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ABSTRACT Cellular signaling pathways transduce extracellular signals into appropriate responses. These pathways are typi-
cally interconnected to form networks, often with different pathways sharing similar or identical components. A consequence of
this connectedness is the potential for cross talk, some of which may be undesirable. Indeed, experimental evidence indicates
that cells have evolved insulating mechanisms to partially suppress ‘‘leaking’’ between pathways. Here we characterize math-
ematical models of simple signaling networks and obtain exact analytical expressions for two measures of cross talk called
specificity and fidelity. The performance of several insulating mechanisms—combinatorial signaling, compartmentalization, the
inhibition of one pathway by another, and the selective activation of scaffold proteins—is evaluated with respect to the trade-off
between the specificity they provide and the constraints they place on the network. The effects of noise are also examined. The
insights gained from this analysis are applied to understanding specificity in the yeast mating and invasive growth MAP kinase
signaling network.

INTRODUCTION

The proper growth, development, and survival of an organ-

ism requires extensive communication between that organism’s

cells, and accurate sensing of external conditions. Accord-

ingly, cells sense and respond to a wide variety of chemical

and environmental stimuli. Many incoming signals, includ-

ing hormones such as insulin and adrenalin, are first rec-

ognized by a cell surface receptor, and then transmitted to

various locations inside the cell by a cascade of signaling

proteins that comprise a ‘‘signal transduction’’, or ‘‘signaling’’,

pathway (Fig. 1 A). In general, different stimuli trigger dis-

tinct cellular responses that are appropriate given the nature

of the stimulus. For instance, liver cells respond to insulin by

taking up sugar from the blood and storing it as glycogen,

whereas they respond to adrenalin by releasing stored sugar

into the blood.

Different signal transduction pathways are often inter-

connected to form larger networks. Elements(s) of one path-

way may cross-regulate one or more components of another

pathway, or multiple distinct pathways may share some of

their components (Fig. 1 B). Such cross-regulation may enable

the cell to integrate its overall response when receiving mul-

tiple stimuli, and can enable the network to exhibit complex

behaviors (1–4). However, extensive interconnections in-

crease the difficulty of maintaining specificity from signal to

cellular response; that is, they increase the likelihood that

(under certain circumstances) the activation of one pathway

may result in the undesirable activation or inhibition of an-

other pathway. Thus, cross-regulatory interconnections likely

evolved hand-in-hand with insulating mechanisms that func-

tion to limit undesirable spillover. The problem of ‘‘signal-

ing specificity’’ is to understand the mechanisms that have

evolved to maintain specificity from signal to response and

to limit ‘‘leaking’’ between pathways, despite extensive in-

terconnections and component sharing (5–11).

One informative experimental system to study signaling

specificity is found in baker’s/brewer’s yeast (Saccharomy-
ces cerevisiae), where interconnected protein kinase cas-

cades regulate two distinct biological endpoints: mating and

filamentous invasive growth (12). These endpoints are trig-

gered by distinct stimuli, leading to the differential activation

of downstream mitogen-activated protein kinases (MAPKs),

and induction of an appropriate set of target genes (Fig. 1 C).
Mating is initiated by mating pheromone and results in in-

duction of genes mediating the fusion of two haploid cells

(13,14), whereas invasive growth is triggered by mechanical

and nutrient cues and results in changes in cell shape and

adhesiveness (15). Both pathways use the sequentially acting

protein kinases Ste20MAP4K, Ste11MAP3K, and Ste7MAP2K

(16,17). However, mating pheromone stimulates the activa-

tion of both Fus3MAPK and Kss1MAPK, whereas only Kss1 is

activated during invasive growth (18,19). Despite this ex-

tensive component sharing, mating and invasive growth are

normally reasonably well insulated from one another: cells

exposed to mating pheromone do not initiate invasive growth,

and cells growing invasively do not induce the mating pro-

gram. However, mutations in certain key components of this

signaling network can compromise specificity, so that treat-

ment with pheromone leads to the induction of invasive

growth genes, for example, (18,20–23). These findings, to-

gether with observations from other experimental systems,

demonstrate that cells have evolved mechanisms that promote

signaling specificity by limiting the extent of leaking
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between pathways that share similar or identical components

(7,8,12).

Because disruption of signaling specificity may play a role

in the pathogenesis of cancer and other diseases (5,24–27),

further understanding of mechanisms that promote specific-

ity is warranted, both at the experimental and theoretical

level. Here we extend our recently developed framework for

the analysis of networks containing two or more signaling

pathways (28). We concern ourselves with the following ques-

tions: How can the concept of specificity be precisely defined?

Are there fundamental limits to specificity imposed by cer-

tain network architectures? How effective, in theory, are some

of the insulating mechanisms found in nature that have been

proposed to enhance specificity? Do certain insulating mech-

anisms impose additional constraints on the network? What

is the effect of noise in stochastic signaling networks on

specificity and fidelity? Finally, are there common features

or emergent properties of signaling networks that exhibit

a reasonable degree of specificity despite undesired signal

crossover?

This article is organized as follows: first we describe a

theoretical framework that allows us to reason about cell

signaling and quantify signal specificity; we also give a

mathematical description of very simple signaling networks

and examine their specificity properties. Next we discuss

several different insulating mechanisms, including combi-

natorial signaling, cross-pathway inhibition, and the action

of a selectively activated scaffold protein. We present a

mathematical analysis of simple networks employing each of

these mechanisms and show how effective each mechanism

is in increasing signal specificity. We also examine the effect

of noise in stochastic signaling networks; we prove that the

specificity and fidelity of linear and nonlinear networks is not

affected by noise. Finally, we talk about the effect of back-

ground or basal output levels on specificity and fidelity and

show how our definitions can be modified to include high

background levels; this section also clarifies how specificity

and fidelity can be measured experimentally. In the Discus-

sion, some of the insights derived from our analysis are

applied to the yeast mating/invasive growth network.

RESULTS

Description of the model

Fig. 2 A shows a simple signaling network composed of two

signaling pathways, X and Y, initiated by signals x0(t) and
y0(t), respectively. For pathway X, the time-dependent input

signal, x0(t), activates (that is, causes the production of the

active form of) the first component, x1, which in turn acti-

vates the second component, and so on. The level of activa-

tion of the final component, xf, is taken as a measure of pathway

output (in Fig. 2 the final component is x2), which determines

the response of the cell to the signal: the cell may move,

grow, divide, change its pattern of gene expression or its

metabolism, etc.

The network shown in Fig. 2 is much simpler than real

cellular signaling networks, which may consist of dozens of

component proteins. However, a single tier in one of the

abstract cascades may be taken to represent several succes-

sive steps in a real pathway. For instance, x0(t) may be taken

to represent the plasma concentration of a hormone as a

function of time, or the output of a subpathway consisting of

hormone-receptor binding, the activation of a receptor-

coupled G-protein, and several steps downstream of that. For

convenience, we shall frequently call the first component of a

pathway the signal, the intermediate component a kinase,

and the final component the target.

FIGURE 1 Signaling pathways and networks. (A) A
cartoon of a simple signaling cascade. (B) A cartoon

of a simple network with a shared component. (C) The

yeast mating/invasive growth signaling network,

which contains multiple shared components. Mating

is initiated by the binding of peptide pheromone to a

G-protein-coupled receptor, leading to the activation of

a MAP kinase cascade and the induction of mating

genes via homodimers of the Ste12 transcription fac-

tor. Invasive growth is triggered (in part) by signals

transmitted by the Msb2 receptor via the MAP kinase

cascade to the Tec1 transcription factor. Mating-

pathway-specific components are colored blue, inva-

sive growth-specific components are green, and shared

components are yellow. See text for further details.
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If the two pathways are not interconnected in any way,

then signal x0 will result in the production of xf, not yf;
likewise, the activation of pathway Ywill neither activate nor

inhibit pathway X. Thus, the two pathways, and the network

they comprise, will exhibit complete specificity. As dis-

cussed above, however, interconnections between pathways

often exist; in the network in Fig. 2 there is a connection

from y1 to x2. In many cases, such interconnections serve a

purpose: if it is advantageous for a cell to always have

pathway X active whenever pathway Y is active (e.g.,

because the response evoked by X augments or complements

the response evoked by Y), then natural selection may have

resulted in a network wired such that Y activates X. On the

other hand, cross talk between pathways can be undesirable

if it is disadvantageous for pathway Y to influence pathway X
(for example, if the response evoked by X is antagonistic or

irrelevant to the response evoked by Y).
When pathway Y receives a signal (and X does not), the

magnitude of the response of pathway X (if any) provides a

measure of the amount of signal crossover. If this crossover

represents undesirable leaking, then it should presumably be

small compared to both authentic Y signaling (Y output when

Y receives a signal) and authentic X signaling (X output when

X receives a signal).

Definitions of specificity and fidelity

Previously we defined two properties, specificity and fidel-

ity, that all pathways in a network must possess to avoid

paradoxical situations where the input for a given pathway

activates another pathway’s output more than its own; or

where the output for a given pathway is activated more by

another pathway’s input than by its own (28).

