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Abstract

Three numerical invariants of graphs concerning domination, which are named the signed domination number �s, the k-sub-
domination number �ks and the signed total domination number �st , are studied in this paper. For any graph, some lower bounds on
�s, �ks and �st are presented, some of which generalize several known lower bounds on �s, �ks and �st , while others are considered
as new. It is also shown that these bounds are sharp.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V , E) be a simple undirected graph with vertex set V and edge set E. The order of G is given by n = |V |
and its size by m = |E|. For v ∈ V , we denote by dG(v) the degree of v in G, by N(v) the neighborhood of v and by
N [v] = N(v) ∪ {v} its closed neighborhood. The maximum degree among the vertices of G is denoted by �(G) and
the minimum degree by �(G). For disjoint subsets A and B of vertices, we let E(A, B) denote the set of edges between
A and B. For S ⊆ V , G[S] denotes the graph induced by S. Let Ḡ be the complement graph of G. For any real x, we
denote �x� for the minimum integer not less than x, and �x	 for the maximum integer not more than x. Finally, for a
real-valued function f : V → R the weight of f is w(f ) =∑

v∈V f (v), and, for S ⊆ V , we define f (S) =∑
v∈Sf (v),

so w(f ) = f (V ). Other terminologies used in this paper will follow [1].
A signed dominating function of G is defined in [5] as a function f: V → {−1, 1} such that f (N [v])�1 for every

v ∈ V . A signed total dominating function of G is defined in [16] as a function f: V → {−1, 1} satisfying f (N(v))�1
for all v ∈ V . The signed domination number for a graph G is �s(G) = minimum{w(f )|f is a signed dominating
function of G}. Similarly, the signed total domination number for a graph G is �st(G) = minimum{w(f )|f is a signed
total dominating function of G}.

For a positive integer k, a k-subdominating function of G is a function f: V → {−1, 1} such that f (N [v])�1 for
at least k vertices v of G. The k-subdomination number for a graph G is defined as �ks = minimum{w(f )|f is a
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k-subdominating function of G}. The concept of k-subdomination number was first introduced and studied by Cockayne
and Mynhardt [4]. In the special cases where k = |V | and k = �|V |/2�, �ks(G) is, respectively, the signed domination
number �s(G) [5] and the majority domination number �maj(G) [2].

Because there are signed dominating functions (k-subdominating functions) in any graph G, e.g. f (v) = 1 for all
v ∈ V , and because the number of these functions is finite, �s(G) (�ks(G)) exists. Concerning a graph G without
isolated vertices, there exists �st(G) for the same reason.

Since the problems of determining the signed domination number, the signed total domination number and the k-
subdomination number are NP-complete, many works on bounds on �s, �st and �ks were studied in [2–7,9,10,12–17].
Many results on �s, �st and �ks of certain special graphs have been reported. However, a few results on the lower
bounds on �s, �st and �ks of general graphs are reported [3,12,15,17], but these results in the general cases do not
coincide with those in the special ones. For example, from the existing results on the lower bounds on �s(G) [15,17],
the following result [10] cannot be wholly deduced: for any r-regular graph G of order n, �s(G)�n/(r+1) for r even,
and �s(G)�2n/(r+1) for r odd. On the other hand, the existing results on the lower bounds on �s(G) [15,17] cannot be
derived from the known results on the lower bounds on �ks(G) [3,12] either.

Our main aim in this paper is to achieve some better results on the lower bounds on �s, �st and �ks for a general
graph, so that there is a certain degree of coincidence among our results and those known results for the special graphs,
that is, the results in some special cases can be deduced directly from the results in a general case. By using a simple
and uniform approach, we derive some lower bounds on �s, �ks and �st in terms of several different graph parameters.
Some of these bounds generalize several known lower bounds on �s, �ks and �st, while others are new. In addition, it is
shown that these bounds are sharp.

2. Lower bounds on signed domination number

For any graph G, the following theorem was proved in [17].

