
lable at ScienceDirect

Heart & Lung 44 (2015) 129e136

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists avai
Heart & Lung

journal homepage: www.heartandlung.org
Stratifying patients at the risk of heart failure hospitalization using
existing device diagnostic thresholds

Vinod Sharma, PhD a,*, Lisa D. Rathman, MSN, CRNP, CCRN b, Roy S. Small, MD b,
David J. Whellan, MD, MHS c, Jodi Koehler, MS a, Eduardo Warman, PhD a,
William T. Abraham, MDd

aMedtronic Inc., Minneapolis, MN, USA
b Lancaster General Hospital, Lancaster, PA, USA
c Sidney Kimmel Medical College, Philadelphia, PA, USA
dOhio State University Heart and Vascular Center, Columbus, OH, USA
a r t i c l e i n f o

Article history:
Received 10 February 2014
Received in revised form
23 July 2014
Accepted 31 July 2014
Available online 24 December 2014

Keywords:
Implantable device diagnostics
Heart failure
Ambulatory monitoring
Heart failure hospitalization
Intrathoracic impedance
Abbreviations: AF, atrial fibrillation; AT, atria
resynchronization therapy; EF, ejection fraction;
equation; HF, heart failure; HFH, heart failure hos
variability; ICD, implantable cardioverter defibrillator;
New York Heart Association; VRAF, ventricular rate d
Funding source: This study was supported by Medt
Conflict of interest: Vinod Sharma, Jodi Koehler, and

stock awards from Medtronic Inc. Lisa D. Rathman, R
and William T Abraham: Consultation fees from Med
* Corresponding author. Cardiac Rhythm Disease M

Minneapolis, MN 55112, USA. Tel.: þ1 763 526 0139;
E-mail address: vinod.sharma@medtronic.com (V.

0147-9563/ � 2015 The Authors. Published by Elsevie
http://dx.doi.org/10.1016/j.hrtlng.2014.07.007
a b s t r a c t

Background: Heart failure hospitalizations (HFHs) cost the US health care system w$20 billion annually.
Identifying patients at risk of HFH to enable timely intervention and prevent expensive hospitalization
remains a challenge. Implantable cardioverter defibrillators (ICDs) and cardiac resynchronization devices
with defibrillation capability (CRT-Ds) collect a host of diagnostic parameters that change with HF status
and collectively have the potential to signal an increasing risk of HFH. These device-collected diagnostic
parameters include activity, day and night heart rate, atrial tachycardia/atrial fibrillation (AT/AF) burden,
mean rate during AT/AF, percent CRT pacing, number of shocks, and intrathoracic impedance. There are
thresholds for these parameters that when crossed trigger a notification, referred to as device observation,
which gets noted on the device report. We investigated if these existing device observations can stratify
patients at varying risk of HFH.
Methods: We analyzed data from 775 patients (age: 69 � 11 year, 68% male) with CRT-D devices followed
for 13 � 5 months with adjudicated HFHs. HFH rate was computed for increasing number of device
observations. Data were analyzed by both excluding and including intrathoracic impedance. HFH risk
was assessed at the time of a device interrogation session, and all the data between previous and current
follow-up sessions were used to determine the HFH risk for the next 30 days.
Results: 2276 follow-up sessions in 775 patients were evaluated with 42 HFHs in 37 patients. Percentage
of evaluations that were followed by an HFH within the next 30 days increased with increasing number
of device observations. Patients with 3 or more device observations were at 42� HFH risk compared to
patients with no device observation. Even after excluding intrathoracic impedance, the remaining device
parameters effectively stratified patients at HFH risk.
Conclusion: Available device observations could provide an effective method to stratify patients at
varying risk of heart failure hospitalization.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Introduction

