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1. Introduction

The problem of defining fuzzy norm on a linear space was first initiated by Katsaras
[1] and afterwards C. Felbin [2], Cheng & Mordeson [3], came up with their defini-
tions of fuzzy norms approaching from different perspectives. Some authors worked
on related topics in fuzzy setting [4-6]. In [7], we have also taken a definition of
fuzzy norm slightly different from that of Cheng & Mordeson with a view to estab-
lish a complete decomposition of a fuzzy norm into crisp norms. Interestingly, this
decomposition theorem played a crucial role in developing fuzzy functional analysis
[8-11]. However, for doing so, we had to restrict the underlying '#'-norm in the trian-
gle inequality of fuzzy norm to be the '/ . . This has become a bit of uncomfortable
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situation in the sense that uncertainty processing through fuzzy theory demands as
much generality as possible in the underlying -norm. Because of this we have tried
to address this problem in two directions. In [12], this has been taken care of by
using the concept of ‘generating spaces of quasi-norm family’ which plays the role
of fuzzy norms in some sense of its decomposition under the general f-norm setting.
On the other hand in [13, 14], we have tried to fuzzify the results of finite dimen-
sional normed linear spaces with general #-norm but without using the decomposition
technique.

With the latter approach, in this paper, we have been able to proceed further. The
concept of fuzzy bounded linear operators, fuzzy continuous operators, fuzzy oper-
ator norm for fuzzy bounded linear operators and spaces of fuzzy bounded linear
operators are introduced and their properties are studied.

The organization of the paper is as in the following:

Section 2 comprises some preliminary results. Definitions of fuzzy continuous
operators, fuzzy bounded linear operators are introduced and relation between them
are studied in Section 3. In Section 4, we introduce the idea of operator’s fuzzy
norm. Lastly in Section 5, completeness of BF(X, Y) (set of all fuzzy bounded linear
operators) is proved.

2. Preliminaries

Definition 2.1 [15] A binary operation * : [0, 1] X [0, 1] — [0, 1] is a t-norm if it
satisfies the following conditions:

(I) = is associative and commutative;
M) ax1=a Yael0, 1];
(III) a*b < c*d whenever a < c and b < d for eacha, b, c, d € [0, 1].

If * is continuous, then it is called continuous t-norm. Following are exam-
ples of some t-norms that are frequently used as fuzzy intersections defined for all
a, be [0, 1].

(I) Standard intersection: a * b = min(a, b).
(II) Algebraic product: a b = ab.
(III) Bounded difference: a « b = max(0, a + b — 1).
(IV) Drastic intersection:
a, for b=1,

axb={b, for a=1,
0, otherwise.

The relations among these f-norms are a * b (Drastic)< max(0, a+b—1) < ab <
min(a, b).
Definition 2.2 [13] Let U be a linear space over the field ¥ (C or R). A fuzzy subset
N of U X R (R- the set of all real numbers) is called a fuzzy norm on U if
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(NI) Ve e Rwitht <0, N(x, t) = 0;

(NI) (Yt e R,t>0,N(x, ) = 1)iff x = 0;
(NIII) Y1 e R, t>0, Ncx, 1) = N(x, &) if ¢ #0;

(NIV) ¥s,teR; x,ue U,
N(x+u, s+1) > N(x, s) = N(u, 1);

(NV) N(x, -) is a non-decreasing function of R and }im N(x, t) = 1. The triplet

(U, N, =) will be referred to as a fuzzy normed linear space.

Remark 2.1 From (NII) and (NIV), it follows that N(x, -) is a non-decreasing func-
tion of R. So in the rest of the paper we take the modified form of (NV) by deleting
the condition that N(x, -) is non-decreasing.