Let us denote the total output of pathway X when the cell

is exposed to an input signal x0 as XoutjXin (read as ‘‘X output

given X input’’, or simply ‘‘X given X’’). Similarly, let us

define the spurious output of pathway Y when the cell is

exposed to signal x0 as YoutjXin. These quantities should be

interpreted as ensemble averages in noisy networks (a de-

tailed analysis is presented further below). The specificity of

cascade X (with respect to Y) is the ratio of its authentic

output to its spurious output:

SX ¼ XoutjXin

YoutjXin

(1)

If pathway X is activated by a given signal and this does

not result in any output from pathway Y, the specificity of

X with respect to Y in response to that signal is infinite, or

complete. However, if there is some cross talk between the

pathways, then activation of X will result in some output

from Y, and the specificity will be finite. If SX is,1, the input

signal for X promotes the output of pathway Y more than its

own output.

Similarly, the specificity of cascade Y is defined as fol-

lows:

SY ¼ YoutjYin

XoutjYin

(2)

The overall specificity of the network can be measured by

the product

Snetwork ¼ SXSY: (3)

We say that a pathway or network ‘‘has specificity (of

degree k)’’ if S$k for some k . 1. Mutual specificity (of

degree k) is when both pathways in a network have speci-

ficity (of degree k) with respect to each other. The maximum

degree of mutual specificity that a network can possibly

possess is given by the relationship k#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Snetwork

p
.

FIGURE 2 A simple network consisting of two parallel cascades with

cross talk. The network consists of two pathways, X and Y. Pathway X has

three components (x0, x1, and x2); component x0 is input signal itself, or is

activated in manner that is strictly proportional to the input signal. (Because

the input signal can have any shape, x0 can abstractly represent any upstream
component, e.g., a receptor, a G-protein, a kinase, etc.) The parameters a1
and a2 are activation rate constants, and d

x
1 and d

x
2 are deactivation, or decay,

rate constants. For example, a1 is the rate constant for the activation of x1 by
x0, and dx1 is the rate constant for the deactivation of x1. (B) Outputs of this

network in response to X signaling (that is, X input) and Y signaling. Signal

x0 does not lead to the production of y2, because none of the components of X

can activate or inhibit components of Y. Thus, the specificity of X with

respect to Y and fidelity of Y with respect to X are complete (see text for

definitions). In contrast, y1 (which might be a kinase of pathway Y) weakly

activates x2 (which might be a transcription factor for pathway X), at a rate

characterized by the ‘‘leak constant’’, hleak. Thus, the specificity of Y and the

fidelity of X are finite functions of hleak and other key parameters of the

network. In particular, in the text it is shown that network specificity is

proportional to 1/hleak. (C) Depiction of the ratios equal to the specificity of

pathway Y and the fidelity of pathway X.
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We define the fidelity of X with respect to Y as the total

output of Xwhen X receives a signal (and Y does not) divided

by the total output of X when Y receives a signal (and X does

not). That is, the fidelity of a pathway is its output when

given an authentic signal divided by its output in response to

a spurious signal.

FX ¼ XoutjXin

XoutjYin

; FY ¼ YoutjYin

YoutjXin

: (4)

A pathway that exhibits fidelity (i.e., F . 1) is activated

more by its authentic signal than by others. In contrast, if a

pathway has fidelity of ,1, it is activated more by another

pathway’s signal than it is by its own. One obvious way for

fidelity to be compromised is if a receptor binds promiscu-

ously to several different hormones. However, lack of fi-

delity may also arise as a consequence of cross talk, as shall

be shown further below. As with specificity, the fidelity of

the network is the product of the pathway fidelities. Fidelity

of degree k and mutual fidelity are also defined similarly to

the corresponding expressions for specificity. Note that

Snetwork ¼ Fnetwork, so we will use the term network speci-

ficity to mean ‘‘network specificity and network fidelity’’.

We have found specificity, as defined above, to be a useful

analytical concept. However, when considering real biolog-

ical endpoints, specificity, which compares Xout to Yout, is
essentially comparing apples to oranges. For this reason,

fidelity, which compares apples to apples, is perhaps a su-

perior metric when applied to experimental data. More detail

concerning how specificity and fidelity can be experimen-

tally measured is presented in the section ‘‘Inclusion of

background signal levels and experimental measurements’’

further below.

Alternative definitions of specificity and fidelity that may

be useful in some applications would take the form

FX ¼ XoutjXin

ðXoutjXin 1XoutjYinÞ; etc:

With this definition, pathway specificities and fidelities

would vary in the interval between 0 and 1, inclusive; thus

complete fidelity would be characterized by F ¼ 1 rather

than F equal to infinity, and F below 0.5 would indicate poor

fidelity. As another alternative, Schaber et al. (29) defined a

measure they called cross talk (C), which is the reciprocal of

our fidelity. This metric varies between 0 and infinity, with 0

indicating complete fidelity (no cross talk) and values above

1 indicating poor fidelity. Herein we use the definitions given

in Eqs. 1–4.

A network with aberrant cross talk

As an example of how specificity and fidelity can be cal-

culated in a network of defined architecture, we first consider

the simple network shown in Fig. 2. In this network, pathway

Y leaks into pathway X, because kinase y1 is somewhat

lacking in substrate selectivity: in addition to phosphorylat-

ing its correct target y2 at a rate proportional to b2, it also
phosphorylates the incorrect target x2 at rate proportional

to hleak.
Let us denote by �xnjX ¼ RN

0
xnðtÞ dtjx0.0;y0¼0 the total

amount of product xn when the cell is exposed to signal x0
but not to signal y0. Similarly, �ynjX denotes the total amount

of yn under the action of signal x0. Let xf and yf denote the

final products of pathways X and Y, respectively, so that �xf jX
is another way of writing XoutjXin. For the purposes of the

following exposition, we presume that the production of xf in
response to signal y0 is undesirable.
Our approach, similar to that of Heinrich et al. (30), is to

model the enzymatic reactions of signaling pathways using

equations that are simplifications of the standard mass action

or Michaelis-Menten formulations. These simplifications are

made so that exact analytical solutions of the equations can

be obtained in most cases. In particular, we assume that the

pathways are weakly activated, meaning that the level of

component activation is low compared to the total amount of

that component in the cell. (In the Supplementary Material,

we demonstrate that some of the key results hold even when

pathways are strongly activated.) The assumption of weak

activation allows signaling cascades to be modeled as a

linear system (30,31). For instance, when pathway X is on

(and Y is off), the dynamics of signaling in pathway X can be

expressed as a simple linear system of ordinary differential

equations (ODEs):

_x1 ¼ a1x0ðtÞ � d
x

1x1 (5)

_x2 ¼ a2x1 � d
x

2x2: (6)

Here, x0(t) is the signal function, and x1 and x2 are

concentrations of the active species of these components at a

given moment of time. The parameters a1 and a2 are ac-

tivation rate constants; a2 is proportional to the rate at which

kinase x1 activates (phosphorylates) target x2. Similarly, dx1
and dx2 are deactivation (or decay) rate constants, and can be

thought of as representing phosphatase activity or protein

degradation, for example. The term _x1 is a shorthand notation
for ðdx1=dtÞ, the rate of change of component x1 at a

particular moment in time. This is equal to the amount of x1
being created minus the amount being destroyed at that time.

The former is equal to the magnitude of signal x0 multiplied

by the rate constant a1; the latter is equal to the concentration
of x1 multiplied by the decay rate constant dx1. Equations 5
and 6 can be interpreted as equations for average values of

the variables, and can be rigorously derived from a stochastic

process; this is done later in the article.

The solution of Eqs. 5 and 6 is obtained by integrating

both sides from zero to infinity; resulting in the left-hand side

of each equation being replaced by zero and x1 and x2 being
replaced by �x1 and �x2, respectively. Rearrangement then

yields
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�x1jX ¼ �x0a1

d
x

1

and �x2jX ¼ �x1jXð Þa2

d
x

2

¼ �x0a1a2

d
x

1d
x

2

: (7)

Let us hereafter refer to the level of signal flux to the

intermediate component (i.e., x1 or y1 in the examples herein)

as the signal strength; this will be a product of the magnitude

of the input signal and the rate coefficient(s) for the upstream

step(s), or �x0a1 in the above example.

The dynamics of pathway Y signaling under the action of

y0 can be similarly expressed as

_y1 ¼ b1y0ðtÞ � d
y

1y1 (8)

_y2 ¼ b2y1 � dy

2y2: (9)

From these it can be determined that

�y1jY ¼ �y0b1

d
y

1

and �y2jY ¼ �y0b1b2

d
y

1d
y

2

: (10)

Furthermore, it is obvious by inspection that y�2jX ¼ 0.

Thus, the expressions for SX and FY have zero in the

denominator, so X can be considered to have infinite, or

complete, specificity (with respect to Y), and Y can be con-

sidered to have complete fidelity. The calculation of �x2jY
requires modifying Eq. 6 so that it becomes (Eq. 6a):

_x2 ¼ a2x1 1 hleaky1 � d
x

2x2:

Note that the first term of Eq. 6a is zero when pathway X is

off and the second term is zero when Y is off. From Eqs. 6a

and 8 it can be determined that

�x2jY ¼ �y0b1hleak

d
y

1d
x

2

: (11)

Thus,

SY ¼ b2d
x

2

hleakd
y

2

; FX ¼ �x0a1a2d
y

1

�y0b1hleakd
x

1

: (12)

Hence, both quantities are decreasing functions of the

‘‘leakage rate’’ hleak, and will be very large if hleak is very

small.

