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ABSlXACT 

It is well known that for a nonnegative matrix A, the smallest row sum R’(A) and 
the largest row sum R”(A) provide lower and upper bounds, respectively, for the 
Perron root of A. These bounds are generalized for a partitioned nonnegative matrix 
A. Tbe new bounds are better than R’(A) and R”(A), and they can be further 
improved by a refinement of the partition. Known monotonicity and convergence 
properties of A’(A) and R”(A) are generalized for the new bounds. 

1. INTRODUCTION AND NOTATIONS 

It is very well known (see, for example, [9, p. 461) that a nonnegative 
square matrix A has a nonnegative eigenvalue p, called the Perron root of A, 
which is greater than or equal to the absolute value of every other eigenvalue 
of A. To this eigenvalue p there corresponds a right (left) eigenvector with 
nonnegative components, called a right (I!&) Perron vector of A. Moreover, if 
A is irreducible, then the Perron root of A is positive, it has algebraic and 
geometric multiplicities equal to one, and every right (left) Perron vector of A 
(unique up to a positive multiplicative factor) has only positive components. 
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We shah denote the Perron root of a nonnegative matrix X by r(X), and 
the set of alI right [left] Perron vectors of X by RPV(X) [LPV(X)]. 

If X is a nonnegative n X n matrix, we shah denote the sum of the 
elements of the ith row of X (called the ith row sum of X) by R,(X) 
(i = l,..., n), and we set 

R’(X) = minISi( R”(X) = maxR,(X). 
i i 

If A is a nonnegative fl X n matrix, it is known [q, p. 311 that 

R’(A) < r(A) d R”(A), (1) 

and in the case of an irreducible A these inequalities are strict, unless all the 
R,(A)‘s are equal. It is also known [lo] that 

d [R”(A~)]“~ Q [Ran]‘/” 4 R”(A), 

lirn [R"(AQ)]~/~= T(A), 
q++m 

and, if A is irreducible, then 

,+9, [R’(Aq)]“’ =rtA)* 

(2) 

(3) 

(4 

In the present paper we shall generalize the results expressed by the 
relations (l)-(4). For example, the inequality (1) can be generalized in the 
following manner (for a more general version, see Theorem 2). 

Let (to, t, , . . . , t,} be a set of integers, satisfying 

denote 

r,={ti_i+1,ti_,+2 ,..., ti} (i=l,...,m), 

and consider the partition 

I-I={I,,Is,...,I,) 
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of the set (1,2,. . . , n} into m nonempty subsets. Let 

* = (*ij)i, j=I,,,,,m 

be the partitioning of the nonnegative n X n matrix A = (a i j), induced by II 
in the obvious manner. In each of the sets Ii (i = 1,. . . ,m), we select a 
member si E Ii, and we denote u = (si, . . . ,sm), To this m-tuple u we associ- 
ate an m X 17~ matrix A, whose (i, j) entry is the sum of those entries from the 
sith row of A which belong to the block Aif Clearly, for a fixed partition II 
(i.e., for a fixed partitioning of the matrix A), the number of these matrices A,, 
is equal to the product of the cardinalities of ri (i = 1,. . . ,m), i.e., to 
lIy=i(ti - ti_i). We denote r,(A)= r(A,). Then, 

where the minimum and the maximum are taken over all possible u’s (for a 
fixed partitioning of A). 

If lI={{l,..., n}} (inducing the coarsest partitioning of A, i.e., “no 
partitioning”), then the inequalities (5) yield the classical inequalities (1). If 
II = {{l}, . . . ) {n}} (inducing the finest partitioning of A), then the inequalities 
(5) collapse into trivial equalities. If II = {{1},{2,3,. . . , n}}, then we obtain 
from (5) a result of Hall and Porsching [6]. If II = {{l},(2), . . . ,{ k},( k + 1, k + 
2 ,..., n}} for some kE(1,2 ,..., n - l), then we obtain a result of one of the 
authors, announced in [4]. 