Assume that [7],
(NVI) Vt > 0, N(x, t) > 0 implies x = 0

Lemma 2.1 [14] Let (U, N, *) be a fuzzy normed linear space satisfying (NVI) and
the underlying t-norm % be continuous at (1, 1). If {x;, x2,- -+ , x,} is a linearly inde-
pendent set of vectors in X, then for each a € (0, 1), Jc, > 0 such that for any set of

scalars {B1,B2, . Bu}s
AlE>0 | N+ 0B+ + 5B 1) 2 1=a) 2 co ) Bl
i=1

Definition 2.3 [14] Let (U, N, %) be a fuzzy normed linear space and a € (0, 1).

(I) A sequence {x,} in U is said to be a-fuzzy convergent if Ax € U such that

lim \{t>0 | N(x,—x, )>1—-a}=0.

n—oo
(II) A sequence {x,} in U is said to be a-fuzzy Cauchy if
fim A fe>0 | NGt =2, 0)> 1-a) =0,
mn—co

3. Fuzzy Bounded Linear Operators

In this section, a concept of fuzzy bounded linear operator in general -norm set is
introduced.

Definition 3.1 Ler T | (X, Ny, %) — (Y, N2, *p) be a linear operator where
(X, Ny, *1) and (Y, N,, %) are fuzzy normed linear spaces. T is said to be fuzzy
bounded if for each a € (0, 1), AM,, > O such that

t
Ni(x, 7

3

)Y>1—a = Ny(Tx, s)>a ¥Ys>t, Vt>0. 1)

Proposition 3.1 Let T | (X, Ny, 1) — (Y, Na, %) be a linear operator where (X, Ny, *1)
and (Y, Ny, ;) are fuzzy normed linear spaces. If T is fuzzy bounded, then the relation
(1) is equivalent to the relation
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/\{t>0|N2(Tx, N2> al SM(,/\{t>0|N1(x, N>l-alV¥xeX. ()

Proof  First we show that (1) = (2).
Letr> Mo At >0 Ni(x, > 1 -a}
:>ﬁ>/\{t>0|N|(x, Hn>1-af

7

23r—suchthatML>A;—n>/\{t>O|N1(x, Hn>1-a

@ a
’ ’
I%

= 3y such that Ny, A;—) >l-a
= No(Tx, r) = aby (1)
S NANt>0| Mao(Tx, ) >a} <M NA{t>0] Ni(x, )=1-a} VYxeX.
So (1) = (2).
Now we prove (2) = (1).
Assume that N (x, ! )>1-a. So

[¢3 t
A{r> 0] Ni(x, r)Zl—a}Sﬁ
= AMr>0|NoTx, D>a) <t
= forany s > t, A{r >0 | No(Tx, r) > a} <s
= No(Tx, s) > a.
Hence (2) = (1).

Note 3.1: We denote the collection of all linear operators defined from a fuzzy normed
linear space (X, N1, *1) to another normed linear space (Y, N,, *;) by L(X, Y) and for
fuzzy bounded linear operators we denote the collection by BF (X, Y).

Lemma 3.1 Let (X, N, %) be a fuzzy normed linear space and the underlying t-norm
* be continuous at (1, 1). Then for each @ € (0, 1), 3B > @ such that
ANt>0|Nx+y, 1) >a}
SAE>0INx 2B+ AN t>0| Ny, ) 2B} Vx,ye X.

Proof  Since * is continuous at (1, 1), for each @ € (0, 1), we can find 8 € (0, 1) such
that
Bxp=a.
Again > g% > a.So B > a. Now,
At >0 NCx, )2 B+ At > 0| NGy, 1) > B)
=A{s+1t>0|N(x, s)>8,N@, t) >}
> As+1>0|N(x, s)«N(, 1) >Bx*p)}
> MNs+1>0|N(x+y, s+1)>a}by (NIV).
Hence A{t >0 | N(x+y, 1) >a} < AN{t>0|N(x, s) 2B+ At >0]|N@y, 1) >
BiV¥x,yeX.

Theorem 3.1 BF(X,Y) (set of all fuzzy bounded linear operators) is a subspace of
L(X,Y) (set of all linear operators) where (X, N1, *1) and (Y, N,, ;) are fuzzy normed
linear spaces and ; is continuous at (1, 1).