Network specificity is undefined when one pathway has

complete specificity; only if there is bidirectional crossover

does it make sense to calculate network specificity. To add

crossover in the other direction, assume that kinase x1 also
lacks complete selectivity, and phosphorylates substrate y2
at rate jleak. This results in the architecture shown in Fig. 3. In
this case, Eq. 12 still holds for SY and FX, and in addition

SX ¼ a2d
y

2

jleakd
x

2

; FY ¼ �y0b1b2d
x

1

�x0a1jleakd
y

1

; Snetwork ¼ a2

jleak

b2

hleak

: (13)

The ratios a2/jleak and b2/hleak can be taken as measures of

the selectivity of kinases x1 and y1, respectively, for their
correct versus incorrect targets. As can be seen, the speci-

ficity of the network in this case is equal to the product of

these selectivities. Moreover, both mutual specificity and

mutual fidelity are rather easily achieved. For instance, in

the case of symmetric network parameters (�x0 ¼ �y0; a1 ¼
b1; d

x
1 ¼ dy1, etc.), the conditions for both are a2/jleak . 1,

b2/hleak . 1. (To be precise, a2/jleak $ k; b2/hleak $ k;
k . 1.)

Fig. 3 shows some example solutions of this network under

the action of signal x0 (‘‘Xin’’) and signal y0 (‘‘Yin’’), and
the resulting specificity and fidelity values. The network in

Fig. 3 A possesses both mutual specificity andmutual fidelity.

As can be seen, however, one can envisage a network with

FIGURE 3 The output of four sig-

naling networks exhibiting different

degrees of specificity and fidelity. The

bars on the graph represent the total

output of signaling pathways X and Y

(Xout and Yout, respectively) under the
condition where pathway X is receiving

a signal and pathway Y is not (Xin), and

visa versa (Yin). The results correspond

to solutions of the network described in

Eqs. 5–13. All parameter values were

set equal to 1 except as specified below.

The thickness of the links connecting

the component nodes is proportional to

the rate coefficient for that reaction (see

Fig. 2 A; j is the coefficient for the

connection from x1 to y2). (A) This

network exhibits both mutual specific-

ity and mutual fidelity. Networks such

as this are presumably the most useful

to the organism. Rate coefficients are

a1 ¼ 2, a2 ¼ 3, b1 ¼ 2, b2 ¼ 2.5, h ¼
0.5, j¼ 1. (B) This network displays mutual specificity but not mutual fidelity. Pathway Y does not exhibit fidelity with respect to pathway X, because Y output

when Y is on is less than Y output when X is on. Parameter values are a1¼ 2, a2¼ 3, b1¼ 1, b2¼ 1.5, h¼ 0.5, j¼ 1. (C) This network possesses mutual fidelity,

but pathway Y does not exhibit specificity with respect to X. Parameter values are a1 ¼ 2, a2 ¼ 3, b1 ¼ 2, b2 ¼ 1.5, h ¼ 2, j ¼ 1. (D) This network possesses

neither mutual specificity nor mutual fidelity. Parameter values are a1 ¼ 2, a2 ¼ 1, b1 ¼ 2, b2 ¼ 1.5, h ¼ 2, j ¼ 3.
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mutual specificity but without mutual fidelity (Fig. 3 B), and
visa versa (Fig. 3 C). Furthermore, a given pathway can

exhibit both specificity and fidelity, or only one or the other, or

neither (Fig. 3 D).

Cascades that share components

For the remainder of this article, we will examine the sit-

uation where two signaling pathways share one or more

common elements (see Fig. 4 A). Without any further as-

sumptions, this class of networks can be represented by the

simple architecture shown in Fig. 4 A, and it can be ex-

pressed as the following ODEs:

_x1 ¼ a1x0ðtÞ1 b1y0ðtÞ � d1x1 (14)

_x2 ¼ a2x1 � d
x

2x2 (15)

_y2 ¼ b2x1 � d
y

2y2: (16)

We refer to this as the ‘‘basic architecture’’, because the

network lacks any enhancements designed to promote speci-

ficity. In the cases we will consider, we assume the network

only receives one of the two signals at a time. Thus, if x0(t) is
positive for some duration of time, then y0(t) is identically
zero, and visa versa; either the first or second term of Eq. 14

is equal to zero, depending upon which of the two signals the

network is receiving. Assume that signals x0(t) and y0(t) have
the duration tx and ty, respectively, and average magnitudes

equal to the constants x̂0 and ŷ0. Then, when X is ‘‘on’’ and Y
is ‘‘off’’,

�x1jX ¼ x̂0txa1

d1

; �x2jX ¼ x̂0txa1a2

d1d
x

2

; �y2jX ¼ x̂0txa1b2

d1d
y

2

: (17)

Furthermore, when pathway Y is ‘‘on’’ and X is ‘‘off’’

(that is, y0(t) . 0 and x0(t) ¼ 0),

�x1jY ¼ ŷ0tyb1

d1

; �x2jY ¼ ŷ0tyb1a2

d1d
x

2

; �y2jY ¼ ŷ0tyb1b2

d1d
y

2

: (18)

From these expressions we can calculate that

SX ¼ a2d
y

2

b2d
x

2

; SY ¼ b2d
x

2

a2d
y

2

; FX ¼ x̂0txa1

ŷ0tyb1

; FY ¼ ŷ0tyb1

x̂0txa1

: (19)

These quantities are quite easy to understand intuitively.

The expressions for fidelity are simply ratios of signal

strength multiplied by signal duration, that is, ratios of the

total amount of signal flowing into the shared component. In

contrast, the quantities for specificity report on signaling

downstream of the activation of the shared component. In the

case of SX, the numerator contains a coefficient (a2) that

positively influences Xout and a coefficient (dy2) that neg-

atively influences Yout, whereas the coefficients in the de-

nominator act conversely.

Note from Eq. 19 that SX is the reciprocal of SY, and FX is

the reciprocal of FY. Thus, because Snetwork ¼ SXSY¼ FXFY,

Snetwork ¼ 1. Thus, the basic architecture does not exhibit

overall network specificity, nor does it exhibit mutual speci-

ficity or mutual fidelity (28).

Insulating mechanisms: combinatorial signaling

Real cellular signaling networks that share components con-

tain one or more insulating mechanisms that are thought to

contribute to specificity and fidelity, some of which are shown

in Fig. 4. First, in combinatorial signaling, the simultaneous

FIGURE 4 Signaling network with

shared components. (A) The simplest

such network, herein referred to as the

‘‘basic architecture’’, shown with acti-

vation and decay rate constants. Com-

ponent x1 is common to pathways X and

Y. This network cannot achieve speci-

ficity and fidelity. (B–F) Elaborations

to the basic architecture that are found

in nature and have been proposed to

promote specificity. (B) Combinatorial

signaling with an independent, parallel

input provided by pathway Z. (C)

Combinatorial signaling via the branch-

ing and reintegration of pathway X. (D)
Cross-pathway inhibition. (E) Com-

partmentalization. (F) The action of a

scaffold protein.
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action of two or more different signals may be required to

evoke a response, so that the output of a pathway is deter-

mined by the combination of signals acting on a network

(Fig. 4 B). For example, the survival of epithelial cells

requires two signals, one provided by growth factors and

transmitted by the MAPK pathway, and one provided by cell

attachment (32), and Wnt and BMP signals combine to deter-

mine whether neural crest stem cells will differentiate (33).

Another type of combinatorial signaling occurs when a path-

way branches into two subpathways (one that contains shared

components and one that doesn’t) that are reintegrated at a

point further downstream, so that the response to a given

signal is determined by the combination of subpathways ac-

tivated by that signal (Fig. 4 C) (34). Combinatorial sig-

naling requires that a downstream component (such as x2 in
Fig. 4, B and C) is able to act as a molecular ‘‘AND gate’’ or

‘‘coincidence detector’’ that integrates two separate inputs

(35,36). One of these inputs may be a component that is

shared with another pathway (such as kinase x1, which is

shared with pathway Y). If the other input is not shared with

Y, then this may be exploited to enhance the specificity of the

XY network. Some examples of proteins that function as

signal integrators include Smad1, which integrates MAPK

and TGFb signals (37), and the estrogen receptor, which

integrates MAPK and estrogen hormone signals (38). In addi-

tion, DNA regulatory elements such as the Drosophila eve-
skipped enhancer can also act as signal integrators (39).