Theorem A (Zhang et al. [17]). For any graph G of order n and size m:

(1) �s(G)�(� + 2 − �)n/(� + 2 + �),
(2) �s(G)�n − 2/3m,
(3) �s(G)�2�(−1 + √

1 + 8n)/2� − n,

and these bounds are sharp, where � = �(G) and � = �(G).

For a graph G, let V1 = {v ∈ V |dG(v) = 0}, V2 = {v ∈ V |dG(v) = 1}, V3 = {v ∈ V |N(v) ∩ V2 = ∅}, C(G) =
V − (V1 ∪ V2 ∪ V3) and �∗(G) = minimum{dG(v)|v ∈ C(G)}. Obviously, if C(G) = ∅, then �s(G) = |V (G)|.
Therefore, in the following discussion we assume, without loss of generality, that C(G) = ∅. Thus, �∗(G)��(G)

and �∗(G)�2.
In terms of �∗(G), the following results were given in [15].

Theorem B (Yin et al. [15]). For any graph G of order n and size m:

(1) �s(G)�(�∗ + 2 − �)n/(�∗ + 2 + �),
(2) �s(G)�n.(4m/3)/(�∗/2 + 1),

(3) �s(G)�2�(−�∗ +
√

�∗2 + 8(�∗ + 2)n)/4� − n, where �∗ = �∗(G) and � = �(G).

It has been proved in [15] that these three results in Theorem B are, respectively, tighter than those three results in
Theorem A because �∗(G)��(G) and �∗(G)�2.

In this section, these known results will be extended and some new results will be given by introducing another
graph parameter, namely, the number of vertices having odd degree in G. This graph parameter is henceforth denoted
by o(G) or o for short, i.e. o(G) is the cardinality of the set {v ∈ V |dG(v) is odd}. We begin with the following
lemma.
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Lemma 1. Let f denote any signed dominating function of the graph G = (V , E). Let P = {v ∈ V |f (v) = 1},
M = {v ∈ V |f (v) = −1}, p = |P |, n = |V | and o = o(G). Therefore, we have

(1)
∑

v∈P dG(v)�
∑

v∈MdG(v) + 2(n − p) + o,
(2)

∑
v∈P dG[P ](v)�

∑
v∈P �dG(v)/2�.

Proof. For v ∈ V , let dP (v) and dM(v) denote the numbers of vertices of P and of M, respectively, which are adjacent
to v. Then, we have dG(v) = dP (v) + dM(v). Since f (N [v])�1, it is clear that dP (v)�dM(v) for v ∈ P , and
dP (v)�dM(v) + 2 for v ∈ M . Hence, if v ∈ P , then dP (v)��dG(v)/2� and dM(v)��dG(v)/2	; if v ∈ M , then
dP (v)��(dG(v) + 2)/2� and dM(v)��(dG(v) − 2)/2	.

(1) Considering E(P, M), we can deduce∑
v∈P

�dG(v)/2	� |E(P, M)|�
∑
v∈M

�(dG(v) + 2)/2�,

∑
v∈P

�dG(v)/2	 +
∑
v∈P

�dG(v)/2��
∑
v∈M

�(dG(v) + 2)/2� +
∑
v∈P

�dG(v)/2�,

∑
v∈P

dG(v)�
∑
v∈V

�dG(v)/2� + |M|,

∑
v∈P

dG(v)�
∑
v∈V

dG(v)/2 + (n − p) + o/2,

∑
v∈P

dG(v)�
∑
v∈P

dG(v)/2 +
∑
v∈M

dG(v)/2 + (n − p) + o/2,

∑
v∈P

dG(v) −
∑
v∈P

dG(v)/2�
∑
v∈M

dG(v)/2 + (n − p) + o/2.

Hence,∑
v∈P

dG(v)�
∑
v∈M

dG(v) + 2(n − p) + o.