Proof TakeT), T, € BF(X,Y).
Now by Lemma 3.1, we have for non-zero scalars &, k»;
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At >0 No((k1 Ty + ko To)x, 1) 2 a}
SANt>0| No(kyTyx, ) =28+ A{t > 0] NakoTox, t) 2B} Vxe X,
where 8 depends on @ and 8 > a.
Le, Alt> 0| No((kiTi+koTo)x, 1) 2 a} < kil A{t > 0| No(Tx, 1) 2 B} + kol Afe >
0| No(Tax, t) = ).
Since T and T, are fuzzy bounded, HM[IM), Mém) > 0 such that
At >0| No(Tix, 1) 2 B} < My, Nt>0] Ni(x, )= 1-p) VxeX
and
At>0] Nao(Tax, t) 2B} < Mf;m) At>0] Ni(x, )>21-0} VxeX.
So, At >0 No((ki Ty + kaTo)x, 1) > @} < |k1|M/'M) At>0] Ni(x, )= 1-p}
Hkal Mg, At > 01 Ni(x, 2 1-p).
Let M, = |k1|Mé + |k2|M§

Then we have

(@) (@)

/\{l > 0| No((k\ Ty + kpTh)x, 1) > a}

<M AE>0] Ni(x, H>1-p)VxeX ®

Since 8> a,thus 1 - <1 - a, so,

{t>0|Ni(x, ) 21—-a} c{t>0|Ni(x,)>1-p}

SANt>0|Ni(x, H=1—-a} 2 A{t>0|Ni(x, ) >1-5}.
So from (3) we get

At >0 No((1 Ty + ko To)x, ) = @} S Mp A{t>0|Ni(x, ) >1—-a}VxeX.
Thus kT + k,T, € BF(X, Y).

Hence BF(X,Y) is a subspace of L(X, Y).

Definition 3.2 An operator T | (X1, Ny) — (Xa, N;) is said to be fuzzy continuous at
x € X if for every sequence {x,} in X| with x, — x implies Tx,, — Tx. i.e.,

lim Ny(x, — x,t) =1 VYt > 0 implies lim No(Tx,, — Tx,t) =1 VYt > 0.

n—oo n—eo

Theorem 3.2 Let T | (X,N,) — (Y,N) be a linear operator where (X, Ny) and
(Y, Ny) are fuzzy normed linear spaces. If T is fuzzy continuous at a point xy € X,
then T is fuzzy continuous everywhere in X.
Proof Let {x,} be a sequence in X such that lim N(x, —x,#) =1 V¢ > 0.1ie.,

lim Ny(x, — x+ xo — x0,1) =1VYt>0 :>y?,,w—x+x0 — Xp.

ré?rioce T is continuous at xo, it follows that 7'(x,, — x + xp) — T xp.
So,

11Hr£1o No(T(x, —x+x0) —T(xp), 1) =1 Vt>0,

riim Nr(T(x,)—T(x), ) =1 Vt> 0 (since T is linear),

rF(;:,,) — Tx.
Since x is arbitrary, it follows that 7" is continuous in X.
Theorem 3.3 Let T | (X1,N1) = (Xa, N;) be a linear operator where (X, Ny) and
(X2, N,) are fuzzy normed linear spaces. If T is fuzzy bounded then it is fuzzy contin-
uous but not conversely.

Proof  First suppose that T is fuzzy bounded. So for each @ € (0,1), IM, > 0
such that
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At>0] No(Tx, £) = a} <My, AN{t>0] Ni(x, ) >1—-a} VxeX;.
Let {x,} be a sequence in X; such that x, — x. Thus 11_)11010 Ni(x,—x, 1) =1 VYt>0.
Let € > 0 be given. So for each @ € (0,1), Ja positinve integer N(a, €) such that
Ni(x, — x, ﬁ) >1-a VYn > N(a,e€)
=S At >0 Ni(x, —x, ) > 1—-a} < ZLMWVnZN(a, €), Ya e (0,1)
=M, N\t >0] Ni(x,—x, )2 1-a) <5 <eVn2N(a, €), Yae(0,1)
= Nt >0]| No(T(x, —x), 1) 2 a} <eVn=N(a, €), Ve € (0,1)
= Ny(Tx,—Tx, €) >aV¥n > N(a, ¢€), Yee(0,1)
= 11_)1’1; N»(Tx, —Tx, €) = 1.
Sinnce € > (0 is arbitrary, we have lim No(Tx, — Tx, t) = 1Vt > 0.
ie., {Tx,} = Tx. Hence T is fuzzy ggrﬁinuous on X.
Converse result may not be true which is justified by the following example.