We introduce some more notation: 

XT is the transpose of the matrix (vector) X; 
X < Y, X < Y are meant componentwise, X and Y being matrices (vectors) 

of the same dimension; 
Rq is the vector space of all column q-tuples of real numbers; 
RPxq is the vector space of all p X q matrices of real numbers; 
(x)~ is the ith component of the vector x E Rq. 

We shall make use of the following propositions. 

PROPOSITION 1 [3]. IfB E RnX”, B 2 0, x E R”, x > 0, then 
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PROPOSITION 2 [3]. L&t B E Rnxn, B 2 0, x E R”, x > 0, and let p be u 
nonnegative number. 

(i) $Bx = px, then p = r(B); 
(ii) if& < px, then p > r(B); 
(iii) if& > px, then p < r(B). 

(Proposition 2 is merely a reformulation of Proposition 1.) 

hOPOSITION% LetB~R”X”,B>,O,x~R”,O~x~O,undletpbea 
nonnegative number. If Bx > px, then p Q r(B). 

Proof. If p = 0, then the statement is trivially true. Assume p > 0. The 
inequality Bx 2 px implies B% 2 p% for alI positive integers Q. Consequently, 
(p-‘B)‘k>x for 4=1,2,..., and thus (p-‘B)‘J+O as q++co. This, in 
turn, implies that r(p-‘B)> 1, since otherwise we would have (p-‘B)Q + 0 
[9, p. 131. Consequently, r(B) 2 p. ??

2. PRELIMINARIES 

Let n be a positive integer, n 2 2, and let II = (I,, . . . , I’,} be a partition 
of the set {l,..., n}, where each Pi is nonempty. Clearly, m is a positive 
integer, satisfying 1 g m d n. The sets I?,, . . . , r, will be called the classes of 

II 
II, and we shall write i - j if i and j belong to the same class. 

To the partition II we associate an n X m matrix 

defined by 

i 

i if iq, 

piF 0 if iq. 

(The l’s in the jth column of P, indicate the elements that belong to Ir) 
By S(II) we shall denote the Cartesian product of the sets I,, . . . , r,, and 

the members of S(II) wiIl be called selections. 
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Let a=(sl,..., s,) E S(n). (Occasionally, (I will denote also the set 
{s 1,...,~m}.) To u E S(l-I) we associate the mapping 

+atk) = sj VkdYj (j= l,...,m). 

Clearly, c&,(k) = s&(Z) if and only if k ” 1. 
To the selection a=(~~,..., s,)E S(II) we associate also the m X n 

matrix 

defined by 

lij = 
i 

1 if si=j, 
0 if Si’j. 

(The ith row of L, is the s&h ndimensional standard unit vector.) We also 
introduce the n X n matrix 

I, = Pn&. (7) 

(The ith row of 1, is the &,(i)th ndimensional standard unit vector.) 
It is easy to see that 

L,P, = I,, (8) 

where I, is the m x m identity matrix. From (7) and (8) it follows at once 
that 

Let x=(51,..., S,)’ E R” and let u E S(n). We define 

We have 

x,=1,x. 
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A vector x = (&, . . . ,(,)T E R n 
n 

is said to be II-cunstunt if & = tj whenever 

i - j. The set of all II-constant vectors with positive components will be 

denoted by S,. 

LEMMA 1. Let x E R”. The following statements are equivalent: 

(i) x i.s II-constant; 
(ii) x = x, for some u E S(rI); 
(iii) x = r, for aZZ 7 E S(n). 

The proof is trivial, 
Let x E R”, x > 0. We denote 

(x)n = {x,: (I Es(n)}. 

If we consider the set (x)n partially ordered componentwise, then it is clear 
that (x)= has a first and a last element, A selection (Y E S(II) is said to be 
minimizing for x if x, is the first element of (x) n; similarly, a selection 
/I E S(II) is said to be maximizing for x if xB is the last element of (x)=. 
Obviously, a minimizing (maximizing) selection for x need not be unique. 