(2) Considering the graph G[P ] induced from P, we have dG[P ](v) = dP (v) for v ∈ P . Since dP (v)��dG(v)/2�
for v ∈ P , then

∑
v∈P dG[P ](v)�

∑
v∈P �dG(v)/2�. �

For any graph G, �s(G) is related to all the following graph parameters: |V (G)|, |E(G)|, �(G), �(G), �∗(G),
o(G), etc. From lemma 1, considering different combinations of these parameters, we obtain some new lower bounds
for �s(G), and these new results are independent from each other. Now, we are in such a position to prove the
following results.

Theorem 1. For any graph G of order n and size m, we have

(1) �s(G)�((�∗ + 2 − �)n + 2o)/(�∗ + 2 + �),
(2) �s(G)�(2m + 2n + o)/(� + 1) − n,
(3) �s(G)�n − (2m − o)/(�∗ + 1),

(4) �s(G)�2�(−�∗ +
√

�∗2 + 8(�∗ + 2)n + 8o)/4� − n,

(5) �s(G)�2�(1 + √
1 + 8(m + n) + 4o)/4� − n,

and these bounds are all sharp, where �∗ = �∗(G), � = �(G) and o = o(G).

Proof. Let f be a signed dominating function of G such that w(f ) = �s(G). Let P = {v ∈ V |f (v) = 1}, M = {v ∈
V |f (v) = −1} and p = |P |. So, �s(G) = p − (n − p) = 2p − n.
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According to Lemma 1, we have∑
v∈P

dG(v)�
∑
v∈M

dG(v) + 2(n − p) + o. (*)

Notice that M ⊆ C(G), so dG(v)��∗ for v ∈ M . Thus,
(1) Considering ��dG(v) and �∗ �dG(v) for every v ∈ V , we get from (*)

�p�
∑
v∈M

dG(v) + 2(n − p) + o�(2 + �∗)(n − p) + o.

From this inequality, it is deduced that

p�((�∗ + 2)n + o)/(�∗ + 2 + �).

Hence, �s(G) = 2p − n�((�∗ + 2 − �)n + 2o)/(�∗ + 2 + �).
(2) Considering 2m =∑

v∈V dG(v) and ��dG(v) for every v ∈ V , we get from (∗)

2
∑
v∈P

dG(v)�
∑
v∈M

dG(v) +
∑
v∈P

dG(v) + 2(n − p) + o,

2
∑
v∈P

dG(v)�
∑
v∈V

dG(v) + 2(n − p) + o,

2
∑
v∈P

dG(v)�2m + 2(n − p) + o,

2�p�2m + 2(n − p) + o.

From this inequality, it is deduced that

p�(2m + 2n + o)/(2� + 2).

Hence, �s(G) = 2p − n�(2m + 2n + o)/(� + 1) − n.
(3) Considering 2m =∑

v∈V dG(v) and �∗ �dG(v) for every v ∈ V , we get from (∗)∑
v∈P

dG(v) +
∑
v∈M

dG(v)�2
∑
v∈M

dG(v) + 2(n − p) + o,

∑
v∈V

dG(v)�2
∑
v∈M

dG(v) + 2(n − p) + o,

2m�2
∑
v∈M

dG(v) + 2(n − p) + o,

2m�2(�∗ + 1)(n − p) + o.

From the inequality, it is deduced that

p�n − (2m − o)/(2�∗ + 2).

So, �s(G) = 2p − n�n − (2m − o)/(�∗ + 1).
(4) Consider G[P ]. According to Lemma 1, we have

∑
v∈P dG[P ](v)�

∑
v∈P �dG(v)/2�. On the other hand, since

G[P ] is a simple graph, p(p − 1)�
∑

v∈P dG[P ](v).Then,

p(p − 1)�
∑
v∈P

�dG(v)/2��
∑
v∈P

dG(v)/2,

2p(p − 1)�
∑
v∈P

dG(v)�
∑
v∈M

dG(v) + 2(n − p) + o�(2 + �∗)(n − p) + o.
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From the inequality, it is deduced that

p��(−�∗ +
√

�∗2 + 8(�∗ + 2)n + 8o)/4�.