Implantable cardioverter defibrillator (ICD) and cardiac
resynchronization therapy (CRT) devices have become the main-
stay of treating persistent systolic heart failure in addition to
guideline directed medical therapy.1,2 Many of these devices are
implanted in patients with congestive heart failure with New York
Heart Association (NYHA) class status of II to IV. While these de-
vices considerably ameliorate patient morbidity and mortality,
heart failure remains a significant economic burden costing the US
health care system w$30 billion annually. Heart failure
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https://core.ac.uk/display/82649106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-sa/3.�0/
mailto:vinod.sharma@medtronic.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.hrtlng.2014.07.007&domain=pdf
www.sciencedirect.com/science/journal/01479563
http://www.heartandlung.org
http://creativecommons.org/licenses/by-nc-sa/3.�0/
http://dx.doi.org/10.1016/j.hrtlng.2014.07.007
http://dx.doi.org/10.1016/j.hrtlng.2014.07.007
http://dx.doi.org/10.1016/j.hrtlng.2014.07.007


V. Sharma et al. / Heart & Lung 44 (2015) 129e136130
hospitalizations (HFHs) account for two-thirds of the total
expense.3 Identifying patients at risk of worsening heart failure to
allow timely intervention has the potential to prevent hospitali-
zations and improve long-term patient outcomes while reducing
costs of care.

In addition to providing life-saving therapies, implantable de-
vices collect a host of continuous physiological patient data (e.g.
activity, day and night heart rate, AT/AF burden, heart rate during
AT/AF, percent CRT pacing, number of shocks, and intrathoracic
impedance). However, the data collected vary by manufacturer. For
example, not all manufacturers have devices with intrathoracic
impedance capability. Also, while all devices include a single or
multi-axis accelerometer, proprietary algorithms to derive daily
activity from accelerometer signals vary (see Methods for details).
Many of the diagnostic variables have been shown to be prognostic
markers of worsening heart failure and/or mortality risk. For
example, NHR is a marker of autonomic tone, and an elevated NHR
is associatedwith higher HFH risk.4 Activity is a reflection of patient
functional capacity, and decreasing activity is associated with
worsening HF status.4e7 A loss of CRT pacing compromises cardiac
hemodynamics and hence leads to worsening patient status.8 And
finally, a decrease in intrathoracic impedance is associated with an
increase in wedge pressure, elevated pre-load, and risk of fluid
extravasation into the lungs.9 Risk stratification models combining
various device diagnostic parameters have been proposed.10e12 The
diagnostic performance of these models is better than each
parameter alone. However, the clinical adoption of these risk
stratification models has been slow because they use thresholds
and measurement schemes not yet implemented in the implant-
able devices. Some of these approaches in fact use a fixed 30-day
look back window requiring manual sifting of data to identify
trends, thus making it cumbersome to use them in day-to-day
practice.

All CRT-D devices have thresholds for various parameters that
when crossed trigger a notification, referred to as device observa-
tion. The purpose of this study was to examine the performance of
the existing device observations for stratifying patients at HFH risk.
Since the impedance observation is not available in all devices [e.g.
OptiVol observation is not available on CareLink (Medtronic Inc.
MN) in the US], we performed the analysis with and without
impedance observation. Furthermore, we investigated the rela-
tionship between the number of device observations triggered and
risk of HFH.

Methods

We performed retrospective analysis using patient data from
FAST13 and PARTNERS-HF10 clinical trials using Medtronic devices.
Both study protocols were approved by institutional review boards
and all patients provided written informed consent. FAST was a
prospective double-blinded observational study in CRT-D and ICD
patients (n ¼ 109) with EF � 35% and NYHA class III or IV.
PARTNERS-HF was a prospective observational study in CRT-D pa-
tients (n ¼ 1024) with EF � 35%, NYHA class III or IV, and QRS
duration �130 ms. The two studies combined had 1133 patients
and 220 HFHs. Only patients with an OptiVol capable CRT-D device
were included in this analysis. Follow-up sessions with less than 7
days of data before and less than 30 days of data after the evalua-
tion were excluded. Furthermore, if there was another follow-up
session within 30 days of a previous session, the second session
was excluded. After applying above criteria, 186 HFHs in 775 pa-
tients and a total of 2276 follow-up sessions were available for
analysis. Mean follow-up was 13 � 5 months. HFH associated with
signs and symptoms of pulmonary congestion was used as the
endpoint. All HFHs were adjudicated by an independent
committee. The HFH event rate of 22.2% per year in this cohort is
comparable to that in NYHA III and IV device patients.14,15