We illustrate these very elementary but rather cumbersome concepts by 
an example. Let n = 5 and let II = {{1,2},{3,4,5)}. Then, 

S(n)= {(1,3>,(1,4>,(1,5),(2,3),(2,4),(2,5)). 

If x = (11,12,14,13, 13)T, then (x)n = {y, Z, U, o}, where y = xosj = 
(11, 11,14,14,14)T, z = x(1,4) = x(1,5) = (11, 11,13,13,13)T, u = x(2,3) = 
(12,12, 14, 14, 14)T, 2, = x(2,4) = x(@‘) = (12,12,13,13, 13)T. The selections (1,4) 
and (1,5) are minimizing for X, while (2,3) is maximizing for x. 

LEMMA 2. Let x E R”, x z 0. Then 

(i) the selection (Y E S(ll) is minimizing for x if and only if X, 6 x; 
(ii) the selection /3 E S(II) is muximizing for x if and only if x d x6. 

The proof is trivial. 
Let A = (aij) E Rnx”, A 2 0. We denote the columns of A by a,,...,a, 

and its rows by b:, . . . ,bz. Let u = (sl,. . .,s,,,) E S(n). We define an m X m 
matrix 
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ForeachfixedpartitionITof{l,...,n}andforeachfixedmatrixAERnX”, 
A > 0, we have introduced card S(II) matrices A,. If II is the coarsest 
partition of (1,. . . ,n) (i.e., “no partition”), then m = 1, card S(II) = n, and 
the n matrices A, are the n 1 X 1 matrices (R,(A)) (i = 1,. . . ,n). If II is the 
finest partition of (1,. . . , n}, then m = n, card S(II) = 1, and there is only one 
matrix A,, namely A, = A. 

We consider an arbitrary but fixed partition II of the set (1,. . . , n). For 
each selection u E S(II) we define 

%(A) = 4%). 

We also define 

InadditiontoA,,weassociatetoA~R”Xn,A~O,andtou=(s,,...,s,) 
E S(n) two n X n matrices AL and A’:, defined by 

AL = the n X n matrix whose ith row is b&ij (i = 1,. . . , n), 

k~=then~nmatrixwhosejthcolumnis c aiifj=sk(k=l,...,m)and 
.- a_ column of zeros if j 6C u. i E r, 

One can easy Gee that we have 

A, = L,AP,, 

A; = P,L,A = ],A, 

Ab’ = AP,L, = AJo. 

(11) 

(12) 

(13) 

Also, if x E R”, then 

A;x = Ax,. (14) 
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It is known [8, p. 2001 that if X E Rmx", Y E Rnx'" (n > m), then the 
manic characteristic polynomials +x(X) of XY and #,x(A) of YX satisfy the 
relation &x(h) = P”-“%/+(X). (In [8] the proof is given only for the case 
m = n; the case n > m can be reduced to the case of square matrices by 
bordering X (Y) with n - m rows (columns) of zeros.) 

Consequently, taking into account the equalities (ll)-(13), it follows that 
the nonzero eigenvalues of A,,,, AL, AZ coincide. In particular, 

~~(A)=r(Ab)=r(Ab’) b E wu * 05) 

In the sequel the relations (9)-(15) wilI be used without any further 
reference to them. 

Since both Pn and L,, have rank m, it follows from (ll)-(13) that the 
matrices A,,, AU, A’: have ranks at most min(rank A, m}. 

Since, by definition, the rows of AL coincide with some of the rows of the 
given matrix A, the matrix AL can be considered as an approximation for A, 
at least in the frequent case where the elements of A vary slowly in 
dependence on the row index. (This is true, for instance, when A has been 
obtained by the discretization of an integral equation with a continuous 
kernel.) On the other hand, as we have seen, the m X m matrix A, has the 
same nonzero eigenvalues as AL. Therefore, one can even expect that the m 
largest eigenvalues of A wilI be approximated by the eigenvalues of A,,. 