So, �s(G) = 2p − n�2�(−�∗ +
√

�∗2 + 8(�∗ + 2)n + 8o)/4� − n.
(5) According to (4), we have

2p(p − 1)�
∑
v∈P

dG(v).

From (2), we have∑
v∈P

dG(v)�m + (n − p) + o/2.

So,

2p(p − 1)�m + (n − p) + o/2.

From the inequality, it is deduced that

p�(1 +√
1 + 8(m + n) + 4o)/4.

Hence, �s(G) = 2p − n�2�(1 + √
1 + 8(m + n) + 4o)/4� − n.

In order to show that these bounds in Theorem 1 are sharp, we first should notice the following observation, a proof
of which is straightward and therefore omitted.

Observation. For a lower bound on �s, if there exists a graph whose �s reaches the lower bound, then the lower bound
is sharp; for a graph G, if there exists a signed dominating function f on G such that w(f ) attains the lower bound, then
�s(G) attains the lower bound.

In the following, for every lower bound on �s, we will give a graph G and construct a signed dominating function f
on G such that w(f ) attains the lower bound, and thus the lower bound is sharp. We also clarify that our bounds for
some of these graphs are tight and the corresponding bounds given in Theorem B are not.

In fact, a trivial example such as G = Kn suffices for this, where n is an even number not less than 4. It is easy to
check that �s(Kn) = 2 attains all the five bounds in Theorem 1, while both those bounds in Theorem B(1) and (2) are
not more than 1. Besides, we can construct a non-complete graph with an arbitrary large order whose �s reaches the
lower bounds in Theorem 1(1)–(3) as follows. Letting t be a positive integer, we consider a cycle of length 2t and color
the edges red and blue alternatively. For every red edge, we add an additional vertex being adjacent to both endpoints
of this red edge. Let P contain the cycle vertices and M the “corona” vertices. The obtained graph is denoted by G. It is
easy to see that the graph G is a graph with n=3t , m=4t , �∗ =2, �=3 and o=2t . Define a function f : V → {−1, 1}
as follows: f (v)=1 for v ∈ P and f (v)=−1 for v ∈ M . It is easy to check that f is a signed dominating function with
w(f ) = t and that all of these bounds in Theorem 1(1)–(3) are also t, which implies that �s(G) attains these bounds.
However, �s(G) does not attain the corresponding bounds given in Theorem B(1) and (2), which are �3t/7� and �t/3�,
respectively. Next, we show that there is also a graph G different from Kn such that �s(G) reaches the lower bounds in
Theorem 1(4) and (5). Let G be a graph obtained from K6 ∪ K̄6 by joining each vertex of K̄6 to three vertices of K6 in
such a way thateach vertex of K6 is joined to exactly three vertices in K̄6. The graph G is a graph with n = 12, m = 33,
�∗ = 3 and o = 6. Define a function f : V → {−1, 1} as follows: f (v) = 1 for v ∈ K6 and f (v) = −1 for v ∈ K̄6. It
is not difficult to prove that f is a signed dominating function of G, and w(f ) = 0. We can verify that �s(G) attains the
bounds given in Theorem 1(4) and (5), both of which are 0, but �s(G) does not attain the corresponding bound given
in Theorem B(3), which is −2. �

Since �∗(G)�2 and o(G)�0, we easily deduce that the bound in Theorem 1(3) is tighter than the corresponding
one in Theorem B(2) by directly comparing these two bounds. Besides, it is easy to see that Theorem B(1) and (3)
are the special cases of Theorem 1(1) and (4) where o(G) = 0, respectively. Considering that each of both the results
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in Theorem 1(1) and (4) is an increasing function of o(G) and the fact o(G)�0, we deduce that they are tighter than
those in Theorem B(1) and (3).

From Theorem 1(1) or (2) or (3), the following result can be immediately deduced.

Corollary 1 (Henning [10]). For any r-regular graph G of order n, �s(G)�n/(r+1) for r even, and �s(G)�2n/(r+1)

for r odd. Furthermore, the bounds are sharp.