Diagnostic parameters and thresholds

The following diagnostic parameters in Medtronic devices have
an observation: OptiVol index, AT/AF burden, ventricular rate
during AT/AF (VRAF), activity, night heart rate (NHR), and percent
pacing (% CRT pacing) (Fig. 1). In addition, an observation is noted if
defibrillation shocks are delivered and this was also included in our
analysis. Briefly, the measurement scheme for various parameters
was as follows. Impedance (Z) is measured intrathoracically across
the right ventricular (RV) coil and device-can by injecting a small
current pulse (I) and measuring the developed voltage (V; Z ¼ I/V).
OptiVol index is derived as the cumulative difference between
expected and actual Zs for the duration when expected Z is higher
than actual Z. When actual Z exceeds expected Z, OptiVol index is
set to zero. Since OptiVol index is integration of Z over certain
duration, it is measured in units of ohm-days (U-days). A higher
value of OptiVol index has been shown to be associated with HFH.9

Several electrophysiological parameters including NHR, AF burden,
and VRAF are derived from atrial and ventricular electrograms
(egms) acquired by the device at 10 ms resolution. Device algo-
rithms, such as PR Logic,16 are applied to discriminate among
different rhythms and derive these electrophysiological parame-
ters. NHR is the average heart rate between midnight and 4 am and
is a measure of resting heart rate. AF burden is measured as total
duration of fast atrial rate during a 24-h period associated with
atrio-ventricular conduction ratio �2:1. VRAF is the average ven-
tricular rate during AF over a 24-h duration. Activity is a quanti-
tative measure of active duration and is a surrogate of functional
capacity. It is measured by a single axis accelerometer in the device
that is used to detect patient motion and convert it into discrete
electrical signals. An algorithm then converts these electrical sig-
nals to number of minutes active for the entire 24-h duration
during a day (day and night time activities are not reported sepa-
rately), where a minute is considered active if accelerometer reg-
isters signal equivalent to 70 steps/min or greater.4 The device
recorded activity has been shown to have a strong intra-individual
correlation with activity measured using a validated external
sensor.5 However, details of the algorithm differ between
implantable and external devices (e.g. pedometers and external
accelerometers) and absolute duration of reported activity between
the two may differ.

All of the above parameters have a threshold value, which when
exceeded triggers a device observation. Fig. 1 shows empirically
derived nominal threshold values for various parameters that can be
tailored on a patient basis. All nominals (or values close to the nom-
inals)havebeenshowntobeassociatedwithgreaterHFHormortality
risk. An OptiVol observation is noted on the device report when a
valueof60U-days isexceeded,a threshold showntopredictHFHwith
optimal sensitivity and false alert rate.9 AT/AF burden of�6 h/day for
at least onedaywithin the last30-days is associatedwith2� riskof an
HFevent.17 This risk is furtherexacerbatedwithpoor rate controlwith
V-rate > 90 bpm.17 NHR of >90 bpm discriminates between hospi-
talized and non-hospitalized patients.18 And finally, CRT pacing<90%
is associated with increased mortality.19

The availability of OptiVol observations varies by geography and
mode of device interrogation. For example, while there is an
OptiVol observation on the programmer report in the United States,
no such observation exists on the CareLink HF management report.
Outside the United States, the OptiVol observation is available in
both the programmer and CareLink reports. Thus, we performed
our analysis by both including and excluding the OptiVol
observation.



Fig. 1. Various device diagnostic parameters and corresponding default threshold values that trigger a device observation. The left column shows the various device parameters and
their representative trend. The right column shows the corresponding default threshold values (see Methods for more details). Except for raw impedance and HRV, all other
parameters have an observation that is triggered when the corresponding threshold is crossed. However, the availability of OptiVol observation varies with geography (refer to text
for details).
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Analysis scheme

