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Abstract

Recent years have explored various clustering strategies to partition datasets comprising of heterogeneous domains or types such

as categorical, numerical and binary. Clustering algorithms seek to identify homogeneous groups of objects based on the values

of their attributes. These algorithms either assume the attributes to be of homogeneous types or are converted into homogeneous

types. However, datasets with heterogeneous data types are common in real life applications, which if converted, can lead to loss

of information. This paper proposes a new similarity measure in the form of triplet to find the distance between two data objects

with heterogeneous attribute types. A new k-medoid type of clustering algorithm is proposed by leveraging the similarity measure

in the form of a vector. The proposed k-medoid type of clustering algorithm is compared with traditional clustering algorithms,

based on cluster validation using Purity Index and Davies Bouldin index. Results show that the new clustering algorithm with new

similarity measure outperforms the k-means clustering for mixed datasets.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of organizing committee of the International Conference on Eco-friendly Computing and Com-
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1. Introduction

Data analysis is one of the critical phases of Knowledge Discovery in Databases1 because different approaches such

as exploratory, statistical, predictive, etc analyzes data with different perspectives and thus the information obtained

is visualized and interpreted in different forms2. Real-world datasets are often heterogeneous, represented by a set

of mixed attribute data types like numerical, categorical and binary. Banks, financial sectors, insurance policies,

stock markets, medical domains and biological domains have a strong urge for data clustering which is a common

technique used in data analysis and is used in many fields including statistics, data mining, and image analysis. One

of the main requirements of any clustering algorithm is a good similarity measure to know the distance between the

objects in order to group them together. Lots of research have been done on the distance measures between objects of

homogeneous data types. However for two objects having dissimilar or mixed types of attributes, still a gap persists as
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to how to compare the two objects for similarity. In case of big data, the volume of data is too huge and the structure

is quite unordered. For analytical purposes, a structured format is given to the data. But all the data types cannot be

converted into homogeneous types.

Table 1. An instance of Bank Dataset.

Id Duration Job Marital Education Housing c

1 261 Management Married Tertiary Yes c1

2 151 Technician Single Secondary Yes c1

3 968 Technicain Married Secondary Yes c1

4 375 Technician Single Tertiary No c2

5 355 Services Divorced Primary Yes c2

Consider the sample of a bank dataset as shown in Table 1. Here duration is one of the numerical attributes. It

has a natural ordering, for instance, 261 > 151. Discretizing such numeric values may assign 151 and 256 the same

categorical value. Thus, such an attempt leads to loss of information. Marital status is another attribute which is

categorical. There is no ordering between the values Married, S ingle and Divorced. So it is very difficult to convert

the categorical values like Marital status or Job to a numeric value. Housing is a binary attribute which has only two

possible values yes and no. These can be just checked for equality and no other ordering like Yes < No or Yes > No
is possible. Moreover, binary attributes follow a bernoulli distribution but categorical attributes follow a discrete

probability distribution.1. Thus each of the numeric,categorical and binary attribute types has disparate characteristics

and hence should be treated separately. So, if the distance between two data points say row 1 and row 2 is to be

computed, it is not possible until a unified model of distance measure for such data exists.A methodology to cluster

objects having different types of attributes is addressed in this paper. This type of work is still in modest phase and

various strategies employing this type of measure need to be devised for effective and valid clustering.

The main contribution of this paper is a modified version of k-medoid clustering for enabling clustering of mixed as

well as pure numeric, categorical and binary datasets. For this, we introduce a similarity measure in the form of a

triplet. The proposed work adopts the probability based similarity measure for categorical pairs, together with the L1

norm3 for numeric pairs and hamming distance measure for binary pair of attributes. The correctness of this distance

measure is established through experimental results. The objective function of K-medoid8 is to find a non-overlapping

set of clusters such that each cluster has a most representative point, called medoids. Medoids are most centrally lo-

cated with respect to some distance measure. However, finding a better medoid is a computationally expensive task

that requires trying all points which are currently not medoids. So, apart from a new distance measure, this paper also

employs a greedy strategy in the initial phase of clustering to find the most potential medoids which can form good

representatives for clusters in the final phase.

