t
〉
log

(
u

r

)
du, (21)

γZ Z = −16π

∞∫
r

u
〈
T Z

Z
〉
log

(
u

r

)
du, (22)

where the constants have been found to vanish by applying a di-
mensional argument used in the backreaction problem around an
ordinary cosmic string [4]. To illustrate the procedure, one assumes
c2 = 0 but c1 �= 0. Now, c1 is dimensionless and linear in h̄, and
the only dimensionful parameters in Eqs. (15)–(18) are h̄ and κ ′
(with units of squared length and length, respectively). It follows
that c1 = coh̄/κ ′ 2, where co is dimensionless. Clearly that is not
acceptable unless co vanishes: by setting κ ′ = 0, the (finite) results
corresponding to an ordinary cosmic string should be reproduced.

Similar considerations regarding Eqs. (17) and (19) lead to

γϕ Z = 8π

∞∫
u
〈
T ϕ

Z
〉(

r2 − u2)du, (23)
r

and combination of Eqs. (21)–(22) yields

γrr = 16π

r∫
∞

u

[(〈
T t

t
〉 + 〈

T Z
Z
〉)

log

(
u

r

)
+ 〈

T ϕ
ϕ

〉]
du (24)

by solving Eq. (16). It is worth noting that the argument of 〈T μ
ν〉

in Eqs. (21)–(24) is the integration parameter u, i.e., 〈T μ
ν〉(u).

Observing Eq. (11), the following relation arises from Eqs. (21)–
(22)

γtt + γZ Z = −κ ′2h̄Fα(κ ′, r), (25)

where the function

Fα(κ ′, r) := 16π

∞∫
r

1

u5
fα

(
κ ′2/u2) log

(
u

r

)
du (26)

diverges positively when κ ′ → 0. However, in the limit when κ ′ →
0, γtt = −γZ Z .

One can check the consistency of these results by taking into
Eqs. (21)–(24) the expressions for 〈T μ

ν〉(r) in Eq. (13). Performing
the integrations, it follows that

ds2 =
(

1 − 4π Ah̄

r2

)(
dt2 − dZ 2) −

(
1 + 16π Ah̄

r2

)
dr2

− r2 dϕ2 − 4πκ ′Bh̄

r2
dϕ dZ , (27)

reproducing the results in [4,16].
At this point, it should be stressed that in order the semiclassi-

cal scheme, based on the use of the linearized Einstein equations,
to make sense the “perturbations” in Eq. (14) must be tiny (i.e.,
γtt � 1, γrr � 1, γZ Z � 1, and γZϕ � κ ′ for nonvanishing κ ′).
Thus, examining Eq. (27), h̄/r2 � 1 is assumed to hold outside the
cosmic dislocation.

3. Backreaction around nearly spinning cosmic strings

It follows from Eq. (5) that the inertial coordinate systems in
Eqs. (4) and (9) are related by

t = T − vΞ√
1 − v2

, Z = Ξ − vT√
1 − v2

, v := S/κ. (28)

Thus the line element in Eq. (14) can be recast as

ds2 = (
1 + γtt − S2h̄Fα

)
dT2 + (−1 + γrr)dr2

− r2 dϕ2 − 2(S/κ ′)γZϕ dT dϕ + 2Sκh̄Fα dT dΞ

+ 2(κ/κ ′)γZϕ dΞ dϕ + (−1 + γZ Z − S2h̄Fα

)
dΞ2, (29)

where Eqs. (7) and (25) have been used. For given values of the
parameters κ and S , when r → ∞ the line element in Eq. (29)
reduces to the flat form in Eq. (4), as can be seen from the expres-
sions for γμν and Fα in the previous section.

To obtain quantum corrections in the coordinate system
{τ , r, θ, ξ} of Eq. (3), one simply replaces in Eq. (29) dT, dϕ and
dΞ by dτ + S dθ , α dθ and dξ + κ dθ , respectively [see text just
before Eq. (4)]. An observer that moves at most axially (i.e., with
dr = 0 and dθ = 0) has ds2 > 0 given by

ds2 = (
1 + γtt − S2h̄Fα

)
dτ 2 + 2Sκh̄Fα dτ dξ

+ (−1 + γZ Z − S2h̄Fα

)
dξ2. (30)

If the observer is at rest, it follows from Eq. (30) that ds2 = (1 +
γtt − S2h̄Fα)dτ 2. By letting S grow toward κ �= 0, the latter kept
fixed, and recalling that γtt → −4π Ah̄/r2 and Fα → +∞ when
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κ ′ → 0 [see Eqs. (7), (26) and (27)], it becomes clear that there is
a value of S above which ds2 becomes negative, and therefore the
observer cannot remain at rest (static). In the region defined by

1 + γtt(r) − S2h̄Fα(κ ′, r) < 0 (31)

(and at its surface) there is no static observers, resembling in this
sense the ergosphere of a rotating black hole (see, e.g., [22]) — the
time translation Killing vector field χμ = (1,0,0,0) is not timelike,
i.e.,

χ2 := χμχμ = 1 + γtt − S2h̄Fα < 0. (32)

Since Fα(κ ′, r) is a decreasing function of r, as S approaches κ
(i.e., κ ′ → 0) the ergoregion defined in Eq. (31) widens indefinitely
throughout the space.