3. Lower bounds on k-subdomination number

For �ks(G) of any graph G, the results in Theorem C and D were presented in [3] and [12], respectively.

Theorem C (Chang et al. [3]). If G be a graph of order n with degree sequence d1 � . . . �dn, � = �(G), then

�ks(G)� 2

� + 1

k∑
j=1

⌈
dj + 2

2

⌉
− n.

Theorem D (Kang et al. [12]). For any graph G of order n and size m, let � = �(G) and � = �(G). Then,

�ks(G)�n − 2m + (n − k)(� + 2)

� + 1
.

In the remaining part of this section, we will use a uniform approach to prove two results on �ks, one of which is
the same as the result in Theorem C, and the other generalizes the result in Theorem D. We begin with the following
lemma.

Lemma 2. Given a graph G and a positive integer k. Let f be a k-subdominating function of G. Let P ={v ∈ V |f (v)=1},
M ={v ∈ V |f (v)=−1} and p=|P |. Let P1 ={v ∈ V |f (v)=1, f (N [v])�1}, P2 =P −P1, M1 ={v ∈ V |f (v)=−1,
f (N [v])�1} and M2 = M − M1. Then,∑

v∈P

dG(v) + |P1|�
∑

v∈P 1∪M1

�(dG(v) + 2)/2�.

Proof. For v ∈ V , let v be adjacent to exactly dP (v) vertices of P and exactly dM(v) vertices of M. Thus, dG(v) =
dP (v)+dM(v). For v ∈ P1∪M1, since f (N [v])�1, it is clear that dP (v)�dM(v) for v ∈ P1, and dP (v)�dM(v)+2 for
v ∈ M1. Hence, if v ∈ P1, then dP (v)��dG(v)/2� and dM(v)��dG(v)/2	; if v ∈ M1, then dP (v)��(dG(v) + 2)/2�
and dM(v)��(dG(v) − 2)/2	.

Let us consider the set E(P ,M). So,∑
v∈P 1

�dG(v)/2	 +
∑
v∈P 2

dG(v)� |E(P, M)|�
∑

v∈M1

�(dG(v) + 2)/2�,

∑
v∈P 1

�dG(v)/2	 +
∑
v∈P 2

dG(v) +
∑
v∈P 1

�dG(v)/2��
∑

v∈M1

�(dG(v) + 2)/2� +
∑
v∈P 1

�dG(v)/2�,

∑
v∈P 1

dG(v) +
∑
v∈P 2

dG(v)�
∑

v∈M1

�dG(v)/2� +
∑
v∈P 1

�dG(v)/2� + |M1|,
∑
v∈P

dG(v)�
∑

v∈P 1∪M1

�dG(v)/2� + |M1|.

Note that M1 ∩ P1 = ∅. Hence,∑
v∈P

dG(v) + |P1|�
∑

v∈P 1∪M1

�(dG(v) + 2)/2�. �

By Lemma 2, we can obtain the following results.
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Theorem 2. For any positive integer k and any graph G with degree sequence d1 � · · · �dn, let m=|E(G)|, n=|V (G)|
and fk =∑k

j=1�(dj + 2)/2�. Then,

(1) �ks(G)� 2fk

�+1 − n,

(2) �ks(G)�n − 4m+2n−2fk

�+1 ,

and these bounds are all sharp, where � = �(G) and � = �(G).

Proof. Let f be a k-subdominating function of G such thatw(f )=�ks(G), P={v ∈ V |f (v)=1}, M={v ∈ V |f (v)=−1}
and p = |P |. Let P1 = {v ∈ V |f (v) = 1, f (N[v])�1}, P2 = P − P1, M1 = {v ∈ V |f (v) = −1, f (N[v])�1} and
M2 = M − M1. Then, |M1| + |P1|�k and �ks(G) = p − (n − p) = 2p − n.