We used the analysis scheme depicted in Fig. 2. At the time-
point of each follow-up a look back was performed until the pre-
vious follow-up to evaluate the number of device observations
triggered. Also, a 30-day look forward was performed to assess if an
HFH had occurred within that period. For example, for the follow-
up labeled as FU2 in Fig. 2, number of observations triggered was
evaluated for the duration labeled as ‘Risk Assessment 2’, and a 30-
day HFH risk assessment was performed for the duration labeled as
‘Risk Prediction 2’. This was repeated for all the follow-ups for a
given patient, and then for all the patients. These data from all ‘Risk
Assessment’ and ‘Risk Prediction’ pairs were then used to compute
the relationship between number of observations triggered and 30-
day HFH event rate. Specifically, raw event rate for 0, 1, 2, and �3
observations was computed as:

Number of Risk Prediction windows with � 1 HFH
Total number of Risk Assessment windows

Statistical analysis

The HFH event rates and odds ratios were estimated using a
Generalized Estimating Equations (GEE) model for the groups with



Fig. 2. The schematic for diagnostic evaluation and risk assessment framework. The device observations occurring during the entire duration between two successive follow-ups
(FUs) sessions were noted. Various follow-ups are indicated as FU1, FU2 etc. The look-back time window for evaluating device observations is labeled as ‘Risk Assessment’. The
corresponding 30-day look-forward time window is labeled as ‘Risk Prediction’. Refer to text under the section Analysis Scheme for more details.

Table 1
Patient clinical and demographic data of combined FAST and PARTNERS-HF trials
used for the present analysis.

Total (n ¼ 775)

Mean age (SD) 69 (11)
Male gender 524 (68%)
Ethnic origin
Caucasian 655 (85%)
African American 85 (11%)
Other/Unknown 35 (5%)

NYHA
I 9 (1%)
II 59 (8%)
III 674 (87%)
IV 33 (4%)

Ischemic 485 (63%)
Coronary artery disease 524 (68%)
Myocardial infarction 360 (46%)
Hypertension 552 (71%)
Diabetes 324 (42%)
History of AF 219 (28%)
LVEF �35%a 676 (100%)
Baseline medications
ACE/ARB 641 (83%)
Beta-blockers 696 (90%)
Diuretics 642 (83%)
Digoxin 279 (36%)
Aldosterone antagonist 257 (33%)
Hydralazine 44 (6%)
Nitrates 215 (28%)
Anti-arrhythmic drugs 138 (18%)
Warfarin 183 (24%)

a LVEF was only available for 676 patients.
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different number of observations. A GEEmodel adjusts the estimate
to account for multiple evaluations within a patient.20 We made no
adjustment for baseline variables (age, gender, NYHA, history of
coronary artery disease, MI, AF, diabetes, and hypertension) and
baseline medications (ACE-I/ARB, diuretics, b-blockers, and anti-
arrhythmic drugs). This reflects the real world since device data
are not yet fully integrated with clinical and demographic data.

A sensitivity and specificity analysis was performed to charac-
terize our scheme’s performance. Sensitivity is defined as the
number of evaluations with a given number of device observations
in the preceding evaluationwindow and HFH event in next 30-days
divided by the total number of evaluations with HFH in next
30-days. Specificity is defined as the number of evaluations without
a given number of device observations in the preceding evaluation
period and no HFH event in next 30 days divided by the total
number of evaluations with no HFH in next 30 days. The sensitivity
and specificity computations are adjusted for multiple evaluations
in patients using a GEE model. All statistical analyses were per-
formed using SAS version 9.2 (SAS Institute Inc., Cary, NC, USA).

Results

Patient demographics and follow-up

Table 1 summarizes clinical and demographic data for the 775
patients in the FAST and PARTNERS-HF trials selected for our
analysis. All patients had a CRT-D device, and the majority (87%) of
the patients had a heart failure status of NYHA III. These charac-
teristics are similar to the characteristics of a patient population
receiving CRT therapy.14,15,21 A total of 2276 in-clinic follow-up
sessions were available for analysis. Forty-two follow-up sessions
in 37 unique patients had an associated HFH in the following 30
days. Mean inter follow-up duration was 78 days.

