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Optimality conditions for differential inclusion problems, due to Kaskosz and 
Lojasiewicz, involve a costate equation and a pointwise maximizing property of the 
optimal velocity, expressed in terms of a Caratheodory selection of the differential 
inclusion. Such conditions have been extended in various directions, notably to 
permit unilateral state constraints. Here we add to earlier extensions, principally by 
allowing free endtimes. This is accomplished even though the data are required to 
be merely measurable in the time variable. The results are obtained by applying 
recent optimality conditions for free time problems, involving a Hamiltonian 
inclusion, to an auxiliary problem and a simple limiting argument. b 1992 Academic 

Press, Inc 

1. INTRODUCTION 

Consider the following dynamic optimization problem: 

Minimize g(a, x(a), b, x(b)) 
over arcs x( .) E AC( [a, b]; W) satisfying 

i(t) E F(f, x(t)) a.e. [a, b], (PI 
(a, x(a), b, x(b)) E S, 
Nt, x(t)) d 0, ‘i’te [a, b] n J. 

The data involved are a multifunction F: Rx 08” 3 R”, a function 
h: Rx [w”+ [w, and sets SC R1+n+l+n and Jc [w. The problem is a free 
time problem; i.e., the initial and terminal times, a and b, are included 
among the choice variables. The arcs are subject to endpoint and unilateral 
state constraints. 

Let z( -) E AC( [a, b]; W), with /? > c(, be a local minimizer for (P). This 
means that z( .) satisfies the constraints of (P) and that there exists a w > 0 
such that 

da, z(a), 8, z(B)) < da, x(a), b, x(b)) 
587 
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for any arc x( .) E AC( [a, b]; W) also satisfying the constraints of (P) and 
for which 

and 

x(t) E z(t) + wB, forall ~E[cI-w,p+w]. (1.1) 

Here B is the open unit ball in R”. In interpreting conditions such as (1.1 ), 
we regard z( ) and x( ) as having been extended to all of [a - w, p + w] 
by constant extrapolation. 

The arc z( .) E AC( [cc, p]; W) and the parameter w > 0 will remain fixed 
in what follows. Our aim is to give conditions satisfied by the local 
minimizer z( .) under hypotheses (Hl )(H5) below. These make reference 
to the sets 

Q={(t,x)ERXR”: fE(C(-w,B+w), Ix-z(t)1 <w}. 
Q,={x~W’:(t,x)~Q}=z(t)+wB. 

D=((a,b,xy)~IW~“+~: 

la-cll<w,lb-BI<w,Ix-z(cc)l<w,Ib-z(P)I<w}. 

(Hl ) For each (t, x) in Q, the set F( t, x) is non-empty, compact, and 
convex. 

(H2) For each (t, x) E D the multifunction s + F(s, x) is measurable on 
some neighborhood of t; also, there is a non-negative tjF~ L’(cc - w, /? + w) 
which is essentially bounded on (N - w, c1+ w) v (a - w, /I + w) and obeys 

I;(& xl = (C/F(f) 4 V(t, X)EQ. 

(H3) There is a non-negative K, E L’(cc - w, B + w) which is essentially 
bounded on (c( - w, CI + w) u (p - w, /I + w) and obeys 

F(t, y)~F(t,x)+Wt) IY-xl f4 VtE(a-w,p+W),vX, YESZ, 

(H4) The function h: .C2 + R! is continuous and the set of times, J, where 
the state constraint applies is closed. There is a constant K, > 0 such that 

lh(t> x) - h(t, Y)I G K,, Ix - A, vtE(a-w,/?+W),vx,yE52,. 

(H5) The function g: D -+ R is Lipschitz of rank KR on D. The endpoint 
constraint set, SC [W2”+=, is closed. 
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The background to our investigations is now briefly reviewed. Consider 
first of all the special case of (P) where the endtimes are tixed, i.e., it is 
assumed that the endpoint constraint set S has the form 

s= ((% i, B, YI): (L ?)EC)? 

for some [a, /I] c R, and closed Cc R*“. Suppose also that the state 
constraint is absent. One of the first sets of optimality conditions given for 
such problems (Hamiltonian inclusion conditions) asserted the existence of 
a costate arc p(b) which satisfies certain transversality conditions and the 
Hamiltonian inclusion 

(-t’(t), 4t)) E aH(t, x(t), At))> 

Here H( ., ., .) is the Hamiltonian 

a.e. [cc, /I]. (1.2) 

Wt, x, P) := Sup <p, e>, 
PGF(t,.X) 

and 8H denotes the (Clarke) generalized gradient in the (x, p) variables. 
In [4], Kaskosz and Lojasiewicz proved a different kind of optimality 

condition for (P). Here the Hamiltonian inclusion is replaced by conditions 
involving a Caratheodory selection, q5( ., .), of F( ., .) (defined below) for 
which i(t) = q4( t, z(t)). The conditions are 

-P(t)E (P(t), U(tv z(t))>, a.e. C4 PI, 

(p(th d(t, z))> =eE;;;llj (P(t), e>, a.e. [a, fi]. (1.3) .b 

Because condition (1.3) has something of the flavour of the maximum 
condition in the Pontryagin maximum principle of optimal control, the 
Kaskosz/Lojasiewicz conditions have been called conditions of Pontryagin 
type. 