To illustrate these heuristic considerations, we consider the following 
example. Let k(s, t) = min{s, t}, 0 Q s, t < 1. Then, by discretization, the 
integral equation 

/ 
i(s, t)y(t) dt = Xy(s) 

0 .- 

leads, for example, to the matrix eigenvalue 
(y(f), ~(81, Y(Q), ~(1))~ ami 

5 

problem Ri*= hx, where x = 

/l 1 1 
X=1 1 2 2 

16 1 2 3 
1 1 2 3 

1 
2 
3 * 
4 1 

Taking, for example, the partition II = {{1,2},{3,4}), we obtain for the matrices 
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2 
1 7 ’ 

4 
i 7 ’ 

having eigenvalues {0.4476,0.0523}, {0.5,0.0625}, {0.5172,0.0453}, 
{0.5625,0.0625), respectively. The eigenvalues of K are 0.5182,0.0625,0.0266, 
and 0.0177. 

3. THE MAIN RESULTS 

THEOREM 1. Let AE RnXn, A>O, let ~ERPV(A), and let II be a 
partition of{l,. . . ,n}. 

(i) Zf (Y E S(II) is minimizing for x and (x)~ > 0 for all i +S a, then 
r,(A) < r(A); 

(ii) if‘p E s(H) is maximizingfor x, then r(A)< $(A). 

ProojT (i): We have Ahx = I,Ax = r(A).Z,x = r( A)x, d r(A)x. Let y E 
LPV( Ah). Then, ra( A)yTx = yTAhx d r( A)yTx. If yTx > 0, then we obtain at 
once that r,(A) < r(A). Assume yTx = 0. Then ( Y)~ = 0 whenever ( r)j > 0. In 
particular, (Y)~ = 0 for aII je (Y. But the jth row b&n of Ab, may differ from 
the $h row bJ of A only when j @ cy. Consequently, yTA = yTAb, = ra( A)yT. 
Hence, ra( A) < r(A). 

(ii): We have A$r = &Ax = r(A).Z,,x = r(A)xB 3 r(A)x and then, by 
Proposition 3, r(A) d r( A;) = %(A). ??

REMARK 1. In Theorem l(i) we cannot omit the assumption that (z)~ > 0 
for all i 4 (Y. Indeed, let 

and consider the partition II = ({l}, {2,3}}. The selection cx = (1,2) is minimiz- 
ing for x, but r,(A) = 2 > 1 = r(A). 
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THEOREM 2. Zf A is a nonnegative n X n matrix and II is a partition of 
(1, * * *, n}, then 

r;T(A) Q r(A) 6 r;;(A). (16) 

Proo$ The right-hand side inequality of (16) follows at once from The- 
orem l(ii). To prove the left-hand inequality, first we assume that A > 0. Let 
x E RPV( A). Then x > 0 and, by Theorem l(i), we have r,(A) < r(A), where 
(Y is a minimizing selection for x. Then, rh(A) < ro( A) 6 r(A). Since the 
functions r and r;I depend continuously on the elements of A, the inequality 
rh( A) G r(A) holds for any A B 0. ??

COROLLARY 1 [2,5]. Let A be a nonnegative n X n matrix, and let II be 
a partition of (1,. . . , n} into m classes. Define 

A’= (“ii) E Rmxm, A” = (a;)) E Rmxn, 

where 

ail= mm a ., 
0 E S(rI) OVrJ 

ai;= max a,,ij 
0 ES(n) 

(The matrices A’ and A” are the greatest Iower bound and the least upper 
bound, respectively, of the matrices A, [a E @II)] in the natural, i.e., 
componentwise, partial ordering of Rmx”.) Then, 

r(A’)<r(A)<r(A”). 