Indeed, combinatorial signaling is used in the yeast mating

and invasive growth signaling network to regulate a subset of

filamentation genes during invasive growth. The first signal

is relayed via the cell surface protein Msb2, which senses

localized turgor pressure (or some other mechanical force,

presumably) and sends a signal via the MAPK cascade to

activate the Tec1 transcription factor (40). A second, glucose

limitation signal is sensed by a the Snf1 protein kinase, which

inhibits a transcriptional repressor known as Nrg (41). Both

Tec1 and Nrg bind to the promoters of certain genes required

for invasive growth, and efficient activation of these genes

requires both Tec1 activation and removal of Nrg-dependent

repression (15). Thus, optimal haploid invasive growth re-

quires both a mechanical signal and a glucose limitation

signal.

To add combinatorial signaling for pathway X, we modify

Eq. 15 of the basic architecture characterized above (Eqs.

14–16) by adding a single term R[x0], so that (Eq. 15a):

_x2 ¼ a2R½x0�x1� d
x

2x2:

Here, R[x0] represents the combinatorial input. Thus,

target x2 is the signal integrator, or ‘‘AND gate’’: x2 activity
depends on two separate inputs, R and x1. If either input is
zero then x2 is also zero. Note the case when the coefficient

R½x0�[ 1 is identical to the basic architecture. To add the

influence of an independent, parallel pathway Z, as in Fig. 4

B, we set

R½x0� ¼ 1; X ison ði:e:; x0ðtÞ.0Þ
kleak; X isoff ði:e:; x0ðtÞ ¼ 0Þ; 0# kleak # 1

:

�
(20)

Here we assume that Z is activated concurrently with X,
because the cell is usually exposed to both signals at the same

time. Further, we assume that Z is mostly, but not completely,

off when X is off. The basal activity of Z when X is off is

characterized by the leakage rate kleak, and provides a ‘‘back

door’’ via which Y can leak into X.
Alternatively, if the situation shown in Fig. 4 C applies,

where X branches and is reintegrated at x2, then the flux

through the X-dedicated subpathway will be proportional to the
signal x0. This can be represented by setting R[x0] ¼ x0(t) 1
kleak. Here the leakage constant kleak represents the basal

activity of the X-dedicated subpathway, and the requirement

that kleak#1 can be dropped. Because the activation of the

shared kinase x1 is also proportional to signal x0, branching
and reintegration leads to ‘‘signal multiplication’’ with itself,

a phenomenon that has been examined for a single pathway

by Heinrich et al. (30).

Suppose for simplicity that signal x0(t) is a square pulse

of amplitude x̂0 and length tx, and y0(t) is a square pulse of

amplitude ŷ0 and length ty. Specificity for all three models

(Fig. 4, A–C) are then given by

SX ¼ a2d
y

2

b2d
x

2

ðR½x̂0�� jÞ; SY ¼ b2d
x

2

a2d
y

2

1

R½0�; Snetwork ¼ R½x̂0�� j

R½0� :

(21)

Here j ¼ 1� e�d1tx
� �

R½x̂0� � R½0�ð Þ=d1tx is a positive

quantity that becomes insignificant if the duration of the

signal x0 exceeds 1/d1, the characteristic time for the

deactivation of kinase x1. We can see that for shorter signals,

specificity is always lower, and it reaches a saturation level

for relatively long x0; this level is given by

Snetwork ¼R½x̂0�
R½0� ¼

1 for thebasicarchitecture;

1=kleak; withan independent; parallel input;

ðx̂01kleakÞ=kleak; underbranching=reintegration:

8><
>:

(22)

In both types of combinatorial signaling, specificity is

inversely proportional to the amount of leakage, and by

making kleak small, it is possible to obtain arbitrarily high

levels of network specificity.

For all three models, the expressions for fidelity are:

Fx ¼ x̂0txa1

ŷ0tyb1

ðR½x̂0�� jÞ
R½0� ; Fy ¼ ŷ0tyb1

x̂0txa1

: (23)

In summary, compared to the basic architecture, combi-

natorial signaling raises FX, SY, and Snetwork, and has no

effect on FY. Under the branching/reintegration scheme, SX
is also increased.
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Interestingly, with combinatorial signaling there are ob-

stacles to obtaining mutual specificity and fidelity that

place additional requirements on the characteristics of the

network. In the case of an independent parallel input,

achieving mutual specificity of degree k requires both

kleak # 1/k2 and a$ k, where a ¼ a2d
y
2=b2d

x
2 ¼ ða2=dx2Þ=

ðb2=dy2Þ. Clearly, the second condition is impossible in the

case of symmetric network parameters. Note that ða2=dx2Þ
is the ‘‘local sensitivity coefficient’’ for x2 production—the

percent of change in x2 caused by a 1% change in x1 at steady
state (42). Similarly, ðb2=dy2Þ is the local sensitivity coeffi-

cient for y2 generation; thus a measures relative signal

transfer from x1 to x2 vs. y2. To obtain mutual specificity of a

reasonably high degree, this must be correspondingly high.

One way to achieve this is to reduce b2, the rate constant for
the phosphorylation of target y2 by kinase x1, or in other

words, to make a y2 a poor substrate for x1. This analysis

suggests that maximizing the performance objective of mu-

tual specificity may favor a seemingly paradoxical situation

where an authentic substrate of a kinase is a poor target for

that kinase. Mutual fidelity also cannot be obtained with

symmetric network parameters and signal inputs. Achieving

mutual fidelity requires greater strength or/and duration of

the Y signal compared to the X signal, and low value of kleak.
The branching/reintegration scheme (Fig. 4 C) makes it

easier to achieve mutual specificity and mutual fidelity, but

the latter still requires a stronger or longer Y signal feeding

into kinase x1.
Fig. 5 shows a typical design of an optimized network

featuring combinatorial signaling. The figure illustrates how

achieving the goal of specificity shapes the network design

so that the rate coefficients leading from y0 to x1 and from x1
to x2 are large, whereas those from x0 to x1 and from x1 to y2
are small.

The obstacles to obtaining mutual specificity and fidelity

in the above model arise because an insulating mechanism

has been added to just one of the two pathways in the net-

work. If a combinatorial input was also provided to pathway

Y, then it would be straightforward to achieve both mutual

specificity and fidelity, even in the case of symmetric net-

work parameters, provided only that the leakage constants

were small.

Cross-pathway inhibition

Cross-pathway inhibition (Fig. 4 D) occurs when a down-

stream component of pathway X inhibits a downstream com-

ponent of pathway Y. An example of this type of inhibition

has recently been discovered in yeast, where it was shown

that Fus3, the MAP kinase in the mating pathway,

phosphorylates Tec1, a transcriptional regulator for invasive

growth, and thereby accelerates the degradation of Tec1

(21,22,43,44). This promotes specificity during mating by

preventing Kss1MAPK, which is also activated by mating

pheromone, from activating Tec1-dependent transcription of

filamentation genes (Fig. 6). This situation can be repre-

sented by the general architecture shown in Fig. 4 D, where
component x2 inhibits y2. To model inhibition, we assume

that the effective decay rate of the inhibited component is a

growing function of the concentration of the inhibiting

component. This results in a modification of Eq. 16 (Eq.

16a):

_y2 ¼ b2x1�ðdy

21gx2Þy2:

Here, g is a rate coefficient that relates the amount of x2 to
the increased decay of y2. Clearly, the mechanism of inhi-

bition is nonlinear by nature. However, it is possible to solve

the system of equations (Eqs. 14, 15, and 16a) under the

assumption that the signals x0 and y0 are square pulses of

amplitudes x̂0 and ŷ0 and lengths tx and ty, which are long

compared to the half-lives of the activated proteins, 1=dx;y1;2

(i.e., the steady-state approach). This approach yields

SX ¼ a2d
y

2

b2d
x

2

11
x̂0a1a2g

d1d
x

2d
y

2

� �
;

SY ¼ b2d
x

2

a2d
y

2

11
ŷ0b1a2g

d1d
x

2d
y

2

� ��1

;

Snetwork ¼ d1d
x

2d
y

21 x̂0a1a2g

d1d
x

2d
y

21 ŷ0b1a2g

� �
: (24)

FIGURE 5 Representative network featuring the ‘‘com-

binatorial signaling’’ insulating mechanism with an inde-

pendent, parallel input, as shown in Fig. 4 B. The abstract

action of the molecular AND gate is represented by the

symbol inscribed with an ‘‘A’’. The thickness of the lines

connecting the components represents the magnitudes of

the rate coefficients. Network parameters are kleak ¼ 0.1,

x0¼ 1, y0¼1, tX¼ 1, ty¼1. Rate coefficients are a1¼ b2¼
1, b1 ¼ a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=kleak

p ¼ 3.16. Deactivation rates are not

shown and were set equal to 1. The thickness of the arrows

leading from one component to another represent the signal

flux through that point of the network under the action of

signal x0 (A) or y0 (B). The design shown optimizes network

specificity, mutual specificity, and mutual fidelity, given

parameters a1, b1, a2, b2 chosen from the range f0.5–4g.
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Thus, compared to the basic architecture (see Eq. 19), cross-

pathway inhibition increases SX and decreases SY. The spec-
ificity of the network will be .1 only if x̂0a1.ŷ0b1; that is,
the signal strength for pathway X must be stronger than that

for pathway Y.
The condition for mutual specificity of degree k is equiv-

alent to two simultaneous inequalities,

að11 x̂0a1QÞ.k;
1

að11 ŷ0b1QÞ.k;

where we previously defined a ¼ ða2=dx2Þ=ðb2=dy2Þ, and

Q ¼ a2g=ðd1dx2dy2Þ. Two necessary (but not sufficient)

conditions to achieve this are x̂0a1.ŷ0b1 and a , 1/k. The
condition x̂0a1.ŷ0b1 requires strong relative signaling from

signal x0 to x1. Moreover, since a, a ratio of sensitivity

coefficients, measures the efficiency of signal transmission

from x1 to x2 vs. y2, the condition a , 1/k requires weak

relative signaling from x1 to x2. Thus, this scheme places

significant constraints on the allowable signal flux through

different steps of pathway X, and would seem to require

significant signal dampening down the pathway.