Pontryagin type conditions do not supercede Hamiltonian inclusion con- 
ditions but supplement them in a nontrivial way. Examples exist where arcs 
exist satisfying the constraints, for which the Pontryagin type conditions 
are satisfied but the Hamiltonian inclusion conditions are not (see [4]). 

In [S] Loewen and Vinter showed that the Pontryagin type conditions 
could be derived by an application of the Hamiltonian inclusion conditions 
to an auxiliary problem, and a simple limiting argument. Subsequently, 
Frankowska and Kaskosz [S] showed how the techniques of [4] could be 
adapted to admit state constraints. Warga [7] independently derived 
Pontryagin type conditions in the presence of state constraints, for 
reparameterizations of optimal control problems. 

All developments described thus far concern problems on a fixed time 
interval. By contrast, the Pontryagin type conditions we develop below 
relate to problems with free endtimes. What obstacles are there to such an 
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extension? A well-known transformation technique [8] reduces a problem 
with free endtimes to a fixed endtime problem; application of standard 
fixed time optimality conditions to the transformed problem then provides 
a means of deriving optimality conditions for the original problem. This 
technique suffers from the shortcoming that the data must be “regular” 
(e.g., locally Lipschitz continuous) in the time variable as well as the state 
variable, due to the fact that the old time variable becomes a component 
of the new state variable. It is therefore of no avail in the present context, 
where the data are assumed to be merely measurable in the time variable. 
We must look elsewhere then for formulation and proof of the necessary 
conditions. 

The simple idea underlying the proof of the Pontryagin type conditions 
in [IS] is that, if & ., .) is a Carathtodory selection for which i = #(f, z), 
then z( .) remains a local minimizer when the dynamic constraint is 
replaced by 

4f)E d(f, x(t)) + E{m x(t)) - d(f, x(t))), a.e. [a, b]. 

Here E E (0, 1) is a parameter. We apply Hamiltonian inclusion necessary 
conditions, with reference to the new dynamics. Passage to the limit as e JO 
gives the Pontryagin type conditions for the original problem. 

Now this approach can be followed simply to derive Pontryagin type 
versions of known necessary conditions in a variety of settings. Here we 
provide a further illustration; we derive Pontryagin type conditions for 
problems with state constraints and free endtimes, where the data are 
assumed merely measurable in the time variable, by applying recent free 
time Hamiltonian inclusion necessary conditions [2] to the auxiliary 
problem. 

The transversality condition in our optimaiity conditions involves the 
essential value of a f&ction: given a measurable function f: [w x R” and a 
point z E IR, we define the set of essential values of f at z, denoted 
ess,+,f(t), as 

The symbol dg(x) denotes the (Clarke) generalized gradient of the 
locally Lipschitz function g at x. (See [ 1 ] for the definitions and calculus.) 
We employ a rather specialized generalized gradient in relation to the state 
constraint function h( ., .). It is 

a:h(t, x) := co{q = lim yi : yI E d,Yh(t,, xi), ti + t, x, + x, h(t(, xi) > 0 Vi}. 
I’zc 

The Euclidean distance function to the set Cc IR” is denoted by d,( . ). The 
(Clarke) normal cone to C is denoted by N,( .). 
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2. PONTRYAGIN TYPE CONDITIONS 

We give conditions on the local minimizer z( .). These are stated in terms 
of Caratheodory selections of the multifunction F. 

DEFINITION 2.1. A mapping 4: R + KY’ is called a Caratheodory selec- 
tion of the multifunction F: 0 =$ R” if the single valued multifunction 
F( ., .) = (#( ., .)} obeys the hypotheses (Hl)-(H3) (with a possibly dif- 
ferent Lipschitz constant) and satisfies the selection condition 

d(t, x) = F(t, x), V( t, x) E Q. 

It is shown in [4] that there always exists a Caratheodory selection, 4, of 
the multifunction, F, such that i = d(t, z). 