2. Related Work

Any clustering algorithm requires a generalized cost function that works for mixed as well as numeric or categorical

datasets. The distance function for numeric datasets is not applicable for categorical data and vice versa because there

is no natural distance between two categorical data points. Also, traditional hierarchical clustering algorithms are not

scalable to very large databases because of their high computational cost7. Various strategies have been employed

such as assigning numerical values to categorical data and applying numerical distance measures or discretization

of numerical values into categorical form and then applying categorical distance measure. But in high dimensional

datasets, employing such a method is inefficient as explained in the previous section. Therefore, work on clustering

mixed categorical and numeric datasets is directed towards a different cost measure. Huang’s cost function5 is one

such attempt where for representing cluster centers of categorical attributes, mode value is considered. As a result,

only one attribute acts as the cluster center. Hamming distance measure is considered for clustering binary data

1http://en.wikipedia.org/wiki/Categorical distribution
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points. δ(p, q) = 0 if p = q, which can be considered meaningful. But δ(p, q) = 1 if p�q. δ(p, q) is different for

different data points. It is dependent on the relative frequency of data points within a class6. So for computing

δ(p, q), a co-occurrence based approach is considered. For categorical attribute values, user-defined weight value is

assigned. Incorrect assignment of values leads to incorrect clustering results. Amir et.al6 proposed a generalized cost

function for clustering datasets by modifying the Huangs cost function. The work alleviates the short-comings of5.

For categorical data points, the contribution of attributes towards cluster formation is calculated by a co-occurrence

based probabilistic approach.

The idea of defining cluster center for categorical datasets by finding the dominant data items is discussed in7.

A new distance calculation based on entropy which replaces the Manhattan distance calculation is used. Similar

to numerical datasets, categorical datasets also suffer from the curse of high dimensionality. The approach used

in K-meansCD11 is FBC(Frequency Based Center) and a new distance function to perform K-means clustering on

categorical datasets is proposed. Work proposed in7 utilizes FBC concept of11 to find new center for categorical

datasets.

In most of the clustering algorithms, for clustering high dimensional datasets, the initialization of cluster centers is

computationally complex. Work adopted in8 considers all the data points for center initialization. The work presented

in9 solves this problem by selecting random points using greedy approach. This idea of initialization of cluster centers

is employed in10. The distance measure for clustering numeric data set is Manhattan distance as opposed to Euclidean

distance. The work presented in11 discusses various variants of K-means clustering algorithm for clustering binary

dataset. The paper provides efficient distance computation for sparse binary vectors, sparse matrix operations and

summary table of clustering results. K-medoid is more flexible and robust to outliers than the K-means approach and

has been demonstrated in various work such as18,19,20. However the core part is to choose the medoids in a dataset

which can form the representatives of the clusters. Though different approaches are described in12,13, no approach

focuses on heterogeneous datasets.

3. Proposed Distance Measure

We propose a generalized distance function in the form of a triplet which works for mixed datasets for enabling

Clustering. This triplet consists of three different distance measures for numeric, categorical and binary data types.

In our proposed approach we use L1 norm for distance calculation and medoid selection of numeric attributes, since

L2 norm is sensitive to outliers3. A small perturbation in the dataset may change the result drastically if L2 norm

is used. For binary attributes, Hamming distance is used. For categorical attributes, a probabilistic approach based

on Modified Huang’s cost function6 is used. Categorical attributes are treated separately from binary attributes due

to the variations in the probability distributions of the two data types. Moreover each binary attribute has only two

possible outcomes, but categorical attributes have at least 3 possible outcomes and hence the complex computations

of computing the probability of each attribute value can be avoided if binary attributes are treated separately. Before

applying the distance measure for similarity amongst the data points, the numeric attributes are normalized as in (1).

xnew = (x − xmin)/(xmax − xmin) (1)

The proposed similarity measure has three distinct components, one for handling numeric attributes, second for

handling categorical attributes and third for handling binary attributes. For each component, lower distance value

indicates higher similarity and the distance between any two attribute values are in the same range.