Example 3.1 Let us consider a normed linear space (X, || - ||). Define two functions
as in the following:

1, if >,
1
Ni(x, )= 5 if 0<t<|lx,
0, if r<0.
(||
Na(x . 1) = 1-—, for t>|x],
0, for < ||«

It can be verified that N; and N, are fuzzy norm on X (please see Observation 1.2
[16]).
Define a linear operator 7 | X — X by T'(x) =2xVx e X.
First we prove that T is fuzzy continuous.
For consider a sequence {x,} in X such that x, — x. Thus
,}LH;M(X” -x,H=1Vt>0
= Y}LIEONI(X” -x, )>a Yt>0 Yae(0,1).
Choose @ > % Then 1 a positive integer N(a) such that
ILTONl(xn -x, )>a Yt>0VYn > N()
n:> llx, — x|l < t Yt >0Vn > N(a)
= y}i—{g”x” —x|| =0.

2||x, —
Now lim No(Tx,—Tx, t) = lim No(2x, —2x,t) = lim(1 — u) =1Vr>0.

So T'x, — Tx. Thus T is fuzzy continuous.
Now we show that T is not fuzzy bounded.
Take @ = % We have

1 1
Nl >01 NaTx, 2 5= A\t >01 M@ =51 =20l @)
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Again,

Al >01 Mix, 0= 5)=0. o)
From (4) and (5), we observe that there does not exists M, > 0 for @ = % for which
At>0] No(Tx, 1) = 3} < Alt> 0] Ni(x, 1) > 3} holds Vx(# 0) € X.

Hence T is not fuzzy bounded.

Now to get some kind of converse result, we introduce below concepts of a-fuzzy
continuity and a-fuzzy boundedness.

Definition 3.3 Ler T | (X, Ny) — (Y, N,) be an operator where (X, Ni) and (Y, N,)
are fuzzy normed linear spaces and « € (0, 1).

(i) T is said to be a-fuzzy continuous at x € X if for any sequence {x,} in X;

lim /\{tr>0]| Ni(x, —x, t) > 1—a}=0implies

n—oo

lim A\{t>0] No(Tx, - Tx, 1) > a} = 0.

n—oo

(ii) T'is said to be a-fuzzy bounded if AM, > 0 such that
Ni(x, Lﬂ) >l—-a = No(Tx, s)>a ¥Ys>1t, V> 0.

Proposition 3.2 Definition 3.10 (ii) is equivalent to the relation
ANMt>0| Ma(Tx, H=a} <M N{t>0] Ni(x, )= 1-a}VxeX.
Proof  Proof is similar to that of in Proposition 3.1.

Note 3.2: Denote
de = Nt >0]| Ni(x,0) 2 a}, @€ (0,1).
By (NVI), it follows that for x £ 0, A{r>0] Ni(x, 1) > a} > 0Va € (0, 1).

Theorem 3.4 Let T | (X, Ny) — (Y, N,) be a linear operator where (X, Ny) and
(Y, N,) are fuzzy normed linear spaces and « € (0, 1). Then T is a-fuzzy bounded iff
it is a-fuzzy continuous.

Proof  First we assume that T is @-fuzzy bounded. Thus 3M,, > 0 such that
Nt >0] No(Tx, 1) 2 a} <M, Nt>0]Ni(x, ) >1-a}.
Let {x,} be a sequence with ILrEG /\{t >0 |Ni(x,—x,)>1—a}=0.
Then !
}grgo MMt >0 | No(Tx, —Tx, t) > a} < MQ)}i_{g /\{t >0 Ni(xp—x, )>1-a}.