Risk stratification performance of device parameters excluding
OptiVol

Risk stratification performance of various parameters excluding
OptiVol is shown in Table 2. The rate of HFH increased with
increasing number of observations. For zero device observation, the
30-day event rate was 0.9% and increased to 13.6% for three or more
device observations. The odds ratio for three or more observations
versus no observation was 17.9 (see Table 2 for other odds ratios).
Also, noteworthy from Table 2 is that a vast majority (w71%) of the
total follow-up sessions had no device observation. The proportion
of follow-up sessions decreased with increasing number of obser-
vations (23.5%, 4.3% and 1.3% for 1, 2 and �3 observations,
respectively).

Based on univariate analysis (Table 3), HFH rate varied from 3.5%
(for OptiVol) to 11.2% (for VRAF). Activity, AF Burden, and Decrease
in CRT Pacing triggered observations during a large proportion of
follow-up sessions (w10% or more) and the corresponding event
rates were 5.1%, 4.7% and 4.6%, respectively.
Risk stratification performance of device parameters including
OptiVol

Risk stratification performance with OptiVol included is shown
in Table 4. Similar to the case of OptiVol excluded, the HFH rate
increased with increasing number of observations. The HFH rate for



Table 2
Performance of device observations excluding OptiVol in stratifying patients at risk
of heart failure hospitalization (HFH).

Number of
device
observation(s)

Number of
follow-ups
(Number of
patients)

Number of
HFHs (%)

GEE adjusted
HFHs (95% CI)

Odds ratio versus
0 observation
(95% CI)

0 1614 (631) 14 (0.9) 0.9% (0.5e1.6) Reference group
1 535 (284) 17 (3.2) 3.0% (1.8e5.0) 3.6 (1.6e7.8)
2 98 (71) 7 (7.1) 7.0% (3.4e13.8) 8.5 (3.3e22.3)
�3 29 (24) 4 (13.8) 13.6% (5.5e30.0) 17.9 (5.6e57.2)

Table 4
Performance of device observations includingOptiVol in stratifying patients at risk of
heart failure hospitalization (HFH).

Number of
device
observation(s)

Number of
follow-ups
(number of
patients)

Number
of HFHs (%)

GEE adjusted
HFHs (95% CI)

Odds ratio versus
0 observation
(95% CI)

0 1103 (554) 4 (0.4) 0.4% (0.1e1.0) Reference group
1 828 (514) 14 (1.7) 1.7% (0.9e3.0) 4.6 (1.4e14.5)
2 279 (190) 15 (5.4) 5.3% (3.1e8.8) 14.9 (5.2e43.1)
�3 66 (50) 9 (13.6) 13.6% (7.2e24.3) 42.4 (12.6e142.1)
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zero device observation was 0.4% and increased to 13.6% for �3
observations with an odds ratio of 42.4 (see Table 4 for other odds
ratios). Follow-up sessions with zero observation constituted the
largest proportion (48.5%) of all follow-up sessions, and the pro-
portion declined with increasing number of observations (36.4%,
12.3% and 2.9% for 1, 2 and �3 observations, respectively).

Event rate during 30 days post-evaluation

Fig. 3 shows HFH event rate during 30 days post-evaluationwith
OptiVol excluded (Panel A) and included (Panel B). The increase in
event rate with increasing number of observations is evident in
both plots. For example, with OptiVol excluded, the 30-day HFH
rate was less than 1% for ‘0 observation’. The 30-day HFH event rate
increased to w3%, w7% and w14% for 1, 2 and �3 observations,
respectively. With OptiVol included, a greater separation between
the ‘�3 observations’ trace and ‘0 observation’ and ‘1 observation’
traces was observed suggesting a better risk stratification
performance.

Sensitivity and specificity of predicting HFH

Tables 5 and 6 show the sensitivity and specificity in predicting
HFH for the parameter set excluding and including OptiVol for �1,
�2 and �3 device observations. With OptiVol excluded, the sensi-
tivity for �1 observation was 68.9% and decreased to 9.5% for �3
observations. The corresponding specificity for �1 observation was
71.2% and increased to 98.8% for �3 observations. Similarly, with
OptiVol included, the sensitivity for �1 observation was 90.5% and
Table 3
Univariate analysis and risk of various device parameters for HFH.