By Lemma 2, we have∑
v∈P

dG(v) + |P1|�
∑

v∈P 1∪M1

�(dG(v) + 2)/2�. (**)

(1) Considering ��dG(v) for every v ∈ V , we get from (**)

�p + p�
∑

v∈P 1∪M1

�(dG(v) + 2)/2�.

Noting that |M1 ∪ P1| = |M1| + |P1|�k, we have

p�
( ∑

v∈P 1∪M1

�(dG(v) + 2)/2�
)

/(� + 1)�fk/(� + 1).

Thus, �ks(G) = 2p − n� 2fk

�+1 − n.
(2) Considering 2m =∑

v∈V dG(v) and ��dG(v) for every v ∈ V , we get from (**)∑
v∈P

dG(v) +
∑
v∈M

dG(v) + |P1|�
∑

v∈P 1∪M1

�(dG(v) + 2)/2� +
∑
v∈M

dG(v),

∑
v∈V

dG(v) + |P1|�
∑

v∈P 1∪M1

�(dG(v) + 2)/2� +
∑
v∈M

dG(v),

2m + |P1|�
∑

v∈P 1∪M1

�(dG(v) + 2)/2� +
∑
v∈M

dG(v),

p� |P1|� − 2m +
∑

v∈P 1∪M1

�(dG(v) + 2)/2� +
∑
v∈M

dG(v)� − 2m + fk + �(n − p),

p� −2m + �n + fk

� + 1
.

Thus, �ks(G) = 2p − n� −4m+(�−1)n+2fk

�+1 = n − 4m+2n−2fk

�+1 .
In the special case where k = |V |, considering that 2fk = 2m + 2n + o and that � is actually �∗ in the process of the

above proof, we can immediately get those two bounds in Theorem 1(2) and (3) from these two bounds in Theorem
2, respectively. Besides, those bounds in Theorem 1 are sharp, so there exist graphs whose �ks’s attain the bounds in
Theorem 2. In this sense, the bounds in Theorem 2 are sharp. �

Notice that Theorem 2(1) is Theorem C. Considering that

fk =
k∑

j=1

⌈
dj + 2

2

⌉
=

k∑
j=1

dj

2
+ k + ok/2 = m −

n∑
j=k+1

dj

2
+ k + ok/2

�m − (n − k)�/2 + k + ok/2,
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we get from Theorem 2(2)

�ks(G)�n − 4m + 2n − 2fk

� + 1
�n − 2m + (n − k)(� + 2) − ok

� + 1
�n − 2m + (n − k)(� + 2)

� + 1
.

This yields Theorem D, where ok is the cardinality of the set {j |dj is odd, 1�j �k}.
By setting d1 = d2 = . . . = dn = r in Theorem 2(1) or (2), we have:

Corollary 2 (Hattingh et al. [9]). For every r-regular (r �2) graph G of order n, �ks(G)� − n + k(r + 3)/(r + 1)

for r odd, and �ks(G)� − n + k(r + 2)/(r + 1) for r even.

In the special case where k = �|V |/2�, from Theorem 2(1) or (2), we easily obtain the following result.

Corollary 3 (Henning [10]). For every r-regular (r �2) graph G of order n, �maj(G)�(1 − r)n/(2(r + 1)) for r odd,
and �maj(G)� − rn/(2(r + 1)) for r even.

4. Lower bounds on signed total domination number

In this section, we consider any graph G without isolated vertices. We will establish several lower bounds on �stin a
way similar to the case of �s.

Lemma 3. Given a graph G without isolated vertices. Let f be a signed total dominating function of G. Let P = {v ∈
V |f (v) = 1}, M = {v ∈ V |f (v) = −1}, p = |P |, n = |V | and o = o(G). Then,

(1)
∑

v∈P dG(v)�
∑

v∈MdG(v) + 2n − o,
(2)

∑
v∈P dG[P ](v)�

∑
v∈P �(dG(v) + 1)/2�.