3.1. Distance Measure for numeric attributes

In most of the clustering algorithms the distance between two records, with numerical attributes, is calculated with

the help of norms1. For a record ri and a record r j, with mr numeric attributes, Lp ( p-norm distance ) is defined as in

(2).

Lp =
(∑mr

k=1

∣∣∣rik − r jk

∣∣∣p
) 1

p
(2)
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When p = 1, it is L1 norm, when p = 2 it is L2 norm and so on. The L1 norm is the absolute difference between each

attribute of two records. L1 norm is flexible, robust and resistant to outliers. Also it is computationally efficient in

high dimensional data due to the inherent sparsity in high dimensional data.

3.2. Distance Measure for Categorical attributes

Probabilistic Approach: Let x and y be two categorical values of attribute Ai. Inorder to find distance between x and

y a co-occurrence based approach 6 is used. Here, probability of occurrence of the two attribute values with other

categorical attribute values of the dataset is computed. The following two probabilities are computed:

1) The probability of occurrence of x of Ai with a particular set of attributes w of Aj.

2) The probability of occurrence of y of Ai with a particular set of attributes ¬w of Aj.

So, the distance between the pair of values x and y of Ai with respect to the attribute Aj and a particular subset w, is

defined as:

δi j (x, y) = Pi (w/x) + Pi (¬w/y) (3)

where x is the subset w of values of Ai that maximizes the quantity Pi (w/x)+Pi (¬w/y). To restrict Pi (w/x)+Pi (¬w/y)

between zero and one δi j (x, y) is modified as in (4)

δi j (x, y) = Pi (w/x) + Pi (¬w/y) − 1 (4)

3.3. Distance Measure for Binary attributes

For binary attribute, Hamming distance is taken into consideration. Binary distance between two boolean attribute

values x and y is taken as δ(x, y) = 0 for x=y and δ(x, y) = 1 for x � y.

3.4. Vector based distance measure

Let R = (r1, r2, ...., rN) be the set of datapoints with each ri being described by A = (a1, a2...., am) set of m attributes.

In the context of database, each point (feature vector) of a cluster is in fact a record ri and each dimension (feature) is

an attribute ai. Let mr be the number of numeric attributes, mc be the number of categorical attributes and mb be the

number of binary attributes.

Let ri and r j be two objects of R. The distance between the two objects is represented as < d̃n, d̃c, d̃b > where

d̃n represents the numeric distance, d̃c represents the categorical distance, d̃b represents the binary distance. A single

measure for the distance between ri and r j is given as

ϑ(ri, r j) = Σ
mr
k=1

∣∣∣rik − r jk

∣∣∣ + Σmc
t=1
δc(rc

it, r
c
jt) + Σ

mb
t=1
δb(rb

it, r
b
jt) (5)

where mr is the number of numeric attributes, mc is the number of categorical attributes and mb is the number of binary

attributes ( ie, Total attributes m = mr + mc + mb)

4. Distance Computation between a pair of attribute values

The previous approaches for clustering categorical data points were based on Hamming distance where δ(p, q) is taken

as 1 when p�q. However, for categorical attributes, the distance is a function of distribution of values. So we can

conclude that employing Hamming distance measure for computing distance between two categorical data points is

inappropriate.

A co-occurrence based approach is devised similar to6 where the distance between any two pairs of categorical points

is computed based on overall distribution of values in the dataset.



230   Sandhya Harikumar and Surya P.V.   /  Procedia Computer Science   70  ( 2015 )  226 – 237 

4.1. Co-occurrences of Categorical data points

Consider the rows of bank dataset shown in table 1. Here Housing is binary attribute. Job, Marital and Education

attributes are categorical. Duration attribute is numeric. Row id is explicitly included by us to distinguish between

the data points. For computing the distance between any pair of categorical attribute values, conditional probabilities

of the corresponding categorical attributes values with other attribute columns needs to be computed. The probability

table for computing distance between job attribute is given in table 2:

Table 2. Probability Table.