Device observation Number of
follow-ups

Number of
HFHs (%)

GEE (95% CI)

Activity
Yes 277 14 (5.1%) 5.1% (3.0e8.4)
No 1999 28 (1.4%) 1.4% (0.9e2.1)

NHR
Yes 28 2 (7.1%) 7.2% (2.2e21.7)
No 2248 40 (1.8%) 1.8% (1.3e2.5)

AF burden
Yes 235 11 (4.7%) 4.7% (2.5e8.5)
No 2041 31 (1.5%) 1.5% (1.0e2.2)

VRAF
Yes 26 3 (11.5%) 11.2% (3.8e28.5)
No 2250 39 (1.7%) 1.7% (1.2e2.4)

Decrease in CRT pacing
Yes 228 11 (4.8%) 4.6% (2.4e8.4)
No 2048 31 (1.5%) 1.5% (1.0e2.2)

Shock
Yes 26 2 (7.7%) 7.1% (1.5e27.3)
No 2250 40 (1.8%) 1.8% (1.3e2.5)

OptiVol
Yes 783 28 (3.6%) 3.5% (2.4e5.2)
No 1493 14 (0.9%) 0.9% (0.6e1.6)
decreased to 21.6% for �3 observations. The corresponding speci-
ficity increased from 49.1% (�1 observation) to 97.4% (�3 obser-
vations). With OptiVol included, the relative increase in sensitivity
for �3 observations was significant (21.6% versus 9.5%; see bottom
most rows in Tables 5 and 6) compared to the decrease in specificity
(97.4% versus 98.8%).
Fig. 3. Kaplan Meier curves for time to first HF hospitalization. Panel A shows HFH rate
in the next 30-days following an evaluation for varying number of observations with
OptiVol excluded from the device parameter set. Panel B shows an analogous plot with
OptiVol included in the device parameter set.



Table 5
Sensitivity versus specificity in a 30-day evaluation framework for �1, �2 and �3 observations for the parameter set excluding OptiVol.

Number of device observation(s) Sensitivity Specificity

Unadjusted GEE adjusted (95% CI) Unadjusted GEE adjusted (95% CI)

�1 observation(s) 28/42 (66.7%) 68.9% (52.8e81.5) 1600/2234 (71.6%) 71.2% (68.4e73.9)
�2 observations 11/42 (26.2%) 27.0% (15.2e43.3) 2118/2234 (94.8%) 94.5% (93.1e95.7)
�3 observations 4/42 (9.5%) 9.5% (3.7e22.5) 2209/2234 (98.9%) 98.8% (98.2e99.3)
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Discussion

In this study we presented a novel scheme to stratify patients at
risk of HFH using diagnostic parameters available in Medtronic’s
CRT-D devices. The thresholds and corresponding device observa-
tions were unmodified from what is available in the device. In
addition, the look back period for assessing diagnostic parameters
was the entire duration between the follow-up sessions to mirror
the real world clinical practice. We found that this relatively simple
and easy to implement scheme can stratify patients quite effec-
tively. The risk of an HFH event increases with increasing number of
device observations, and a patient with three or more observations
is at 18� (OptiVol excluded) to 42� (OptiVol included) risk
compared to a patient with zero observation (Tables 2 and 4). The
sensitivity and specificity exhibit a typical trade-off. As the speci-
ficity improves with increasing numbers of observations the
sensitivity worsens. For example, sensitivity for �3 device obser-
vations is lower than that for �2 observations while the specificity
for �3 device observations is better. Inclusion of OptiVol improves
overall performance. With OptiVol excluded for �3 device obser-
vations, sensitivity and specificity are 9.5% and 98.8%, respectively.
With OptiVol included sensitivity improves significantly to 21.6%
while the specificity drops slightly to 97.4%.

Severalnon-devicedatabasedHFrisk stratificationstrategieshave
recently been developed.22e25 In contrast to our dynamic risk
assessment scheme, these models are static and use a one-time
snapshot of laboratory measurements. Furthermore, since the de-
vice data are continuously collected, our scheme is amenable to be
applied in an ambulatory setting. For example, the device data can be
transmitted automatically to a clinic upon an alert (referred to as
CareAlert in Medtronic’s CareLink system) or on a predetermined
schedule.