REMAN 2. It is easy to see that if the underlying partition II is the 
coarsest partition of (1,. . . ,n} (i.e., “no partitioning”), then Theorem 2 yields 
the well-known inequalities (1). For a fixed j E (1,. . . , n}, taking the partition 
II = {{j%{l,..., n}\~>, we reobtain a result of Hall and Porsching [6]. 

If we assume that the matrix A is irreducible, then Theorem 2 can be 
strengthened. 

THEOREM 3. Let A be a nonnegative irreducible n x n matrix, let 
x E RPV(A), and let II be a partition of {l,...,n}. 

(i) Zf x is lLxmstant, then 

r(A) = rh(A) = r;;(A); 
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(ii) if x is not II-ccmstant, then 

m(A) < r(A) < r;;(A). 

Proof. (i): Let u E S(n). Th en Abx =&Ax = r(A)J,x = r(A)x, = 
r( A)x. By Proposition 2, r(A) = r( AO) = ra( A). 

(ii): Let (Y E S(m) b e a minimizing selection for x, and denote B = + (A’: + 
A). Then (B - A)x = i(Az - A)x = iA(x, - x). Let y E LPV(B). Since A is 
irreducible and B > iA, it follows that B is irreducible and, consequently, 
y > 0. We have [r(B) - r(A)] yTx = y’( B - A)x = b yTA(x, - x). But yTx > 0, 
yTA > 0, and since (Y is minimizing for x, we have x, d x (Lemma 2). Since x 
is not II-constant, we have r, * x (Lemma 1). Then yTA(x, - x) < 0. Conse- 
quently, 

r(B) < r(A). 07) 

Theorem 2 applied to B gives 

r@) < r(B). (18) 

For an arbitrary UES(II) we have B~=BJ,=b(A’,:+A)J,=b(AJ,J,+ 
AJ,,)=~(AJ,+A&)=AJ,=A’;, which implies r;(B) = &(A). This last 
equality, together with (17) and (18), yields r;I( A) < r(A). The proof of 
r(A) < r;(A) is entirely similar. 

LEMMA 3. Let A E R”x”, A > 0, let II be a partition of (1,. . . ,n}, let 
a E S(H) be such that r,(A) = t&(A), and let u E RPV(At). Then 

(i) 0 < u, 6 u (i.e., (Y is minimizing for u); 
(ii) min,(u),/(u,), = 1; 
(iii) A’;u >, r,(A)u Vu E S(II); 
(iv) Au >, rol( A)u. 

Proof. (i): Let II = {I,, . . . , I?,,,}, and let (Y = (si,. . . ,s,,,) be a selection 
such that r,(A) = r;I(A). If i E (Y, then (uJi = (u)~. Assume that i 4 a. 
Without loss of generality we may assume that i E I’i. Consider the selection 
u = (i, s2,. . . , s,,,), and let y E LPV(Az). From A’Lu = r,(A)u and yTAz = 
r,(A)yT it follows that 

[r,(A)-r,(A)]yTu=yT(A;-A;)u. 09) 
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On the other hand, 

Now from (19), taking into account that r,(A) < r,(A), we obtain that 
[(U)i - (“).911cj~~I Y Tuj~O.SincetheinequalitiesO~y~OandA>Oimply 
that C,,rlyruf>O, we have (u),,<(u)$, or (u,)~G(u)~. Consequently, the 
last inequality holds for alI i E (1,. . . , n}, i.e., u, d u. In order to prove that 
U, > 0, we premuhiply both sides of Axu = r,(A)u by 1,. We obtain A&, = 
r,(A)u,. But A > 0 implies A’, > 0 and, consequently, u, > 0. 

(ii): This statement follows from (i) and from the fact that (u,Ji = (u)~ 
whenever i E (r. 

(iii): We have A’& > A’& = AJ,.J,u = A.&u = Au, = A$4 = r,(A)u for 
all fJ E S(II). 

(iv): We have Au > Au, = Azu = r,( A)u. ??