The fidelity values of the two cascades are given by

FX ¼ x̂0txa1

ŷ0tyb1

; FY ¼ ŷ0tyb1

x̂0txa1

d1d
x

2d
y

21 x̂0a1a2g

d1d
x

2d
y

21 ŷ0b1a2g

� �
: (25)

Thus, FX is the same as in the basic architecture and FY will

be greater than in the basic architecture only if x̂0a1.ŷ0b1.
Mutual fidelity is even more difficult to achieve than mutual

specificity. However, it is possible to achieve mutual fidelity

to some degree by increasing the strength of signal x0

compared to the strength of signal y0 while keeping signal y0
sufficiently long compared to signal x0. In the ‘‘best’’ case,

where the decay rates are very small compared to the other

constants, mutual fidelity of degree k could be obtained

providing x̂0a1=ŷ0b1.k and ty=tx.k2. Hence, the require-

ment of mutual fidelity imposes conditions on both the relative

strength and duration of the input signals. Mutual fidelity is

impossible for signals of equal length or equal strength.

Fig. 7 depicts a representative network featuring cross-

pathway inhibition of Y by X as its only insulating mecha-

nisms. The network achieves some degree of mutual specificity

but cannot achieve mutual fidelity, because the signal du-

rations are similar. Obtaining mutual specificity constrains

the network design so that the rate coefficients leading from

x0 to x1 and from x1 to y2 are large, whereas those from y0 to
x1 and from x1 to x2 are small.

Compartmentalization and the sequestering
function of scaffold proteins

Elsewhere we analyzed the insulating mechanism of com-

partmentalization and compared it to the sequestering function

of scaffold proteins (28). In compartmentalization, different

pathways are localized to different compartments or regions

of the cell, such as the nucleus and the cytosol. Leaking be-

tween pathways can only occur if a shared component, while

active, moves from one compartment to another (Fig. 4 E).
Signaling scaffolds are proteins that bind to two or more

consecutively acting components of a pathway and acceler-

ate the rate of reaction between them (Fig. 4 F). For example,

FIGURE 6 The ‘‘cross-pathway inhibition’’ insulating mechanism. (A)

The simplest abstract network featuring cross-pathway inhibition. (B) A real

network containing cross-pathway inhibition, the yeast mating/invasive

growth signaling network.

FIGURE 7 Representative network featuring cross-pathway inhibition as

its only insulating mechanism. The thickness of the lines connecting the

components represents the magnitudes of the rate coefficients. Signal

magnitudes and durations are x0 ¼ 1, y0 ¼1, tX ¼ 1, ty ¼1. Rate coefficients

are a1 ¼ 4, a2 ¼ 1, b1 ¼ 0.5, b2 ¼ 4, g¼ 2. Deactivation rates are not shown

and were set equal to 1. The thickness of the arrows leading from one

component to another represent the signal flux through that point of the

network under the action of signal x0 (A) or y0 (B). The design shown

optimizes mutual specificity given parameters a1, b1, a2, b2, g chosen from

the set f0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4g.
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yeast Ste5 protein is a scaffold protein in the mating path-

way. It binds to the G-protein that is an upstream component

of the mating pathway, to the shared intermediate kinases

Ste11MAP3K and Ste7MAP2K, and to the mating-specific

downstream kinase Fus3MAPK (45). As such, it enables a

pathway-specific upstream component to activate the shared

kinases, and then helps the shared kinases to activate a

pathway-specific downstream kinase (Fig. 8 A). This type of
mechanism may enhance specificity if the movement of the

active shared kinases on and off the scaffold is limited. In

particular, if the reactions between the kinases can only

happen while bound to the scaffold (or are much more ef-

ficient on scaffold than off scaffold), then this sequestering

action of the scaffold is formally equivalent to compartmen-

talization, and both mechanisms can be represented by the

same set of equations, as follows:

_x
N

1 ¼ a1 x0ðtÞ�Doutx
N

1 1Dinx
C

1 �d
x

1x
N

1 (26)

_xC1 ¼ b1 y0ðtÞ�Dinx
C

1 1Doutx
N

1 �dy

1x
C

1 (27)

_x2 ¼ a2x
N

1 �d
x

2x2 (28)

_y2 ¼ b2x
C

1 � d
y

2y2: (29)

Here, xN1 is the concentration of active kinase x1 in the

Nucleus (or aNchored, or oN, the scaffold) and xC1 is the con-

centration of active kinase x1 in the Cytosol; Dout is the rate

constant at which x1 exits the nucleus/scaffold and enters the
cytosol, and Din is the rate at which x1 in the cytosol enters

the nucleus or binds to the scaffold. The parameters dx1 and

dy1 are the deactivation constants for x1 in the nucleus/on the

scaffold and in the cytosol, respectively; for example, if x1 is
activated by phosphorylation, dx1 can denote the rate of de-

phosphorylation of scaffold-bound x1. Note from Eq. 29 that

y2 only arises via cytosolic x1, and note from Eq. 27 that,

when X is on and Y is off, cytosolic x1 only arises by the

relocation/dissociation of nuclear/scaffold-activated x1.
The equations for specificity and fidelity are:

SX ¼ a2d
y

2ðdy

11DinÞ
b2d

x

2Dout

; SY ¼ b2d
x

2ðdx

11DoutÞ
a2d

y

2Din

; (30)

FX ¼ x̂0txa1ðdy

11DinÞ
ŷ0tyb1Din

; FY ¼ ŷ0tyb1ðdx

11DoutÞ
x̂0txa1Dout

; (31)

Snetwork ¼Fnetwork ¼ ðdy

11DinÞðdx

11DoutÞ
DinDout

.1: (32)

It can be seen that network specificity is .1, and thus is

greater than in the basic architecture. Each of four quantities,

SX, SY, FX, and FY, differ from the corresponding values in

the basic architecture by a factor that is a ratio of an exchange

rate constant D plus a decay constant d divided by an ex-

change rate constant. For example, SX differs by a factor of

ðdy11DinÞ=Dout from the basic architecture result. This makes

sense: SX is favored by having small Dout (so that very little

x1 leaks out of the nucleus/off the scaffold), and largeDin and

dy1 (so that any x1 that does leak out is likely to either move

back in or decay). In the case of symmetric network param-

eters, the condition Dout � dy1,Din,Dout1dx1 guarantees

mutual specificity and fidelity of the cascades X and Y. If
Din ¼ Dout ¼ D and dx1 ; d

y
1.0, then this condition is auto-

matically satisfied, and provides mutual specificity and fidel-

ity of degree k¼ (d1 1 D)/D, where d1 is the lesser of d
x
1; d

y
1.

Compartmentalization or spatial separation makes ‘‘leak-

age’’ ineffective as long as the rates of leakage balance each

other, and are small compared to the deactivation rates.

Selective activation of scaffold proteins

Another way in which a scaffold might promote specificity

is if the scaffold is only in a conformation capable of

productively binding the shared kinase(s) during authentic

signaling. This mechanism has been termed ‘‘selective ac-

tivation’’ (23). For example, it has been proposed that the

yeast Ste5 scaffold is found in an active conformation only

during mating (Fig. 8 A). During invasive growth signaling,

Ste5 exists in a ‘‘closed’’ conformation (or is localized in the

wrong place or is for some other reason inactive) and so

cannot channel signals from the shared kinase Ste7MAP2K to

the mating-specific kinase Fus3MAPK (Fig. 8 B) (23,46).
To model the selective activation of a scaffold, we modify

Eqs. 26 and 27 so that they become (Eqs. 26a and 27a):

_x
N

1 ¼ a1 x0ðtÞ�Doutx
N

1 1R½x0�Dinx
C

1 �d
x

1x
N

1

_x
C

1 ¼ b1 y0ðtÞ�R½x0�Dinx
C

1 1Doutx
N

1 �d
y

1x
C

1 ;

FIGURE 8 Action of a selectively activated scaffold. The cartoon is based

upon a model recently proposed for the action of yeast Ste5 (23). (A) During

mating, Ste5 is activated by the mating-pathway-specific G-protein.