It is instructive to compare the performance of device di-
agnostics with patient weight in predicting HFH. Patient weight
increases steadily forw2 weeks before HFH26 and is routinely used
in clinical practice. However, in a head-to-head comparison, patient
weight performed significantly worse than OptiVol. While OptiVol
had a sensitivity of 76% and an unexplained detection rate of 1.9 per
patient-year, patient weight had a sensitivity of mere 20% and an
unexplained detection rate of 4.3 per patient-year.13 Given that our
scheme combines several device parameters, its performance is
better than OptiVol alone and hence superior to that of weights [e.g.
for �1 observation, sensitivity with OptiVol included is 90.5%
(Table 6) and an unexplained detection rate at a specificity of 49.1%
is 1.5 per patient-year].

Various device diagnostic parameters reflect different underly-
ing physiological processes, and a deviation beyond a certain range
Table 6
Sensitivity versus specificity in a 30-day evaluation framework for �1, �2 and �3 devic

Number of device observations Sensitivity

Unadjusted GEE adjust

�1 observation(s) 38/42 (90.5%) 90.5% (77.5
�2 observations 24/42 (57.1%) 58.0% (42.0
�3 observations 9/42 (21.4%) 21.6% (11.2
may signal a compromise in physiological homeostasis and hence
be a marker of patient risk. For example, impedance is an indicator
of fluid status.9,27 A drop in impedance and accompanying rise in
OptiVol is indicative of possible fluid overload, while an excessive
rise in impedance and drop in OptiVol might signal dehydration.
Similarly, elevated NHR is a potential marker of imbalance in
autonomic tone, and lower activity can signal compromised func-
tional capacity. While each diagnostic parameter is a risk marker,
univariate analysis shows that performance of a single parameter is
modest (Table 3). For example, 30-day HFH rate following an
OptiVol observation is 3.5%, and HFHs occur even in the absence of
an OptiVol observation at a rate of 0.9% (Table 3). Corresponding
numbers for VRAF, the one with highest HFH rate, are 11.2% and
1.5%. Prognostic value of device diagnostics is significantly
improved when observations from all the parameters are
combined.

The utility of combining device diagnostic variables for HF risk
stratification has been shown earlier. Whellan et al10 combined
device diagnostics for the previous 30 days using a heuristic
approach to assess next 30-day HF risk. When two or more pa-
rameters exceeded preset thresholds or OptiVol alone exceeded a
very high threshold, the risk was found to be 5.5� higher compared
to diagnostic criterion not met. Our scheme differs in a few
important aspects. First, while they segmented patients into two
risk categories (i.e. high and low), we use a graded approach with 4
risk categories (i.e. 0, 1, 2, �3 observations) in which risk gradually
increases with increasing number of device observations. Second,
while we also use a clinically relevant 30-day risk prediction win-
dow, our look back period spans the entire duration between cur-
rent and previous follow-up. Finally, while they modified threshold
values for a few parameters and used parameters without an
existing observation (e.g. HRV), we only selected parameters with
available device observations. These last two differences make our
scheme readily implementable (e.g. on CareLink) since any alter-
ations in threshold values and ways to combine them makes the
implementation cumbersome for health care providers.

Recently a more sophisticated methodology using a probabi-
listic Bayesian Belief Network approach has been presented to
categorize patients into low, medium, and high risk statuses.12

While this approach is elegant and more rigorous, it cannot be
readily applied by health care providers using existing device
diagnostics.

To improve outcomes using integrated device data has chal-
lenges similar to those faced by other management strategies
involving a single device parameter (e.g. OptiVol9,13,18,28) or other
diagnostic modalities (e.g. intra-cardiac pressure29,30). Foremost
among these the diagnostic information provided needs to be
e observations for the parameter set including OptiVol.