THEOREM 2.1. Let z( .)EAC([~, p]; R”) be a local solution to (P). 
Assume for each endtime, t = a, /3 either h(t, z(t)) < 0, or else the 
t-component of the endpoint constraint set, S, is the single point {t}. Pick 
any Caratheodory selection q3 of F with the property that i(t) = d( t, z(t)) a.e. 
[LX, /?I. Then there exist a constant 2 6 0, an absolutely continuous function 
p: CM, 81 + R”, a measurable function y: [cc, B] -+ R”, a non-negative 
measure p~C*([a,j?];R), such that %+lp],+p([cr,/?])=l andfor all 
sufficiently large one has 

a.e. C4 PI, (2.1) 

H t, z(t), p(t) + I,, ,) Y 4) = (p(t) + J’,, ,) Y 4, #(t, z(N)> a.e. [a, PI, 

(2.2) 

he co ess H(t, z(a), p(a)), 
t-x (2.3) 

(2.4) 

-k k p(a), -P(B) - I‘,..,, Y & ) E r Wda, B, z(a), z(B)) 

+ 1 %(a, B, z(cO, z(B)), (2.5) 

y(t) E a:h(t, z(t)), we. [a, PI, (2.6) 

and 

SUPP(~) c {t E [a, Bl n J : Ch(t, z(t)) Z 0 I. (2.7) 
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In the case where the state constraint is either inactive along the arc z( .) 
or absent altogether the conclusions of the theorem remain valid with 
p E 0, (and 1+ lp( 3c = 1). The fact that, here, p = 0 follows from the fact 
that, if h(t,x(t))<O, then a:h(t,.x(t))=@. 

The form of the state constraint may seem somewhat restrictive, but 
many constraints can be reduced to this form. Consider, for example, 
the constraint, f(t, x(t)) E C, adopted in [7], in which f: R’ x OX” -+ R” is 
essentially bounded, f(, x) is measurable for all x and f( t, .) is C ’ for 
all t. An equivalent formulation of this constraint is h( t, x(t)) < 0, where 
h(t, x(t))=dc(,f(t, x(t))). The set d:h(t, x(t)) is contained in the set 
{d.fx(t> x(t)) : de N,(f(t, x(t)))), and the latter set can be used instead of 
8,:h( t, x(t)) in the necessary conditions. 

3. PROOF OF THEOREM 2.2 

The starting point of the proof is the following free time necessary 
conditions due to Clarke, Loewen, and Vinter [2]. 

THEOREM 3.1. Let z( .)EAC([~, /I?]; R”) be a local solution to (P). 
Assume for each endtime, t = ~1, p either h(t, z(t)) < 0, or else the 
t-component of the endpoint constraint set, S, is the single point {t}. Then 
there exist constants 2 30, h, and k, an absolutely continuous function 
p: t-4 PI + R”, a measurable function y: [LX, /I] + R”, a non-negative 
measure p E C*( [cr, b]; W), such that J + Ipj 73 + p( [cr, /?I) = 1 and for r 
sufficiently large one has 

( -d(t), i(t))~ 8H t, 4th p(t) + j,, 1, Y &)- a.e. C4 PI, 

hEco ess H(t, z(a), p(u)), 
1-x 

~(2) E C:h(t, z(t)), p-a.e. C4 Bl, 

and 
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The following stability property of the operation of taking essential 
values is easily proved, (cf. [2, Lemma 1.21). 

LEMMA 3.2. Let k(t, x) : R x R” + 54 and k;(t, x) : R x R” -+ R, 
i = 1, 2, . ..) be functions which satisfy the following conditions. For some 
neighbourhoods, T and X of z and <, respectively, 

(i) They are essentially bounded on T x X. 

(ii) k( ., x) and k, (. ) are measurable on Tfor each x E X. 

(iii) k(t, .) and ki(t, .) are continuous on X, uniformly in t E T. 

(v) kj + k untformly on this neighborhood. 

Let v and vi, i= 1, 2, ..,, be numbers, and l and r,, i = 1, 2, . . . . be paints in 
R” satisfying V~ECO esst-rr ki(t, t,), vi+ v, ri --* {. Then UECO ess,,, k(t, {). 

We turn to the proof of Theorem 3.1. For each E > 0, consider the multi- 
function 

F,(t, x) = $(t> xl + +V> xl - d(t> xl>, 

and the optimization problem (P,), obtained from (P) by replacing F with 
Fe. Note that I;, inherits from F and # the hypotheses (HI )-(H3f except 
that the Lipschitz constant this time will be k,(t) = (1 - E) K,(t) + .zKF(t), 
where K& .) is the Lipschitz constant associated with the single valued mul- 
tifunction {q5( ., .)}. The convexity condition on F, together with the selec- 
tion condition imposed on $, implies that on 52 we have F&t, x) c F( t, x). 
Having noted this, consider the optimization problem (P,), obtained from 
(P) by replacing F with FE. Since F, c F, arcs admissible for (P,) are also 
admissible for (P), so that inf(P,) > inf(P). Note also that z( .) is admissible 
for (P,), and since inf(P) is obtained at z( .), inf(P,) is obtained there also. 
We apply Theorem 3.1 to (Pr) to deduce the followjng. 