LEMMA 4. Let A E R”‘“, A>O, let II be a purtiticna of {l,..., n}, bt 
/3 E S(II) be such that $(A) = r;(A), and let u E RPV(A$). Then 

(i) 0 < 0 d 0s (i.e., j3 is maximir;ing for u); 
(ii) maxi(u) = 1; 
(iii) Ab’u < rg(A)u Vu E S(II); 
(iv) Au d Q( A)u. 

Proof. Except for the left-hand side inequality of statement (i), the proof 
of Lemma 4 is entirely similar to that of Lemma 3. To prove that u > 0 we 
note that the relation Ai;u = q(A)u implies Aup = %(A)u. Since A > 0 and 
O<ug*O,weobtainatoncethatu>O. W 

RE- 3. From Lemmas 3(iv) and 4(iv) we can obtain a new proof of 
Theorem 2. One need only apply Proposition 2 and use the standard 
continuity argument for A > 0. 

We recall that S, denotes the set of all II-constant vectors with positive 
components. 
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THEOREM 4. Let A be a positive n X n mu&ix, and let II be a partition 
of{l,...,n}. Then 

(Ax), (i) r;(A)= ,zy min-* 
i (X)i ’ 

(ii) r;;(A)= rni: maxe. 
xE.5, i t 

Proof Let (YE S(n) be such that r,(A)= rh(A), and let x E S,. Then, 
applying Proposition 1 to AZ, we have 

(A?). (Ax >. r,(A)=r(Az)>,m/n(x)=minA=min (Ax)i 

I i (x)i i (x)i * 

On the other hand, if u E RPV( AZ), then by Lemma 3(i) we have u, > 0 and 

(Au 1, (A?). (“)i min~=min~=r,(A)~~=r,(A), 
i ("a)i i ("a)i 

where we have taken into account Lemma 3(ii). Since u, E Sn, statement (i) 
is proved. The proof of statement (ii) is entirely similar. ??

In the next theorem we show that if the initial partition of (1,. . . , n} is 
replaced by one of its refinements, then the bounds given by Theorem 2 are, 
in general, improved. 

THEOREM 5. Let A be a nonnegative n X n matrix, let l-II, be a partition 
of&..*, n}, and let II, be a refi rlem.ent OfrIglwn, 

(9 &z(A)~rh$A); 
(ii) r&(A>=s$(A). 

Proof. If A > 0, then both statements follow at once from Theorem 4, 
since obviously Sn, G Sn,. If A > 4: then we apply the standard continuity 
argument. 

COROUARY 2. If A is a nonnegative n X n mutdx and II is a partition of 
(1, * * * 9 n}, then 

(i) r;I( A) 2 R’(A); 
(ii) rfi( A) G R”(A). 
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THEOREM 6. If A is a nonnegative n X n matrix and II is a partition of 
(1, * * * 9 n}, then for all positive integers q we have 

(9 &(A’9 2 [rh(AAlq, 
(ii) +(A@)< [r#A)]q. 

Proof. For A > 0 and z E R”, z > 0, we denote, for convenience, 

&(A)=+$ CAz)i 
t 

g,(A) = m,y m. 
i 

If BEPX”, B z 0, a simple computation shows that f,( AB) > f,(A)&(B), 
g,(AB) d g,(A)g,(B), w h ence f,(Aq)> [f,(A)lq, g,(Aq)a k,(A)lq. Now, 
from Theorem 4 we obtain at once the desired result, first for A > 0 and then, 
by continuity, for any A z 0. W 

THEOREM 7. If A is a nonnegative n X n matrix and II is a partition of 
-CL..., n}, then 

r(A)= ,l$m, [rG(Aq)]i”- 

lf, in addition, A is irreducible, then 

r(A)= Jb, [r;I(Aq)]l”. 