Activated Ste5 is competent to act as a scaffold by binding to the shared

kinases Ste11MAP3K and Ste7MAP2K and promoting the Ste7-dependent

activation of the mating-pathway-specific kinase Fus3MAPK. (B) When cells

are not mating, Ste5 is in an inactive conformation and cannot channel

signals from the shared kinases to Fus3. Thus, even if the cell is undergoing

invasive growth or experiencing other stimuli that activate some of the

shared kinases, the mating response is not activated. In these situations,

however, it is likely that some minor fraction of the Ste5 in the cell is in the

active conformation; in the mathematical model this fraction is represented

by the parameter kleak.
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where R[x0], as defined previously (Eq. 20), assumes a value

of 1 during X signaling and a value kleak between 0 and 1 in

the absence of X signaling. Thus, kleak represents the relative
basal amount of active scaffold present when X is off; if kleak
is 0, there is no scaffold when X is off, and there is no way for

Y to leak into X. The resultant values for SY and network

specificity are then increased by a factor of 1/kleak relative to
the previous model:

SY ¼ b2d
x

2ðdx

11DoutÞ
kleak a2d

y

2Din

(33)

Snetwork ¼ Fnetwork ¼ ðdy

11DinÞðdx

11DoutÞ
kleakDinDout

.1: (34)

Both FX and FY also increase (provided kleak , 1), and

only SX is unchanged by the addition of selective activation.

Note that Eqs. 33 and 34 are strictly valid only in the steady

state, i.e., if the signal durations tx; ty are long compared to

the inverse of the eigenvalues of the linear matrix that ap-

pears in system (Eqs. 26a and 27a).

In the Supplementary Material, a more elaborate model of

scaffolding is presented that is described by a nonlinear system

of six differential equations, andyet is still solvable. Thismodel

includes the formation of a complex between inactive kinase x1
and the scaffold and the activation of x1 on the scaffold, allows
both events to be dependent on the signal, and differs in several

other details from the above models. Despite these differences,

the expressions for network and pathway specificity and

fidelity are very similar to those given above. Thus the simpler

models appear to capture some of the key features of the

specificity-promoting qualities of scaffold proteins.

In summary, scaffold proteins can enhance specificity both

by sequestration, a mechanism that resembles compartmen-

talization, and by selective activation, a mechanism that re-

sembles combinatorial signaling. As such, a scaffold can in

principal provide a highly effective insulating mechanism.

Indeed, scaffolds are often spatially localized, which would

result in an insulating mechanism more effective than either

compartmentalization or scaffolding per se. To what extent

scaffold proteins use sequestration and/or selective activa-

tion to enhance specificity is an area of active experimental

investigation. A recent study of the yeast Ste5 protein sug-

gests that selective activation may be more important than

sequestration for this scaffold (23). In terms of the model,

Ste5 might be considered to be a scaffold for which Din and

Dout are high relative to dx1 and dy1, and kleak is low.

The effect of noise in signaling networks on
specificity and fidelity

Signaling networks are noisy systems, and there has been

much work on modeling noise in chemical signaling (see, for

example, (47–52)). In this section we examine the effects of

noise on specificity and fidelity. We conclude that the effects

of noise usually ‘‘average out’’ when specificity and fidelity

are calculated, and therefore that the simpler deterministic

treatment presented above is generally valid.

There are two sources of noise: internal and external (53).

Internal noise is due to the stochastic nature of the collisions

and reactions of the proteins involved. External noise includes

all sources of noise not directly related to the proteins in-

volved in our description, such as noise from other molecules

that affect the system but that are not explicitly described in

the model. To model the effect of noise on specificity of

signaling networks, we will first derive a chemical Langevin

equation (54) to account for the internal noise, and describe

how external noise can also be included.

Let us start from a simple linear cascade, x0 /
a1 x1 /

a2 x2,
where species x1 and x2 have the decay rates of dx1 and dx2,
respectively. Let us denote by i, j, and k the number of mole-

cules of proteins x0, x1 and x2, respectively. We assume the

following Poisson process: in an infinitesimal time interval,

Dt, the following changes can occur:

j/j11withprobability ia1Dt;

j/j�1withprobability jd
x

1Dt;

k/k11withprobability ja2Dt;

k/k�1withprobabilitykd
x

2Dt;

Nochangewithprobability1�ðia11 ja21 jd
x

11kd
x

2ÞDt:
Let us denote by ujkðtÞ the probability to have jmolecules

of type x1 and k molecules of type x2 at time t. We have the

following Kolmogorov (master) equation:

_ujk ¼uj�1;kia11uj11;kðj11Þdx

11uj;k�1ja2

1uj;k11ðk11Þdx

2 �uj;kðia11 jdx

11 ja21kdx

2Þ: (35)

We can define the average amount of each of the species

x1 and x2 as

x1 ¼ Æjæ¼+
N

j¼0

ujkj; x2 ¼ Ækæ¼+
N

j¼0

ujkk:

Equations for these quantities can be derived from Eq.35;

they are

_x1 ¼ a1x0�d
x

1x1;

_x2 ¼ a2x1�d
x

2x2:

These are identical to Eqs. 5 and 6. Following Gillespie’s

argument (54), we can write down a continuous (diffusion)

approximation of the master equation. Defining continuous

variables X1 and X2 such that ujkðtÞ ¼ uðX1;X2; tÞ, and

expanding the terms in the right-hand side of the master

equation into a Taylor series up to the second order, we

obtain the following Fokker-Planck equation:

@u
@t

¼�@u
@X1

½A1u�� @u
@X2

½A2u�11

2

@
2u

@X
2

1

½B1u�11

2

@u

@X
2

2

½B2u�;

A1 ¼X0a1�X1d
x

1 ; A2 ¼X1a2�X2d
x

2 ;

B1 ¼X0a11X1d
x

1 ; B2 ¼X1a21X2d
x

2 : (36)
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Here, A1, A2, B1, and B2 are the drift and diffusion coef-

ficients, respectively. Equation 36, just like the master equa-

tion, describes the evolution of the probability distribution

function, uðtÞ. For individual stochastic trajectories, a dif-

ferent description has to be developed. Using the expressions

for the drift and diffusion coefficients, we can derive the chem-

ical Langevin equation for the stochastic variables:

dX1 ¼A1dt1
ffiffiffiffiffi
B1

p
dW1;

dX2 ¼A2dt1
ffiffiffiffiffi
B2

p
dW2;

(37)

where W1 and W2 are statistically independent white noise

sources. This equation can be derived without using the pro-

cedure of diffusion approximation, by simply expressing the

first two moments of the change of variables X1 and X2 in

terms of time dt. Note that these stochastic differential equa-
tions (SDEs) (Eq. 37), contain the deterministic (drift) part

that is identical to that of the equations for the average values,

x1 and x2. The diffusion part, which multiplies the white

noise term accounts for the intrinsic noise in the system.

There are many ways to incorporate external noise in the

system. However, to illustrate the effect of external noise, it

suffices to use a simple description. Here we assume that the

noise affects the variable x0, the input signal, and that it

propagates down the cascade by means of Eq. 37. The input

signal can be thought of as the solution of the Ornstein-

Uhlenbeck-type equation,

dX0 ¼ ðmxðtÞ�dx

0X0Þdt1
ffiffiffiffi
D

p
dW0;

that is, in amount of species X0 oscillates around a mean

value, mxðtÞ.
This derivation can be easily generalized to more compli-

cated or even nonlinear networks. The nonlinearities in the

activation-deactivation coefficients are simply carried over to

the drift and diffusion terms. To give an example, we present

the SDEs for two parallel cascades with a shared element and

a nonlinearity:

dX0 ¼ ðmxðtÞ�d
x

0X0Þdt1
ffiffiffiffiffiffi
Dx

p
dW

x

0 ;

dY0 ¼ ðmyðtÞ� d
y

0Y0Þdt1
ffiffiffiffiffiffi
Dy

p
dW

y

0 ;

dX1 ¼ ða1X01b1Y0� d
x

1X1Þdt1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1X01b1Y01d

x

1X1

q
dW

x

1 ;

dX2 ¼ ða2R½X0�X1�dx

2X2Þdt1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2R½X0�X11dx

2X2

q
dWx

2 ;

dY2 ¼ ðb2X1�d
y

2y2Þdt1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2X11d

y

2Y2

q
dW

y

2 :

Solutions of these equations have the form

X1ðtÞ ¼ x1ðtÞ1z
x

1; X2ðtÞ ¼ x2ðtÞ1z
x

2;

Y1ðtÞ ¼ y1ðtÞ1z
y

1; Y2ðtÞ ¼ y2ðtÞ1z
y

2;

where the lower case symbols denote the expected value of

each variable and the terms j
x;y
1;2 are the stochastic parts, with

some important properties that we will discuss.

Now we can introduce definitions of specificity and fidel-

ity. Using a similar approach to that taken in the determin-

istic case, we define �Xf jX ¼ RN
0

XfðtÞ dtjx0.0;y0¼0 as the total

amount of final product Xf when the cell is exposed to signal

x0 but not to signal y0. The specificity and fidelity of channel
X are given by

SX ¼
�Xf jX

� 	
�Yf jX

� 	; FX ¼
�Xf jX

� 	
�Xf jY

� 	; (38)

where the final output variables are in our case X2 and Y2.
The triangular brackets denote the expected value of the

corresponding quantity. The specificity and fidelity of other

channel(s) are defined similarly.