In order to study further the properties of the ergoregion, the
axial velocity of an observer,

V := dξ

dτ
, (33)

is used to rewrite Eq. (30) as ds2 = P dτ 2, where

P (V ) := 1 + γtt − S2h̄Fα + 2Sκh̄Fα V

+ (−1 + γZ Z − S2h̄Fα

)
V 2. (34)

As γZ Z � 1, the coefficient −1+γZ Z − S2h̄Fα is negative, resulting
that V must be between the roots of P (V ), such that ds2 > 0:

V− < V < V+, (35)

with

V± = Sκh̄Fα ± √
(1 − γZ Z )(1 + γtt)

1 − γZ Z + S2h̄Fα
. (36)

In deriving V± in Eq. (36), Eq. (25) has been used.
Observing the expressions in the previous section, one sees

from Eq. (36) that far away from the cosmic string (i.e., when
r → ∞) V± → ±1, the usual Minkowski limits in both directions.
Inside the ergoregion, it follows from Eqs. (7), (25) and (31) that
1−γZ Z −k2h̄Fα < 0. This inequality combined with that in Eq. (31)
leads to V− > 0, i.e., both V+ and V− are positive — in the er-
goregion the observer must be moving in the positive direction. By
letting S → κ in Eq. (36), it results that V− and V+ tend to merge
to unity: V± → 1 as κ ′ → 0.

Other properties of the ergoregion are revealed by considering
the energy E = mgτμ dxμ/ds of a particle of mass m (see, e.g., [23])
constrained to move axially, and thus with proper time given by
Eq. (30),

E(V ) = m√
P (V )

(
1 + γtt − S2h̄Fα + Sκh̄Fα V

)
. (37)

If the particle travels with speed

Vo := V+ + V−
2

= Sκh̄Fα

1 − γZ Z + S2h̄Fα
, (38)

it results that

E(Vo) = m
√

P (Vo), (39)

where Eq. (34) has been used. Noting Eq. (25), one obtains

P (Vo) = (1 − γZ Z )(1 + γtt)

1 − γZ Z + S2h̄Fα
. (40)

When r → ∞, it follows from Eqs. (38)–(40) that E → m, the usual
particle rest energy corresponding to Vo → 0. On the other hand,
when r is such that the particle is in the ergoregion, S → κ yields
E(Vo) → 0 and Vo → 1.
One can also derive from Eq. (37) that outside the ergore-
gion, where V− < 0, E(V → V±) → +∞. And inside the ergore-
gion, where V± > 0, E(V → V±) → ±∞, vanishing when V =
(−1 − γtt + S2h̄Fα)/Sκh̄Fα .

Although this section addresses pure axial motion only, a rather
straightforward calculation shows that an observer cannot have
pure radial motion in the ergoregion. And, if the observer has
initially pure circular motion in the ergoregion, it will eventually
become helical as S → κ .

4. Conclusion

In this work, semiclassical backreaction on the metric tensor
in Eq. (3) was determined, by extending a previous calculation on
the geometrical background of a cosmic dislocation, Eq. (6). When
S > κ in Eq. (3), the corresponding spacetime is nonglobally hyper-
bolic, since it contains CTCs. It was shown that when S approaches
κ from below, due to backreaction, a cylindrical ergoregion spreads
around the “nearly spinning cosmic string”, eventually covering the
whole space. This is encapsulated in the rather unexpected fact
that χ2 = 1 before backreaction is taken into account, whereas af-
ter backreaction is taken into account [cf. Eq. (32)],

χ2 → −∞, (41)

as S → κ (for a fixed r).
In the coordinate system of Eq. (3), Eq. (41) [which obviously is

a coordinate independent statement] is interpreted as strong back-
reaction effects, on the background metric tensor, resulting from
amplifications of the weak quantum corrections γμν in Eq. (14).
Expressions such as Eqs. (11) and (25) are not affected by the di-
vergence of fα(x) [cf. Eq. (12)] due to the factor κ ′ 2 (since the
divergence is weaker than 1/x). However, the transformation (5)
“replaces” κ ′ 2 by S2, κ2 or κ S , exposing the divergence which
causes the strong backreaction effects on the metric tensor in
Eq. (3), when S → κ . This divergence is also responsible for the
divergent 〈T μ

ν〉, as has been shown in [14].
Before backreaction is considered, by letting S in Eq. (3) grow

toward κ , and eventually becoming greater than κ , it follows that
a static observer would see the transition between the two non-
equivalent geometries in Eqs. (6) and (8), simulating the appear-
ance of a “time machine”. After backreaction is considered in the
geometry of Eq. (3), the picture changes radically. For a fixed r,
Eq. (30) shows that the metric tensor diverges as S → κ . Moreover,
static observers are only possible outside the ergoregion, which
as S → κ widens indefinitely across the space, dragging along
the cosmic string, in the positive direction, the once static ob-
servers. This new picture seems to suggest that no observer would
detect the appearance of a “time machine”. In other words, in re-
lated non-stationary geometries, the ergoregion and its associated
strong effects would be part of a chronology protection mecha-
nism.

Some remarks regarding the coordinate systems in Eqs. (3) and
(6) are in order. Recalling that the Killing vector field χμ is the
generator of translations in the time τ (and not in the time t),
it should be clear that the dragging of static observers by the er-
goregion takes place only in the coordinate system {τ , r, θ, ξ} [see
Eq. (30)]. In the coordinate system of Eq. (6), backreaction effects
when S → κ are those (tiny effects) around an ordinary cosmic
string [obtained by setting κ ′ = 0 and dϕ = α dθ in Eq. (27)],
resulting that the generator of translations in t remains globally
timelike, and observers once at rest can stay at rest. Note, how-
ever, that any coordinate system does have its own interpretation
of the ergoregion, namely, an observer initially following an inte-
gral curve of χμ will depart from it where χ2 � 0.
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It should be stressed that the static geometry of Eq. (6) is not
equivalent to the stationary (but not static) geometry of Eq. (8). If
one wishes to simulate a non-stationary scenario where a transi-
tion possibly takes place from Eq. (6) to Eq. (8), then the natural
setting to do so is Eq. (3) which describes either geometries.
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