So, lim /\{t> 0| Na(Tx, = T, 1) > a} = 0.
l-?ence T is a-fuzzy continuous.
Conversely, suppose that T is a-fuzzy continuous. If possible suppose that T is
not a-fuzzy bounded. So 3 a sequence {x,} in X such that
ANMt>0| No(Txy, ) 2} >nAN{t>0|Ni(xy, )21 -0}, n=1,2,3---
Clearly, x, # 0 Vn.

X,
Letx, = :

nA{t>0] Ni(xp, t) > 1 —a}

(by Note 3.2, denominator is positive for

each n).



158 T. Bag - S.K. Samanta (2015)

Then A{t> 0| Ni(x, N> 1-a}=1Lforn=1,23-
This implies that lim /\{t >0|Ni(x, )>1-a}=0.
n—oo

Since T is a-fuzzy continuous, it follows that

lim A\ {r> 0] Na(Tx, - T0, 1) > a} = 0. (©6)

On the other hand we have
t>0]| No(Tx,, t) > a}

, AN
At > 0| No(Tx,, [)Za}_n/\{t>0|N](xn, D>1—a] > 1.

ie, ANlt>0|No(Tx),, t) >} > 1Vn
= lim /\{t > 0| Ny(Tx, t) > a} # 0 which contradicts (6).
n—oo

Hence T is a-fuzzy bounded.
4. Operator Fuzzy Norm in BF (X, Y)
In this section, we define fuzzy norm of fuzzy bounded linear operators.

Theorem 4.1 Let (X, Ny, 1) and (Y, Na, *3) be fuzzy normed linear spaces and
xy be lower semicontinuous. Let BF(X,Y) denote the set of all fuzzy bounded linear
operators defined from X to Y. Then the mapping N | BF(X,Y) X R — [0, 1] defined

by
N(T, s)
Via € (0, 1)} | \/ A{ﬁ >0|Ny(Tx, )2 a} <5, for(T,s) # (0,0)
xeX,x#0 @
0, for (T, s) = (0,0)

is a fuzzy norm in BF(X, Y) w.r.t. the underlying #-norm ;.

Proof  First we show that for T € BF(X, Y),
t
VoA > 0| Ny(Tx, 1) > a)

xeX,x#0 dlfa
exists for each a € (0, 1) and monotonically increasing w.r.t. a.

Since T € BF(X,Y) for each a € (0, 1), AM, > 0 such that
ANt>0|Ny(Tx, ) 2 a} <M, Nt >0 | Ni(x, ) 21 —-a}VxeX
=S ANt>0| Mo(Tx, 1) >a) £ Mydio ¥x€X
= /\{t >0| No(Tx, 1) 2 a} < My, Vx(#0) € X
= /\{i > 0| No(Tx, t) > a}exists and < M, Ya € (0, 1).
Take @ > B.So 1 —a < 1 — . Thus
Nt >0| No(Tx, t) = a} = N{t>0]| No(Tx, 1) >}
and
ANt>0|No(Tx, ) =21-8} 2 A{t>0] No(Tx, 1) > 1 -}
= /\{t > 0| Ny(Tx, t)Za/}Z/\{ﬁ >0| No(Tx, ) 2B} Vx(#0) e X

t t
= {— >0 |No(Tx, 1) 2} > {— > 0| No(Tx, 1) = ).
x€>{¢0 /\ dlfa XEX#O /\ dlfﬁ
t
Thus \/ /\( i
xeX,x#0
Now we verify the following:

(1) If s < 0, then clearly N(T, s) = 0.