To calculate the specificity of the X channel for the

stochastic system, we first integrate the SDEs to obtain

X2ðNÞ�X2ð0Þ ¼ a2X1R½X0��d
x

2
�X21

Z N

0

ffiffiffiffiffi
B

x

2

q
W2dt; (39)

where the bar denotes the integration in time from zero to

infinity, and the expression under the square root is the dif-

fusion coefficient. Taking the average of Eq. 39, we can see

that the left-hand side disappears, because on average the

initial and the end concentration of the protein are assumed

to be the same. Also, the term with the white noise disap-

pears, because
RN
0

ffiffiffiffiffi
Bx
2

p
W2dt

� 	 ¼ 0 by the Ito integration

rule of nonanticipating functions (55). Thus, we have:

Æ�X2æ¼ a2

d
x

2

ÆX1R½X0�æ:

Similar expressions can be derived for the average amount

of all species. In fact, these expressions are not different from

the deterministic ones obtained previously. As a result the

stochastic effects do not change the specificity and fidelity

calculated using the deterministic approach. This is not sur-

prising, because this study is concerned with global charac-

teristics of the system, and the noise usually does not influence

ensemble-averaged quantities.

Before we go on, we would like to comment on the aver-

aging procedure used in the above definition. The specificity

and fidelity are evaluated by first averaging both signals

(under the condition that one input is on and the other is off),

and then a ratio is formed. An alternative way would be to

evaluate the following:

SX ¼ Xf jX
Yf jX


 �
; FX ¼ Xf jX

Xf jY

 �

;

that is, the two procedures, evaluating the ratio and taking an

average, are interchanged. The results are of course different

for the two definitions; we would like to argue that the first

definition makes more intuitive sense. Let us suppose that the

output signal in the numerator is noisy and the one in the

denominator is not. Then by above procedures we can see

that the noise averages out and does not affect the overall

result. Next, let us assume that the output signal in the de-

nominator is noisy and the one in the numerator is not. Now,
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the result of the averaging will be different. This means that

in this definition, noise affects the numerator and the de-

nominator differently. This is an undesired asymmetry. In-

tuitively speaking, the numerator and the denominator

should be treated equally, because for all practical purposes

an equally good measure of specificity can be defined with

the numerator and the denominator reversed. Therefore, we

conclude that our initial definition is a more suitable measure

of specificity/fidelity in noisy systems.

Finally, a note on the limits of integration. Intuitively, the

quantities that appear in the numerator and denominator of

the definitions of specificity and fidelity, Eq. 38, are ‘‘total,

ensemble averages’’ of the signals of interest. To calculate

the total amount of the signal in each realization, we inte-

grated the corresponding signal amplitude in time from zero

to infinity. This is of course an idealization. In reality, an

infinitely long time is a span of time that is longer than the

characteristic time of the (deterministic) signal change. In some

cases, this can be estimated as the inverse of the smallest

eigenvalue of the (linearized) deterministic matrix governing

the average behavior. In general, it is the time it takes for the

system to settle near a steady state. This time, by definition,

must be larger than any characteristic fluctuation time in the

environment.

Inclusion of background signal levels and
experimental measurements

In actual cell signaling networks, it is unusual for pathways

to be completely ‘‘off’’, rather, there is some amount of basal

signaling. That is, for most pathways, even if they are not

receiving a signal, a small but significant fraction of the

kinases are nevertheless active, and there is a low but

significant level of expression of downstream target genes.

This is certainly true of the pathways in the mating/invasive

growth signaling network, for example. In this section we

will first consider how basal signal levels can be taken into

account in experimental measurements of specificity and

fidelity, and then discuss how they can be handled within our

formal mathematical framework.

For the output Pout of any pathway P, let us distinguish the
basal or background signal level, Pb, and the signal-regulated

part, Ps, so that Pout ¼ Pb1Ps. Pb is essentially independent

of the input signal and can be considered to be a constant, or

to fluctuate around some constant average value. Of course,

if Pb is small compared to Ps, then Pb can be ignored. If not,

then, in experimental measurements, it will often be conve-

nient to express output as a fold change with respect to the

basal level, i.e.,

Pout ¼ Pb1Ps

Pb

:

Thus, with regard to an XY network of the type we have

been considering in this article,

XoutjXin ¼ Xb1XsjXin

Xb

; XoutjYin ¼Xb1XsjYin

Xb

YoutjYin ¼ Yb1YsjYin

Yb

; YoutjXin ¼ Yb1YsjXin

Yb

: (40)

Thus we have

FX ¼ XoutjXin

XoutjYin

¼ Xb1XsjXin

Xb1XsjYin

;

SX ¼ XoutjXin

YoutjXin

¼ Xb1XsjXinð Þ
Yb1YsjXinð Þ

Yb

Xb

; etc:

As can be seen, with these modified definitions of output,

fidelity remains a number that is easily interpretable as the

ratio of X output during authentic versus spurious signaling.

Moreover, even if pathway X has complete fidelity ðXsjYin ¼
0Þ, it will still have a finite fidelity (equal to its fold induction
at a given level of authentic signal). Because fidelity by def-

inition measures the response to two different signals, how-

ever, one problem that might arise experimentally concerns

the appropriate levels of the different inputs.

Specificity avoids this problem, since there is only one

input. However, since there are by definition two outputs,

there is the problem of comparing apples to oranges. This is

somewhat mitigated, however, by expressing output as a fold

change with respect to the basal signal level (Eq. 40). With

the modified output definitions, if SX is .1 it means that Xin

causes a greater fold change in Xout than in Yout.
For a more formal treatment of basal signal levels, let us

now consider the output m(t) of pathway P at a given time

during the time course of the signaling event. We have

mðtÞ ¼mb1msðtÞ;
where the first term on the right-hand side is some constant

nonzero background level and the second term is the signal-

regulated part, such that msð0Þ ¼ 0 and limt/NmsðtÞ ¼ 0.

As time tends to infinity, the steady-state quantities in our

system do not tend to zero, and the operation of integration

from zero to infinity in the definitions of specificity and

fidelity becomes undefined. This technical problem with the

definition can be solved in the simplest way by subtracting

the background level of the output signal under the sign of

the integral. That is we replace the expression
RN
0

XfðtÞdtj
x0.0;y0¼0 with the expression

RN
0

XfðtÞ � limt/NXfðtÞð Þdtj
x0.0;y0¼0, and similarly for other integrals in the definition.

Note that if the signal is much stronger than the background,

then we have the following approximation:Z N

0

ðXfðtÞ� limt/NXfðtÞÞdtjfmðtÞ ¼mb1msðtÞg

�
Z N

0

XfðtÞdtjfmðtÞ ¼msðtÞg:

In other words, instead of subtracting the background

level of the output signal, we can simply consider a system

where there is no background input signal. The smallness
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of the background condition can be rigorously expressed as

follows: there exists a time, T, such that
R T

0
msðtÞdt �RN

T
msðtÞdt and in the time interval 0,t,T; we have

msðtÞ � mb. In other words, for most of the duration of the

signal, it must be much larger than the background level.

In conclusion, the presence of a small (compared to the

signal) constant background level does not change the prop-

erties of specificity and fidelity, where we assumed no such

background level. A strong background level of signal re-

quires a small modification on the original definition by

subtracting the background level from the output signals to

ensure the convergence of integrals.

DISCUSSION

A quantitative understanding of intracellular signal process-

ing will substantially increase our comprehension of biolog-

ical systems and may catalyze radical changes in how

diseases are analyzed and treated (4,56). A major obstacle to

this goal, however, is the challenge of obtaining a broad and

integrated appreciation of the mechanisms that promote sig-

naling specificity. The maintenance of specificity must have

been a critical factor in the evolution of signaling networks,

replayed each time a new pathway emerged by duplication

and divergence of preexisting parts. Thus, the requirement

for specificity has undoubtedly shaped the design logic of

biochemical networks.

Here we calculated specificity and fidelity—two quantities

that capture much of the intuitive biological concept of

specificity—in simple stochastic signaling networks, and

examined the performance of several specificity-promoting

enhancements, or insulating mechanisms. This exercise sup-

plied insight into the strengths and weaknesses of these in-

sulating mechanisms, and exposed the constraints they may

place on the properties and performance characteristics of the

networks in which they are utilized. We also considered the

effect of stochastic fluctuations (‘‘noise’’) in the levels of

network proteins on specificity and fidelity, and showed that

these metrics can be used even for noisy pathways.

Specificity and fidelity

Specificity and fidelity are simple ratios of pathway output

that capture common sense notions that a pathway should

stimulate its own output more than another pathway’s out-

put, and respond to its own input more than to another’s.

For small networks analyzed under simplifying assumptions,

specificity and fidelity can be expressed as a function of key

parameters of the network, as we have done here. For more

complex, nonlinear models of signaling networks, specificity

and fidelity can be readily calculated through numerical sim-

ulations (29). In fact, it should be possible to calculate path-

way fidelities and network specificity from the results of

experimental measurements made on cells or tissues.