Co-occurrence of categorical attribute values

P(married/management) = 1 P(tertiary/management) = 1

P(single/technician) = 2/3 P(secondary/technician)= 2/3

P(married/technician) = 1/3 P(tertiary/technician) = 1/3

P(divorced/services) = 1 P(primary/services) = 1

P(management/married)=1/2 P(tertiary/married) = 1/2

P(technician/single) = 1 P(secondary/single) = 1/2

P(technician/married) = 1 P(secondary/married) = 1/2

P(services/divorced) = 1 P(tertiary/single) = 1/2

P(primary/divorced) = 1

Table 3. Normalised Bank Dataset.

Id Duration (t) Job (t) Marital (t) Education (t) Housing (t) c (t)

1 0.13 Management Married Tertiary Yes c1

2 0 Technician Single Secondary Yes c1

3 1 Technicain Married Secondary Yes c1

4 0.27 Technician Single Tertiary No c2

5 0.24 Services Divorced Primary Yes c2

4.2. Similarity Measure of two Categorical values Using Probabilistic Approach

Here probabilistic distance computation for categorical pair of attribute values is employed. The algorithm as given

in6 is used to find the distance between two categorical values of an attribute. We now illustrate how distance between

two attributes values is computed using the conditional probabilities and normalized Bank dataset presented in table

2 and 3 respectively. Consider Management and Technician values of Job attribute.

1. Compute distance between Management and Technician with respect to Marital attribute.

δ(Job,Marital)(Management, Technician) =P(married/management) + P(single/technician) - 1 = 1 + 2/3 - 1 = 2/3

2. Compute distance between Management and Technician with respect to Education attribute.

δ(Job,Education)(Management, Technician) = P(tertiary/management) + P(secondary/technician) - 1 = 1 + 2/3 - 1

= 2/3

3. Using Probabilistic Distance Function, δc(management, technician) = 2/3 + 2/3 - 1 = 1/3

4.3. Similarity measure of two Binary values

For distance computation between a pair of binary data points, Hamming distance is taken into consideration.

Though binary attribute is a special type of categorical attribute, hamming distance is employed here since it follows

a bernoulli distribution and hence the distance between two binary values will always be either 1 or 0. Moreover,

the number of distinct categorical values in a categorical attribute may change but the number of distinct values in a

binary attribute will always remain 2 and hence the distribution will always be bernoulli.
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In Bank data set given in Table 3, Housing is a Binary attribute. Distance between data points 1 and 2 w.r.t Housing

attribute is:

δ(Yes, Yes) = 0.

Where as, distance between data points 1 and 4 w.r.t Housing attribute is

δ(Yes,No) = 1

4.4. Similarity measure of two Numeric values

For distance computation between a pair of numeric data points, the numeric attribute values should be normalised

first. In Bank data set, Duration is a Numeric attribute. Bank dataset after normalization of Numeric attribute is

illustrated in table 3

Distance between data points 1 and 2 w.r.t Duration attribute is |0.13 − 0| = 0.13. Distance between data points 1

and 4 is |0.13 − 0.27| = 0.14.

Thus two objects ri and r j are said to be farthest from each other if value of d̃n is higher and the probabilistic

measure d̃c is higher as well as the hamming distance d̃b is higher.

5. K-medoid clustering for mixed datasets

The phases involved in the clustering algorithm are as follows:

Step 1 : Initialization Phase

Step 2 : Iterative Phase

• Assign Points

• Evaluate Clusters

Step 3 : Outlier Detection

5.1. Initialization Phase

This phase is geared towards finding a potential set of medoids by a greedy approach. There are several efficient

clustering algorithms like K-means, Expectation Maximization(EM) clustering etc. that randomly chooses K centers

for forming K clusters. But this method of random initialization of cluster centers may lead to a lengthy convergence

time and hence computationally expensive in case of high dimensional data sets. Therefore, we have used an approach

as proposed in9, to find potential medoids which can become representatives of the clusters. The initialization phase

of the algorithm to find K clusters, proceeds as follows:

1. Choose a random sample of points of size equal to S = A.K, where A denotes a large number.

2. Apply greedy technique to S to obtain a smaller subset of points of size equal to B.K, where B denotes a small

integer such that B << A.