> 0| No(Tx, t) > a}is monotonically increasing w.r.t. @.
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For s = 0, we have
N(T,s)=0 VT € BF(X,Y).
So (NI) holds.
(i) Vs > 0, N(T s) =1
o \/ A{dm >0| Na(Tx, ) 2 a} < sVae(0,1), Vs> 0

o \/ A{d’ > 0] Ny(Tx, )2} = 0 Var € (0. 1)
x€X,x#0 1

o ANt >0 Npy(Tx, t) >} =0VYa €(0,1), Yx(0) € X

e Ny(Tx, )=1VxeX, Yr>0

©Tx =0VxeX

T =0.

So (NII) holds.
(iii) For any scalar 2 # 0, we have

NQT, $)=V{ee©, D] \/ A{ﬁ > 0| No((ATH(x),1) > @) < 5}

xeX.x#0

=VieeOn| \/ A{d%>0| NI, )2 a) <)

xeX,x#0 Z
=Viee@ DI\ A\l7=>01 Mm@, nzal <)
xeX,x#0
= N(T, ﬁ).
So (NIII) holds.

(iv) We have to show that
N(T, + Ty, s+1) = N(Ty, s) % N(T2, t) Vs,t €R.
If possible suppose that the above relation does not hold.
So dsg, fo € R such that N(T; + T2, so + 1) < N(T1, s0) %2 N(T2, to).
Choose a € (0, 1) such that

N(Ty + T, so+19) < ag <N(Ty, so)+*2 N(T2, o). @)

Since #; is lower semicontinuous, day, @, € (0,1) where N(T4, s¢) > a; and
N(T3, ty) > ay such that @ % @y > .
Now
N(Ty, so) > a;
=\ A
xeX,x#0
= /\{d.i,, > 0| Ny(Tyx, 8) > a;} < soVx(#0) € X.
Similarly, /\{d# > 0| No(Tox, t) > @z} < 5o Yx(# 0) € X. So,
/\{d\ﬂ >0 Nz(T]X $) = ay, No(Trx, t) > ap } < so+ 19 Vx(#0) € X.
(Since @) > @) xp @z > @.Sol—-ap > 1—a). Similarly, 1 —ap > 1-a3.)
Thus

/\{d:H >0|N2((T1+T2) S+1)>a) s a} <so+1t Vx(#0)eX
ﬁ/\ >O|N2((T|+T2) )y>ap} <so+toVx(#0)eX

=>/\ >O|N2((T|+T2),t)>(Y()}<S0+l()VX(¢O)€X

> 0| No(Tyx, s) > a1} < so
1-a
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t
A
xeX,x#0 1-ao
= N(T\ + T2, so+10) 2 ap

which contradicts the relation (7).
Hence N(T, + T, so + ty) = N(T1, sg) *2 N(T3, ty).
So (NIV) holds.
(v) From boundedness of 7', for any « € (0, 1), M, such that

A{dt S 0| Ny(Tx, 1) > ) < M,

I-a

> 0] No(Ty + T»), l/) >ap} < so+1

xeX,x#0

So for s > M,,

o for s > M, \/ /\{d
xeX,x#0

Thus, lim N(T, s) = 1. So, (NV) holds.

Hence N is a fuzzy norm and BF (X, Y) is a fuzzy normed linear space.

5. Completeness of BF(X,Y)

t

>0| No(Tx, t) = a} < s.

I-a

In this section, we introduce the idea of /-fuzzy convergent sequence, /-fuzzy Cauchy
sequence and /-fuzzy complete set and study the completeness of BF(X, Y).

Definition 5.1 Ler (X, N, %) be a fuzzy normed linear space.

(I) A sequence {x,} is said to be l-fuzzy convergent if Ax € X such that
lim /\{t>O|N(x,,—x, H>1-a}=0vae(0,1).
n=c0

(L) {xy} is said to be I-fuzzy Cauchy sequence if
lim A{t> 0| NG, —xn > 1—a)=0Vae©,1).
mup—oo

() F c X is said to be I-fuzzy complete if every I-fuzzy Cauchy sequence is I-fuzzy
convergent to some point in X.

Proposition 5.1 Let (X, N, *) be a fuzzy normed linear space and * be lower semi-
continuous. Then limit of every I-fuzzy convergent sequence in X space is unique.