Proof. For v ∈ V , let v be adjacent to dP (v) vertices of P and adjacent to dM(v) vertices of M. Thus, dG(v) =
dP (v) + dM(v). For v ∈ V , since f (N(v))�1, we have dP (v)�dM(v) + 1. Therefore, dP (v)��(dG(v) + 1)/2� and
dM(v)��(dG(v) − 1)/2	 for v ∈ V .

(1) Consider the set E(P ,M). Thus,

∑
v∈P

�(dG(v) − 1)/2	� |E(P, M)|�
∑
v∈M

�(dG(v) + 1)/2�,

∑
v∈P

�(dG(v) − 1)/2	 +
∑
v∈P

�(dG(v) + 1)/2��
∑
v∈M

�(dG(v) + 1)/2� +
∑
v∈P

�(dG(v) + 1)/2�,

∑
v∈P

dG(v)�
∑
v∈V

�(dG(v) + 1)/2�,

∑
v∈P

dG(v)�
∑
v∈V

dG(v)/2 + n/2 + (n − o)/2,

∑
v∈P

dG(v)�
∑
v∈P

dG(v)/2 +
∑
v∈M

dG(v)/2 + n − o/2.

Hence,∑
v∈P

dG(v)�
∑
v∈M

dG(v) + 2n − o.

(2) Considering graph G[P ] induced from P, we have dG[P ](v) = dP (v) for v ∈ P . Since dP (v)��(dG(v) + 1)/2�
for v ∈ P ,

∑
v∈P dG[P ](v)�

∑
v∈P �(dG(v) + 1)/2�. �

By Lemma 3, we can obtain the following theorem concerning the lower bounds on �st.
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Theorem 3. For any graph G without isolated vertices, let m = |E(G)| and n = |V (G)|. Then,

(1) �st(G)� (�−�+4)n−2o
�+� ,

(2) �st(G)� 2m+2n−o
� − n ,

(3) �st(G)�n − 2m−2n+o
� ,

(4) �st(G)�2�(3 − � +
√

(� − 3)2 + 8(� + 2)n − 8o)/4� − n,
(5) �st(G)�2�(3 + √

9 + 8(m + n) − 4o)/4� − n,

and these bounds are all sharp, where � = �(G), � = �(G) and o = o(G).

Proof. A proof of these bounds in Theorem 3 is similar to the proof of those bounds in Theorem 1, and therefore is
omitted. In the following, we will give a graph G such that �st(G) attains all the five bounds, and thus these bounds are
all sharp.

Let t �4 be an integer. Take a graph H that is isomorphic to the complete graph Kt . To each v ∈ V (H) assign a star
S(v) with t − 2 edges. Identify the central vertex of S(v) with v for each v ∈ V (H). Denote the resulting graph by G,
cf. [16]. Let f : V (G) → {−1, 1} be such that f (v) = 1 for v ∈ V (H) and f (v) = −1 otherwise. Obviously, f is a
signed total dominating function of G and w(f ) = f (V (G)) = t (3 − t). It is easy to verify that all the five bounds in
Theorem 3 are also t (3 − t), which implies that �st(G) attains these bounds. �

From Theorem 3(1), (2) or (3), we can directly obtain the following result.

Corollary 4 (Zelinka [16]). For any r-regular (r �2)graph G of order n, �st(G)�n/r for r being odd, and �st(G)�2n/r

for r being even.

Note. We have been recently informed from one of the referees that several other lower bounds on the signed total
domination number of a general graph have been established in a different way by Henning [11].

Remark. We may view the concept �ks as a generalization of �s. Similarly, we may also generalize the concept �st as
follows.

Definition 1. For a positive integer k, a total k-subdomination function G is a function f : V → {−1, 1} such that
f (N(v))�1 for at least k vertices v of G. The total k-subdomination number for a graph G is defined as �kst(G) =
minimum {w(f )|f is a total k-subdominating function of G}.

Quite analogous to the case of �ks, we have the following lemma, from which we can obtain Theorem 4 stating two
different lower bounds on �kst(G) of any graph G without isolated vertices. Their proofs are very similar to those in
the case of �ks, and therefore are omitted.