Specificity

ed (95% CI) Unadjusted GEE adjusted (95% CI)

e96.3) 1099/2234 (49.2%) 49.1% (46.5e51.7)
e72.4) 1913/2234 (85.6%) 85.5% (83.5e87.4)
e37.6) 2177/2234 (97.4%) 97.4% (96.5e98.1)
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actionable andmust be acted upon. Provided device diagnostic data
are combined with an appropriate intervention algorithm that is
adhered to, it has the potential to improve patient outcomes as
shown for intrathoracic pressure.29 However, given telemonitoring
trials have had mixed results,31e34 no assertions can be made
regarding effectiveness of any novel risk assessment scheme in
absence of a prospective study.

Similar to other risk assessment models,24,35,36 our scheme does
not have perfect performance. Thus, as is the case for other ap-
proaches to manage patients (e.g. weight, blood pressure, tem-
perature, ECG, etc.), it is imperative that a patient’s overall health
status be taken into account to devise a management strategy.

While an odds ratio for our risk stratification scheme is superior
to several clinically used risk stratification tools (Tables 2 and 4), it
is apparent that the absolute 30-day HF hospitalization rate is
relatively low (e.g.w14% for�3 observations, Tables 2 and 4). These
low numbers are reflective of HFH being a relatively rare event with
a rate of w1e2% over a 30-day period. Thus, greater number of
device observations alone should not trigger an action as it can
potentially lead to an increase in health care utilization and hos-
pitalization rate.37 Rather they should be used in conjunction with
other clinical data to identify a subset of high risk patients and
judiciously allocate resources. The actions may include diet and
medication counseling for non-adherence, more frequent tele-
monitoring, or medication change.

Since our proposed scheme uses unmodified device observa-
tions, they are already available to clinicians for use. However,
whether device diagnostics are integrated into a clinic’s workflow
is influenced by several factors such as expertise of staff, proven or
perceived value of device diagnostics, resources needed, and ease of
use. Varying approaches can be used to integrate device diagnostics
into a clinic’s workflow, and are influenced by factors such as vol-
ume of patients, skill level of staff, and availability of resources.38,39

In all cases, ease of use could potentially lower the hurdle for
adoption. Presently, HF related observations can only be viewed at a
patient level (e.g. clinician must open and view HF management
report for each patient in CareLink to assess various observations)
or they are mingled with other device and electrophysiological
observations (e.g. lead failure, low battery voltage). This makes
using HF related observations a bit cumbersome. A clinic level view
dedicated to HF related observations and the ability to sort patients
by the number of these observations could facilitate the triaging
process. Streamlining the CareLink system and then demonstrating
that clinic efficiencies, time to clinical action, and perhaps patient
outcomes are improved by using a device observations based tri-
aging scheme remain topics of future research. Although studies
demonstrating improvement in time to clinical action with use of
device diagnostics are available,40,41 none are available demon-
strating improvement in outcomes.

Limitations

This analysis is based on data from only two studies. All patients
included in our analysis had a CRT-D device. The device diagnostic
parameters and their significance for an ICD and CRT-D are slightly
different. For example, % CRT pacing is irrelevant for an ICD. Instead,
a lower RV pacing is desirable. Furthermore, since characteristics of
ICD and CRT-D patients differ (class II and III for the former versus
class III and IV for the latter), our findings may not translate to an
ICD patient population. Secondly, our results apply to only Med-
tronic devices. Since type of diagnostic parameters, collection
method (e.g. time and frequency of sampling), and thresholds for
observations can vary among manufacturers, our results are not
generalizable to non-Medtronic devices. Finally, to reflect the cur-
rent practice of using device data in a standalone fashion, we only
used device data and did not include demographic, medication or
clinical data (e.g. weight, blood pressure and brain natriuretic
peptide) that clinicians have access to. Additionally, a clinician may
have intimate knowledge of a patient’s psychosocial status. We did
not address incremental value of device parameters to the clinical
and psychosocial variables.

Conclusions

We developed a novel and simplified scheme for stratifying
patients at risk of HF hospitalization using existing diagnostic ob-
servations available in a CRT-D device. The scheme can be readily
implemented on a remote management system such as CareLink
(Medtronic Inc., MN) and could potentially be another tool in a
clinician’s repertoire to help quickly identify patients at risk of HF
events. However, whether an appropriately devised intervention
strategy when coupled with our stratification scheme improves
patient outcomes will require prospective evaluation.
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