Proof Letp € (0,1). By the lower semicontinuity of *, Ja € (0, 1) such that
l-a)+(1-a)>p.
Let {x,} be an /-fuzzy convergent sequence in X which converges to two different
limits x and y.
So lim A\{r>0[N(x,—x, )>1-a}=0 Yae O
and !
lim \{t>0|Nx, -y, )>1—-a}=0 Yae(0,1).
Then ’%grme > 0, there exists positive integers N, (e, @) and N,(e, @) such that
AMt>0] N(x, —x, ) >1-a} <5 Vn2N(ea)
and
MNMt>0] N(x, —y,0) > 1 —a} <5 Vn = Ny, ).
SoN(x, = x,5)>1—a ¥Yn 2 Ni(e,a) and N(x, —y,5) > 1 —a Yn 2 Na(e, ).
Let Ny = max{Ny, Na}. Thus N(x, —x,5) > 1 —a ¥Yn 2 Ny(€, @)
and
N(x, = y,5) > 1—a Yn 2 No(e, ).
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Now, N(x —y,€) = N(xy =y = Xy + X, 5 + §) = N(x, — x, §) * N(x, — 3, 5).
So,

Nx-y,e)2(l-a)+(1-a)>p. ®)

Since € > 0 and S8 € (0, 1) are arbitrary, from (8), it follows that
Vt>0, Nx—y, t)>aVae(0,1)
=>Vt>0, Nx-y,0)=1
=x-y=0.
Sox=y.

Theorem 5.1 Let (X, Ny, ;) and (Y, N,, %,) be fuzzy normed linear spaces and %, be
lower semicontinuous. If (Y, Ny, *,) is I-fuzzy complete then BF(X, Y) is also [-fuzzy
complete w.r.t. the underlying t-norm s;.

Proof Let {T,} be an [-fuzzy Cauchy sequence in BF (X, Y). So
lim /\{t>O|N(T,,—Tm, ) >1-a}l=0Vae 1.
Thus for a given € > 0 and for @ € (0, 1), AN(a, €) such that
MNMt>0| NT,-T,, t) >1—a} <eVm, n> N(a,€)
=>N{T,-T,,€) >1—-aVmn > N(a, €)

= \/ A{di >0 Nao(Tox = Toox, $) 2 1 —a} < e ¥m,n = N, €) ©

xeX, x#0

= Mz >0 No(Tox = Tix, 5) 2 1-a} <eVm,n>N(a, €) Vx(# 0) € X

= lim /\{s>0| N{Tyx—=Tpyx, s) 21—a}=0V¥xeX, Ya e (0,1)
m,n—co

= lim {s>0| NTyx—Tpx, s) >1—-a}=0¥xeX, Yae (0,1).

m, n—oo
Thus {T,,x} is an @-fuzzy Cauchy sequence in Y. Since @ € (0, 1) is arbitrary, it follows
that {T),x} is [-fuzzy Cauchy sequence in Y for each x € X.
So for each x € X, there exists y € Y such that ]H?o Tu(x) =y.
Thus we can define a function T given by r}l_}l?q nT,,(x) = T(x).

So,
lim /\{t>0| No(Tox—Tx, ) >1—al=0V¥xeX, Yae(0,1). (10)