The utility of the metrics specificity and fidelity is rein-

forced by the intuitively pleasing results obtained when they

were calculated for simple networks. Here, a measurement

that we termed network specificity, obtained by multiplying

the pathway specificities or pathway fidelities together, proved

to be informative. In the network consisting of two parallel

pathways that did not share components, yet exhibited un-

desired cross talk due to imperfect kinase selectivity (Fig.

2 A), specificity and fidelity could be increased simply by

increasing the selectivities of the transgressing kinases (Fig.

3). When a single kinase was shared between two pathways,

however (Fig. 4 A), biasing the selectivity of that kinase for

a substrate in one pathway increased that pathway’s spec-

ificity, but correspondingly decreased the specificity of the

other pathway. The specificity of this network (which we

dubbed the basic architecture) turned out to be constant,

and equal to unity. Thus, network specificity could not be

achieved by altering kinase selectivities (nor by changing

other parameters such as signal strength or deactivation rates).

Achieving specificity in this case required embellishing the

basic network architecture by the addition of an insulating

mechanism.

Analysis of common insulating mechanisms

We next analyzed the properties of insulating mechanisms

frequently found in biological signaling networks, asking to

what extent they could enhance the specificity and fidelity of

the basic architecture. Combinatorial signaling (Fig. 4, B and

C) relies upon the ability of a target of one of the pathways to
act as a coincidence detector or ‘‘AND gate’’ that integrates

the signal from the shared kinase with a second input that is

not shared. If pathway X received the combinatorial input,

then the fidelity of pathway X, the specificity of pathway Y,
and network specificity could all be increased by a factor

equal to the reciprocal of the basal strength of the second

input. Cross-pathway inhibition (Figs. 4 D and 6), modeled

after recent findings in yeast (57), occurs when a downstream

component of one pathway inhibits the target of the other

pathway. Cross-pathway inhibition of X by Ywas effective in

increasing the specificity and fidelity of pathway X, but

created problems with the fidelity of pathway Y.
In compartmentalization (Fig. 4 E), the two pathways are

localized to different parts of the cell, and leaking only

occurs to the extent that the shared kinase moves between

the two compartments. This mechanism could increase the

specificity and fidelity of both pathways to the extent that

deactivation of the shared kinase was faster than its dif-

fusion (28).

The final insulating mechanism we examined was scaf-

folding (Figs. 4 F and 8). By binding to multiple consec-

utively acting components of a pathway, a scaffold protein

can sequester one pathway from another in a manner similar

to compartmentalization, but at a smaller spatial scale.

Scaffolding could significantly increase the specificity and
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fidelity of both pathways if the shared kinase was deactivated

faster than it moved on/off the scaffold (28). Adding selec-

tive activation of the scaffold (where the scaffold is only

capable of productively binding the shared kinase during

authentic signaling) could further increase the specificity of

the unscaffolded pathway and hence the network by a

mechanism resembling combinatorial signaling.

The yeast mating/invasive growth network contains sev-

eral of these insulating mechanisms. Some predictions emerg-

ing from our analysis of simple mathematical models appear

to provide useful insights into how specificity is obtained in

this biological system, as will be highlighted in the next two

sections.

Constraining effects of insulating mechanisms

The specificity mechanisms we examined were unable to

provide mutual specificity and fidelity to both pathways in a

network without constraining the network by placing addi-

tional requirements on parameters values. For example, com-

partmentalization only worked well if deactivation of the

shared kinase was faster than the movement of the kinase

between compartments; thus compartmentalization constrains

deactivation rates not to be too slow (58). It has been argued

that kinase dephosphorylation rates are indeed fast relative to

diffusion (59,60). Likewise, for scaffolds to effectively pro-

mote specificity by sequestration, deactivation rates must

be fast. Furthermore, scaffold binding/dissociation must be

slow, which is likely to constrain signal speed and ampli-

fication.

If pathway X received a combinatorial input, it exhibited

increased fidelity, and pathway Y benefited from increased

specificity. Mutual fidelity, however, required a greater ampli-

tude and/or duration of the Y signal relative to the X signal.

Moreover, mutual specificity in such a network could only

be obtained if the X-pathway target was more sensitive than

the Y-pathway target to the shared kinase (Fig. 5).

Cross-pathway inhibition (X inhibits Y) was the most

constraining insulating mechanism of all, and overall, the

least effective. Mutual specificity could only be achieved if

the Y-pathway target was more sensitive than the X-pathway
target to the shared kinase. Moreover, mutual specificity and

fidelity could only be obtained if the Y signal was weaker,

but substantially longer, than the X signal (Fig. 7). Interest-

ingly, this does seem to be true of the yeast mating/invasive

growth network, where cross-pathway inhibition from mating

(X) to invasive growth (Y) is employed (Fig. 6). Invasive

growth-promoting conditions provide a weak signal pre-

sumed to last for days, whereas physiological levels of mating

pheromone supply a much stronger signal that lasts only a

few hours (18).

It is likely that in real biological networks, some of these

constraints are mitigated by adding a second insulating

mechanism, for example, by providing a combinatorial input

to both pathways. The yeast mating/invasive growth network

features two complementary insulating mechanisms. The first

mechanism is, as mentioned above, is cross-pathway inhi-

bition: Fus3MAPK (mating pathway) inhibits the Tec1 tran-

scription factor (invasive growth), which serves primarily to

decrease leaking from the mating pathway into the invasive

growth pathway. The second mechanism is scaffolding: Ste5

is a selectively activated scaffold for the mating pathway that

functions primarily to decrease leaking from the invasive

growth pathway into the mating pathway (23). These two in-

sulating mechanisms appear to complement each other rea-

sonably well: cross-pathway inhibition from mating (X) to
invasive growth (Y) is predicted to increase SX but reduces

SY and FY, whereas a selectively activated scaffold for the

mating pathway (X) would increase SY (and slightly increase

FY, given that the exchange rates Dout and Din appear to be

rather high, as discussed below).

What about desirable cross talk?

Although we have emphasized the minimization of undesir-

able signal crossover, there are many instances where cross

talk between pathways is a useful and important means to

integrate multiple signals (2). Our definitions provide a mea-

sure of cross talk, whether that cross talk is considered advan-

tageous or disadvantageous (for other recent approaches to

quantitatively evaluate cross talk see (29,61–63)). Thus, for

example, our framework is also useful for the analysis of

networks where cross-talk in one direction is desirable but

leaking in the reciprocal direction is not. Such situations may

be fairly common; if so, this may explain why pathways that

share components are so widespread. In such cases network

specificity is not a particularly useful concept, but pathway

specificity and fidelity are. For example, if cross talk from

pathway X to pathway Y is desirable, but leaking from Y to X
is not, then evolution may have favored the selection of rate

constants and insulating mechanisms that maximize SY and

FX while keeping SX and FY near 1. One way this could be

accomplished is by combinatorial signaling for X combined

with near symmetric network parameters.

A concrete example of this phenomenon is found in

yeast, where activation of the mating pathway leads to the

phosphorylation and activation of both the Fus3 and Kss1

MAP kinases (18), whereas only Kss1 is activated during

invasive growth (40). The phosphorylation of both MAP

kinases contributes to the mating endpoint, but phospho-

rylation of Fus3 during invasive growth is undesirable,

because Fus3 inhibits this process. Hence, if the mating

pathway is X and the invasive growth pathway is Y, and if

Fus3 is x2 and Kss1 is y2, then the network is structured

such that SX is close to 1; that is, Fus3 and Kss1 are

activated to roughly equal extents during mating. However,

SY appears to be much greater than 1; that is, Kss1, and not

Fus3, is activated during invasive growth. As can be seen

from Eqs. 28 and 33, this outcome could be accomplished

by a selectively activated scaffold that had relatively high
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values of Dout and Din and a reasonably small value of kleak.
In fact, this situation is quite close to that suggested by our

recent experiments (23).

Future directions

Here we concentrated on weakly activated pathways that can

be modeled as linear systems because of their analytical

tractability. In the Supplementary Material we demonstrate

that, for strongly activated pathways, the basic architecture

cannot exhibit mutual fidelity, and can exhibit mutual spec-

ificity only under certain restrictive conditions. However,

other relationships between input and output should also be

explored, such as ultrasensitivity and bistability (64–66). It

seems possible that some of the insulating mechanisms will

show improved performance under such conditions. Indeed,

a fully nonlinear model of cross-pathway inhibition, explored

computationally by Somsen et al., exhibits both mutual

specificity and mutual fidelity in the steady state (67). Hence,

a challenge for the future is to understand how feedback and

ultrasensitivity influence specificity in interconnected bio-

chemical networks.

Conclusions—design principles in pursuit
of specificity

Are there common features or emergent properties of sig-

naling networks that exhibit a reasonable degree of specific-

ity despite undesired signal crossover? Although much more

work will be required before this question can be completely

answered, some hints have emerged from our analysis. First,

networks in which different pathways share components will

likely contain one or more insulating mechanisms that enhance

specificity and fidelity. Second, more than one insulating

mechanism will probably be required to provide a reasonable

degree of mutual specificity and fidelity without placing sig-

nificant constraints on the network. Third, constraints to be

expected are differential target sensitivity, a requirement for

fast deactivation, and a greater amplitude or/and duration of

one signal relative to the other.
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