There exist constants A, > 0, h,, and k,, an absolutely continuous func- 
tion p,: [a, fi] + R”, a measurable function y E C*( [a, p]; W), such that 
A, + lp,l o. + p,( [a, fl]) = 1 and for r sufficiently large one has 

(-O,(t), i(t)) E JH, t, 4th p,(t) + j,, I) yc &c), a.e. [a, Bl, (3.1) 

h, E co ;ss, H,(t, z(a), p,(a)), (3.2) 

(3.3) 

409/l 6512.20 
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and 

r,(t) E a;Mc z(t)), 

+ i ag(a, A z(a), z(p)), (3.4) 

PC-= [a, PI, (3.5) 

SuppW= {te [a, Bl nJ: $ZMt, z(f))fJZI), (3.6) 

where H,(t,x,p):=(l-~)(~,~(t,x))+~H(t,x,p). 
Expanding (3.1) we obtain 

(-t’,(t), i(t)) E (1 -El 
[( 

P,(l) + j,, ,) YE d&Y aA4 z(I))) x w, r(rNl] 

+ .dH t, 4th p,(t) + j+. ,) YE 4, > > a.e. [a, /?I. (3.7) 

Now apply [ 1, Proposition 3.2.41 to the second component of (3.7), 

~~(t,z(t))=i(t)-((f--E)~(t,z(t))~~a~H r,?(r).p,(c)+Slor,yid~, . 
> 
(3.8) 

It follows that 

H t, 4th IJ,(~) + c,. ,) YE 4, > 
= p,(t)+ ( I YE he, d(k z(t)) 

C%f) > 
9 a.e. [a, /I]. (3.9) 

Applying the same proposition to the first component of (3.7) we deduce 

+E p,(f)+ j y,& k(t)B. (3.10) 
Ca.t) 

Let E = l/i, and define 
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and 

We restate (3.9) and (3.10) in terms of lj, p,( .), ,v,( ‘1, hi, ki, and r?(.): 

= Pi(l)+ 

( 1 

I) Yi 4b d(h z(t)) 
> 

9 a.e. Ca, PI, (3.11) c 

I, 

+f pi(l‘)+j YidPi (KF(t)+K~(t))B’ (3.12) 
C40 

Equations (3.4)-(3.6) can be re-stated in terms of ii, pi( .), 
,u~( v), hi, ki, and ri( -) and look exactly as before except 
that “s” is replaced by “i.” (3.13) 

We re-state (3.2) and (3.3). 

ky+ys lO,(t). 48, z(l))) 

+ f {ff(c z(cO, Pi(a))- (Pi(t), d(t, z(t))>}}, (3.14) 

Equations (3.11 k(3.15) are perturbed versions of the assertions of the 
theorem. 

Convergence 

Now since Ai + lpi(a)1 + pi( [a, j?]) = 1 for all i, the sequences {Ai} and 
{p,(a)> converge (along subsequences which we shall not relabel) to 
2 E [0, l] and p(a) E B, respectively. Also, we have {pi} converges weak 
star (along another subsequence) to a measure p and that pi( [a, fl]) + 
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p( [z, PI), where .D is a non-negative measure in C *( [a, ,!3]; IF). Since each 
,u~ has support contained in the set 

{ f E [a, Bl f-J J : a:46 z(t)) z Izr }, 

it follows that the support of p is contained in it. 
The set valued map t + a:h(t, z(t)) is uniformly bounded, convex, and 

of closed graph on R. Hence from [6, Lemma 4.51 we deduce that there 
exists a p-integrable function y( .): [a, p] + 58” satisfying 

y(f) E a:wt, dt)), p-a.e., 

and that for some subsequence yl dpi 

y; Lipi f5 y dp. 

Lemma 4.3 of [6] allows us to assert further that 

The bounded nature of a~~/~ and pi, ~1 implies that for some constant L, 

holds. 
This together with (3.12) implies 

I -d;(t)1 G W(f) +&4(t)) IPi + 2UK4t) + fq&)) B. 

Recalling that {pi(a)) -+ p(a) E B, we deduce via Gronwall’s lemma that 
the sequence { pi(. )} is uniformly bounded and equicontinuous and thus 
converges (along a further subsequence) to an arc p( .). Theorem 3.1.7 of 
[l] applied to (3.12) allows us to deduce (2.1) for the same arc p(.). 

Equation (2.4) follows directly from the limiting version of (3.4) and the 
remark (3.13). Equation (2.2) follows from the limiting version of (3.11). 
The essential value conditions (2.3) and (2.4) follow directly from (3.14) 
(3.15), and Lemma 3.2. 
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