Now show that T is linear. We have
lim /\{t> O] Ny(Tyx=Tx,t) >1—a}=0VxeX, Yae (0,1).
For € > 0, In1(a, €) such that
ANt>0| No(T,x=Tx, 1) >1-a} <5VxeX, Vn2ni(a,e€)
= Noy(Twx=Tx, 5) >1-aVxeX, Vn 2> ni(a,e).
Similarly, No(T,y — Ty, %) >1-aVyeX, ¥Yn>nya,e).
Thus N>(T,x — Tx, §) #9 No(T,y =Ty, g) > (1 —a)* (1 -a)V¥n > ny(a), where
no(a) = max {n;(a), nz(@)}.
So we get
No(T(x+y) = (Tx+Ty), €) > (1 —a) % (1 — @) Yn = no(a).
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LetB € (0,1). Then do = a(B) € (0, 1) such that (1 —a) *, (1 —a@) > 1 - B.
Thus we have
No(T(x+y)—(Tx+Ty), €) > 1 =BVn > np(a,e).
=2 MNMt>0 | No(Ty(x+y)—(Tx+Ty), t)>1-} < eVn=np(a,e)
= lim /\{t >O0|Ny(Ty(x+y)—(Tx+Ty), )>1-8=0.
Since ’EOEO (0, 1) is arbitrary, it follows that {T,,(x + y)} is /-fuzzy convergent and
converges to Tx + T'y.
So hﬁngl0 T(x+y)= Tx+ Ty Hence T(x+y)= Tx+Ty.
Sinl11ilarly, for any scalar A, it can be shown that 7 (Ax) = AT (x). Hence T is linear.
Now we prove that 7 is fuzzy bounded.
Lety € (0, 1). By the lower semicontinuity of *,, da = a(y) € (0, 1) such that
1-a)s (1 -a)>vy.
From (9), for @ = a(y) € (0,1), € > 0, 3 a positive integer N(a(y), €) € N such
that
/\{d‘—‘” >0 Ny(Tyx =Tpx, ) 21—} <5 <5 VYmn2Na(y),e), Vx(#0) € X

do
= No(Tyx — Tpx, TG) >1—aVm,n > N(a(y),e), Yx(#0) € X. (11)

From (10), it follows that, for @ = a(y) € (0,1), € > 0, x(# 0) € X, I a positive
integer N’(a(y), €, x) € N such that
At>0| Noy(Tyx—Tx, 1) > 1 —a} < % VYm > N'(a(y), €, x)

d
= Ny(Tpx - Tx, %E) >1-aVm> N(a®y)ex). (12)
Now, 4 4
€ €
No(Tyx — Tx, Ze e
H(Tux X ) ) ) y p
=Ny(Tpx —Tyyx + Tpyx — Tx, o€ + LE)

2 2
> No(Tpx — Tpyx, %) 29 No(Tyx — Tx, %)
>(l-a)xm(1-a)>2yVn=N(ae),aec(0,1),Vx(#0) eX
(By taking m suitably so as to satisfy (11) and (12)).
So,
No(Tyx = Tx, dy€) > yVn > N(a,e), € (0,1),Vx(#0) € X
S At>0|No(Tyx—Tx, 1) 2y} <dye < dy_y€
(Since I —a >vy,s01 -y > aand thus di_, > d,)

= /\{ﬁ >0 |No(Tyx—Tx, t) 2y} <€, VYn 2= N(a(y),e), Yx(#0) e X. (13)
-y

Hence T, — T is bounded for all n > N(a(y), €).
Since BF (X, Y) is a linear space,so T = (T —T,)+ T, € BF(X, Y).
Again from (13) we have
N(T, —T,e) >y V¥n > N(a(y),€)
= MNs>0| NT,-T, s) >y} <eV¥n = N(a(y),e)
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= 1im \{s>0| N(T, - T, 5)> 7 =0.
Sinré:zo;/ € (0, 1) is arbitrary it follows that
lim /\{s>0| N(T,-T, s)2a} =0V €(0,1).
So,n T;,,} is [-fuzzy convergent and converges to 7 € BF(X, Y). Thus BF(X, Y) is
[-fuzzy complete.

6. Conclusion

In an earlier paper, we introduced the concept of finite dimensional fuzzy normed
linear spaces in general f-norm setting. Many authors published several papers on
fuzzy normed linear spaces by using particular -norm “min”. The results of this
paper are more general than the results related to the similar concept in particular
t-norm “min”.

It is interesting to note that, here boundedness of a linear operator implies its conti-
nuity but the converse is not true. It is an open problem to find an additional condition
on continuity together which will be equivalent to boundedness.

We think that all the results of this paper are important for further development of
operator theory (general -norm setting) in fuzzy normed linear spaces.
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