Thus if K clusters are required to be formed, select B.K medoids from the sample set of original records where B is

an integer constant. The reduction to the sample set significantly reduces the running time of the Initialization phase.

We then improve the quality of clusters, using these Medoids, in the Iterative Phase.

5.2. Iterative Phase

In this phase, the quality of clusters is improved by applying Hill Climbing technique. We iteratively improve the

quality of clusters in this phase by replacing bad medoids. In this phase, data points are assigned to their respective
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cluster centers and cluster evaluation is done. For evaluating the quality of clustering we have considered Davies

Bouldin Index(DBI)16. The Davies Bouldin criterion is based on a ratio of within cluster and between cluster dis-

tances. In our K-medoid formulation, the compactness of the corresponding clusters and the separation between them

are the principal parameters that distinguish one cluster from the other. Davies-Bouldin index is one such measure

and hence we have chosen that for cluster evaluation. DBI is defined as in (6):

DB = 1/K
∑K

j=1
maxj�iDi, j (6)

where Di j is the within to between cluster distance ratio for the ith and jth clusters as given in (7).

Di, j = (d̄i + d̄ j)/di j (7)

d̄i is the average distance between each point in the ith cluster and the centroid of the ith cluster. d̄ j is the average

distance between each point in the ith cluster and the centroid of the jth cluster. di j is the distance between the

centroids of the ith and jth clusters. The maximum value of di j represents the worst case within to between cluster

ratio for cluster i. The optimal clustering solution has the smallest Davies-Bouldin index value. If the value returned

by this evaluation metric is greater than a threshold(taken as 0.4), such medoid is termed as bad medoid and we

replace the medoid with a new one from the available list and repeat the iterative phase until convergence. This phase

continues until bad medoids are detected.

5.3. Outlier Detection

The final phase of the algorithm takes care of the outliers. The Outlier detection algorithm proposed by us is based

on farthest nearest approach. Let D be the set of data, K be the number of clusters and Nk be the number of datapoints

in kth cluster. For detecting outliers in a cluster, find the farthest (Nk/K)*0.1 points from medoid mk. This implies

that for each of the clusters, data points that are far from the corresponding medoids are computed. For each of those

points, find the locality with respect to the smallest distance from the remaining points. If the locality of a chosen data

point (say Oi) contain less than c number of data points in it, then the data point is considered as an outlier, where c is

a threshold value. The locality of Oi is defined as the space within distance δo, where δo is the minimum distance of

Oi to the farthest data points chosen. Since our medoid selection is based on distance based approach, it is likely that

an Outlier may be chosen as a medoid during the Initialization phase. A medoid in such cases, is considered as bad, if

it contains less than (N/K) ∗ 0.1 points in it. Since outliers clusters with only minimum number of data points we can

find the bad medoids effectively using this criteria. We replace the bad medoids with new points from the medoid list,

and again perform the assignment of the points to the medoids. This phase terminates until bad medoids are reported

by the algorithm.

5.4. Purity Evaluation of Clusters

The purity measure21 is an external evaluation criterion that evaluates the quality of the clusters according to the

labeled samples available. A cluster is considered pure if it contains labeled objects from one and only one class. In-

versely, a cluster is considered as impure if it contains labeled objects from many different classes. Purity is computed

as shown in (8):

purity(Ω,C) = 1/N
∑

k
max j|Ck ∩ wj| (8)

where Ω = w1,w2.....wj is the set of classes and C = c1, c2, ...., ck is the set of clusters. Bad clusterings have purity

values close to 0, a perfect clustering has a purity of 1. This measure is applicable to only labeled samples where the

class or labeling of each datapoint is available.
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5.5. Main Algorithms

The outline of two main algorithms implemented is presented in this section. Algorithm 1 is K-medoid clustering

that includes initialization, iterative and outlier detection phases. The algorithms for Evaluate Clusters is based on

DBI measure and AssignPoints is based on the similarity of each datapoint with the medoids. Algorithm 2 is the one

for distance computation between two heterogeneous data objects as discussed in the earlier subsection.