Proof. Applying Corollary 2 and Theorem 2 to Aq, we obtain 

[R’(A~)]“~ G [r;I(Aq)]"' d r(A) 

< [rs(AQ)]l’q < [R”(AQ)]“q. (20) 

The first assertion of the theorem follows from the last two inequalities of (20) 
if we let q - + m and if we take into account that R” is an operator norm [l, 
pp. 67, 781. The second assertion of the theorem follows in the same manner 
from the first two inequalities of (20), but now we have to take into account 
that under the assumption of the irreducibility of A we have 
lim Q,+,[R’(Aq)]‘/q=r(A). W 
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COROLLARY 3. Let A be a nonnegative irreducibk n X n matrix, and let 
II be a partition of{1 ,..., n}. If a E S(n), then 

lirn [rJ~q)]‘/~ = T(A). 
q++cc 

Proof This statement is an immediate consequence of Theorem 7 and of 
the definitions of r;T and rz. ??

COROLLARY 4. Zf A is a nonnegative n X n matrix and II is a partition of 
(1, * * * 3 n}, then the sequence [ I$( A2”)12-’ (q = 1,2,. . . ) is nor&creasing and 
converging to r(A). Zf, in addition, A is irreducible, then the sequence 
[T;~(A~‘)]~-” (q = 1,2,...) is nondecreasing and converging to r(A). 

Proof. These statements are immediate consequences of Theorems 6 
and 7. H 

4. EXAMPLES 

We conclude the paper with two numerical examples. 

EUMPLE 1. Let 

19 0 1 1 1’ 
0 0 1 1 1 

A= 0 9111. 
1 10 1 2 1 

\O 1 1 1 l/ 

The inequalities (1) yield 3 < r(A) < 15. 
If we take the partition II, = {{1X(2,3,4,5}), then we have to consider the 

matrices 

41,2, 9 = ( 9 0 3 1 ’ 3 A = (1,3) ( 0 3 1 12’ 

A 9 9 (1,4) 
= ( 1 3 1 14’ A&s)= ( 0 3 1 4 ’ 
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Taking into account that for nonnegative n X n matrices X and Y we have 
r(X) d r(Y) whenever X Q Y [9, p. 461, we do not have to compute the 
Perron roots of all these matrices. It can be seen at once that rhl(A)= 
r( A& = 9 and r;;,(A) = r( Ao4)) = 14.541. Thus, 9 < r(A) < 14.542. 

If we take the partition II, = {{1},{2},{3,4,5}}, which is a refinement of 
II,, then we have to consider the matrices 

A 

Once again, comparing the entries of these matrices, it is clear that m,(A) = 
r( Ao2,s)) = 9 and r&(A) = T(A~~,~,~)) = 10. Thus, 9 < r(A) < 10. 

If we consider the partition IIs = {{l}, {2,5}, {3,4)}, which is a refinement 
of II, and where we have a small variation between the rows belonging to the 
same class, then we have to consider the matrices 

AW,3) =( i ,I ;). A(l.2,4)=(; ,i i). 

(Note that the notation Ac1,2,3j, for example, does not reflect the dependence 
of this matrix on the considered partition; this explains the occurrence in this 
example of two distinct matrices denoted by Ac1,2,3).) 

Comparing the entries of these four matrices, it is clear that r&(A) = 
r(Ao2,3j) = 9 and +$A) = r(Aos,4,) z 9.609. Thus, 9 < r(A) < 9.610. We 
actually have r(A) z 9.266. 

EXAMPLES. Let 
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We consider the partition ll = {{ 1,2}, {3)}. Then 

A 

whose Perron roots are 7 and 8, respectively. Consequently 7 < r(A) < 8. 
These bounds are better than those obtained by several other methods [7, p. 
1581. If we consider the matrix A2 rather than A, then, with the same 
partition as above, we obtain 53 < r( A2) < 60, whence 7.280 < r(A) < 7.746. 
We actuahy have r(A) = (7 + &5)/Z z 7.531. 
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