Lemma 4. Given a graph G without isolated vertices and a positive integer k. Let f be any total k-subdominating
function of G. Let P = {v ∈ V |f (v) = 1}, M = {v ∈ V |f (v) = −1} and p = |P |. Let P1 = {v ∈ V |f (v) =
1, f (N(v))�1}, P2 = P − P1, M1 = {v ∈ V |f (v) = −1, f (N(v))�1} and M2 = M − M1. Then,∑

v∈P

dG(v)�
∑

v∈P 1∪M1

�(dG(v) + 1)/2�.

Theorem 4. For any positive integer k and any graph G containing no isolated vertices with degree sequence
d1 � · · · �dn , let m = |E(G)|, n = |V (G)| and gk =∑k

j=1�(dj + 1)/2�. Then,

(1) �kst(G)� 2gk

� − n,

(2) �kst(G)�n − 4m−2gk

� ,

and these bounds are all sharp, where � = �(G) and � = �(G).
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It is easy to see that the results in Theorem 4(1) and (2) generalize the results in Theorem 3(2) and (3), respectively.
Moreover, we can directly obtain the following result from Theorem 4(1) or (2).

Corollary 5. For any positive integer k and every r-regular (r �2) graph G of order n, �kst(G)�(r + 1)k/r − n

for r being odd, and �kst(G)�(r + 2)k/r − n for r being even.

Note. We have been recently informed from one of the referees that an analogous theory for total k-subdominating
functions has been studied in the Ph.D. dissertation by Harris [8].

Acknowledgment

The authors would like to thank the referees for the many useful comments and suggestions.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, New York, 1976.
[2] I. Broere, J.H. Hattingh, M.A. Henning, A.A. McRae, Majority domination in graphs, Discrete Math. 138 (1995) 125–135.
[3] G.J. Chang, S.-C. Liaw, H.-G. Yeh, k-Subdomination in graphs, Discrete Appl. Math. 120 (2002) 55–60.
[4] E.J. Cockayne, C.M. Mynhardt, On a generalization of signed dominating function of graphs, Ars Combin. 43 (1996) 235–245.
[5] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, in: Y. Alavi, A. Schwenk (Eds.), Graph Theory,

Combinatorics and Applications, Wiley, New York, 1995, pp. 311–322.
[6] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996) 287–293.
[7] Z. Furedi, D. Mubayi, Signed domination in regular graphs and set-systems, J. Combin. Theory Ser. B 76 (1999) 223–239.
[8] L. Harris, Aspects of functional variations of domination in graphs, Ph.D. Dissertation, University of Natal, November 2003.
[9] J.H. Hattingh, E. Ungerer, M.A. Henning, Partial signed domination in graphs, Ars Combin. 48 (1998) 33–42.

[10] M.A. Henning, Domination in regular graphs, Ars Combin. 43 (1996) 263–271.
[11] M.A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004) 109–125.
[12] L. Kang, H. Qiao, E. Shan, D. Du, Lower bounds on minus domination and k-subdomination numbers, Theoret. Comput. Sci. 296 (2003)

89–98.
[13] J. Matousek, On the signed domination in graphs, Combinatorica 20 (2000) 103–108.
[14] T. Wexler, Some results on signed domination in graphs, Bachelor of Arts Dissertation, Amherst College, April 2000.
[15] C. Yin, J. Mao, Y. Han, Q. Qin, On the lower bounds of signed domination number of a graph, J. Math. (PRC) 22 (2002) 169–173 (in Chinese).
[16] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (126) (2001) 225–229.
[17] Z. Zhang, B. Xu, Y. Li, L. Liu, A note on the lower bounds of signed domination number of a graph, Discrete Math. 195 (1999) 295–298.


	Lower bounds on several versions of signed domination number62626262
	Introduction
	Lower bounds on signed domination number
	Lower bounds on =k-subdomination number
	Lower bounds on signed total domination number
	Acknowledgment
	References