Algorithm 1 K-medoid for clustering

procedure K-Medoid Clustering(K,D,A,B)

Input- K : Number o f Clusters, D : S et o f Data Points, A : A constant value, B : A small constant value
Output- Clusters C1,C2, ...,CK

Begin

{1. Initialization Phase}
S = random sample of size A.K
{M = Set of potential medoids of size B.K {m1,m2, ...} computed from S by a greedy strategy}
M = Greedy(S , B.K)

{2. Iterative Phase}
BestOb jective =∞
Mcurrent = Choose randomly {m1, m2,... mk} ⊂M

repeat
{Assign each datapoint to a medoid in Mcurrent based on the similarity measure}
C = AssignPoints(Mcurrent, D)

where { C = {C1,C2, ...,CK} is the set of clusters}

ObjectiveFunction = EvaluateClusters(C1,C2...CK)

if (Ob jectiveFunction < BestOb jective) then
BestOb jective = Ob jectiveFunction
Mbest = Mcurrent

Compute bad medoids in Mbest

if (Ob jectiveFunction >= threshold) then
Mcurrent = Mbest ∪ m where m ∈ Mand m � Mcurrent

end if
end if

until termination condition
return Mbest

End

end procedure

6. Experimental Analysis

For experimental purpose, four real datasets have been taken. One is mixed, second is purely numeric, third is

purely categorical and the fourth one is purely binary. The cluster evaluation is based on purity index and davies

bouldin index.
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6.1. Cluster Evaluation using Australian Credit Dataset

This is a mixed dataset having 690 data points defined by 14 attributes of which 6 attributes are numeric, 3 are

binary and 5 are categorical. The data is about credit card applicants who were given approval and who were not.

Thus the data belong to two different classes namely, positive(309 data points) and negative (381 data points). Cluster

evaluation for Australian Credit Card Dataset with proposed algorithm and K-means algorithm is as shown in Table

4 and 5 respectively. The best value of DBI obtained for Credit dataset using proposed algorithm is 0.38 for K = 2.

The value of DBI started increasing when value of K was increased. So it indicates that K = 2 is the optimum number

of clusters for Credit dataset. The purity value of the clusters formed using mixed K-means algorithm is 0.882 but

with our proposed approach is 0.902 which indicates the increased cluster compactness.

Algorithm 2 Distance between two data objects

procedure DistanceComputation(ri,r j)

Input- Two data points each with mc categorical attributes, mb binary attributes and mr numeric attributes

Output- Distance between two data points

Begin

Initialize δ(x, y),δ(a, b),δ(u, v) to 0

for each attribute Ai do
if Ai is categorical attribute then

Initialize catSum to 0

for pair of categorical values(x,y) of Ai do
for every categorical attribute Aj � Ai do

Compute δi j(x, y)

catSum = catSum +δi j(x, y)

end for
δ(x, y) = δ(x, y)+catS um − 1

end for
end if
if Ai is numerical attribute then

for pair of numeric values(a,b) of Ai do
d(a, b) = Compute L1(a, b)

δ(a, b) = δ(a, b) + d(a, b)

end for
end if
if Ai is binary attribute then

for pair of binary attribute values(u,v) of Ai do
d(u,v)=1,if u�v else d(u,v)= 0

δ(u, v) = δ(u, v) + d(u, v)

end for
end if

end for
return S um = δ(x, y) + δ(a, b) + δ(u, v)

End

end procedure

6.2. Cluster Evaluation using Zoo Dataset

This is a pure binary dataset having 101 data points defined by 16 attributes of which 41 data points belong to true

class and 60 belongs to false class. Cluster evaluation for Zoo dataset with proposed algorithm and mixed K-means is

as shown in Table 6 and Table 7 respectively.
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Table 4. Cluster evaluation for Australian Credit Card Dataset with proposed algorithm.

Cluster No. Credit(Positive) (t) Credit(Negative) (t)

1 296 54

2 13 327

Purity = 0.9028 DBI = 0.38

Table 5. Cluster evaluation for Australian Credit Card Dataset with mixed K-means algorithm 6.

Cluster No. Credit(Positive) (t) Credit(Negative) (t)

1 288 62

2 19 321

Purity = 0.882

Table 6. Cluster evaluation for Zoo Dataset with proposed algorithm .

Cluster No. True (t) False (t)

1 41 0

2 0 60

Purity = 1 DBI = 0.447

Table 7. Cluster evaluation for Zoo with mixed K-means algorithm 6.

Cluster No. True (t) False (t)

1 33 8

2 8 52

Purity = 0.841

K-means algorithm for Mixed datasets treats binary attributes as categorical unlike our proposed approach where

Hamming distance measure is employed for measuring similarity. Using proposed approach a purity value of 1 is

obtained which indicates high quality of clustering. Purity value of 1 shows there is no misclassification of data-

points. Best DBI value obtained is 0.447. DBI value started increasing when K value was increased from 2. Using

K-means algorithm the purity value obtained is 0.841 which is worse than our proposed K-medoid algorithm that has

considered binary as a different data type than categorical.

6.3. Cluster Evaluation for Bank dataset

Bank dataset consists of 45210 records and 17 attributes. In this dataset, eight are numeric, four are binary and five

are categorical. The corresponding numeric dataset after preprocessing is also considered for evaluation.

For Bank dataset, the Purity value for Heterogeneous and Numeric datasets using K-means remained constant. But

in our proposed approach, the heterogeneous dataset if clustered gave better purity and dbi than the corresponding

numeric dataset. We sampled and replicated Bank dataset for time analysis of the algorithm as shown in Figure 1a.

The purity evaluation of the clusters formed from Bank dataset revealed that K = 3 gives the pure clusters as per the

labeled samples of the bank dataset as shown in Figure 1b

6.4. Cluster Evaluation using Vote Dataset

This is a pure categorical dataset having 435 data points defined by 16 attributes. The elements belong to two

different classes namely, Republican(170 data points) and Democrats(265 data points). The cluster evaluation result
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Fig. 1. (a) : Time analysis with varying N and K=2 ; (b)Purity values for different values of K with N=5000 records of bank dataset using proposed

K-medoid algorithm

of Vote dataset with K = 2 using our proposed approach and Mixed K-means Clustering 6 is in Table 8 and Table 9

respectively.

The comparison of the proposed algorithm and mixed K-means algorithm on the basis of purity evaluation is shown

in Figure 2a and the consolidated results of purity and dbi measures of various datasets using the proposed K-medoid

algorithm is shown in Figure 2b. It reveals that mixed Bank dataset has better clustering than the preprocessed

numeric Bank dataset, since there is a loss of information while data is preprocessed which may affect the quality of

clusters formed.

Table 8. Cluster evaluation for Vote Dataset with proposed algorithm after Outlier removal.

Cluster No. Republican (t) Democrat (t)

1 157 20

2 9 225

Purity = 0.93 DBI = 0.181

Table 9. Cluster evaluation for Vote Dataset with mixed K-means algorithm 6 .

Cluster No. Republican (t) Democrat (t)

1 141 25

2 6 200

Purity = 0.91

7. Conclusion

In this paper, we proposed a variant of K-medoid clustering for heterogeneous datasets with varied data types.

A distance measure to compute the similarity between two objects with varied data types is formulated and this

measure has been employed to devise a new algorithm for k-medoid clustering. K-medoid clustering algorithm for

heterogeneous datasets has relevance in various commercial, financial and medical sectors. The performance of the

algorithm has been improved and good clusters have been formed due to the improvised initialization phase, DBI

based evaluation and new outlier detection. The purity and DBI index values computed on different datasets show that

our algorithm outperforms K-means algorithm for mixed dataset.
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Fig. 2. (a): Comparison of Purity evaluation of various datasets using Proposed K-medoids and mixed K-means 6 algorithm; (b): Purity and DBI

evaluation of clusters formed by the Proposed K-medoid algorithm
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