Binding Numbers and f-Factors of Graphs

Mikio Kano
Akashi College of Technology, Akashi 674, Japan
\section*{AND}
Norifide Tokushige
Department of Computer Science, Meiji University, Higashimita, Tama-ku, Kawasaki 214, Japan
Communicated by the Editors
Received May 25, 1988

Abstract

Let G be a connected graph of order n, a and b be integers such that $1 \leqslant a \leqslant b$ and $2 \leqslant b$, and $f: V(G) \rightarrow\{a, a+1, \ldots, b\}$ be a function such that $\Sigma(f(x) ; x \in V(G)) \equiv 0(\bmod 2)$. We prove the following two results: (i) If the binding number of G is greater than $(a+b-1)(n-1) /(a n-(a+b)+3)$ and $n \geqslant(a+b)^{2} / a$, then G has an f-factor; (ii) If the minimum degree of G is greater than $(b n-2) /(a+b)$, and $n \geqslant(a+b)^{2} / a$, then G has an f-factor. (C) 1992 Academic Press, Inc.

1. INTRODUCTION

We consider a finite graph G with vertex set $V(G)$ and edge set $E(G)$, which has neither loops nor multiple edges. For a vertex x of G, the neighborhood $N_{G}(x)$ of x in G is the set of vertices of G adjacent to x, and the degree $\operatorname{deg}_{G}(x)$ of x is $\left|N_{G}(x)\right|$. We denote by $\delta(G)$ the minimum degree of G. For a subset X of $V(G)$, let

$$
N_{G}(X):=\bigcup_{x \in X} N_{G}(x) .
$$

We say that X is independent if $N_{G}(X) \cap X=\varnothing$. The binding number $\operatorname{bind}(G)$ of G is defined by

$$
\operatorname{bind}(G):=\min \left\{\left.\frac{\left|N_{G}(X)\right|}{|X|} \right\rvert\, \varnothing \neq X \subset V(G), N_{G}(X) \neq V(G)\right\}
$$

(cf. [12]). It is trivial by the definition that $\operatorname{bind}(G)>c$ implies that for every subset X of $V(G)$, we have $N_{G}(X)=V(G)$ or $\left|N_{G}(X)\right|>c|X|$. It is also obvious that if $\operatorname{bind}(G)>1$, then G is connected. Let k be a positive integer and f be an integer-valued function defined on $V(G)$ (i.e., $f: V(G) \rightarrow\{\ldots, 0,1,2, \ldots\})$. Then a spanning k-regular subgraph of G is called a k-factor of G, and a spanning subgraph F of G is called an f-factor if $\operatorname{deg}_{F}(x)=f(x)$ for all $x \in V(G)$.

In this paper, we study conditions on the binding number and on the minimum degree of a graph G which guarantee the existence of an f-factor in G. We begin with some known results.

Theorem A (Anderson [1]). If a graph G has even order and bind $(G) \geqslant 4 / 3$, then G has a 1 -factor.

Theorem B (Woodall [12]). If $\operatorname{bind}(G) \geqslant 3 / 2$, then G has a Hamilton cycle, in particular, G has a 2-factor.

Recently, Katerinis and Woodall [8] and Katerinis [6] found the following sufficient conditions for a graph to have a k-factor. These conditions were also obtained by Egawa and Enomoto [3] independently.

Theorem C. Let $k \geqslant 2$ be an integer and G be a graph of order n. Assume $n \geqslant 4 k-6$ and $k n$ is even. Then the following two statements hold:
(i) If $\operatorname{bind}(G)>(2 k-1)(n-1) /(k n-2 k+3)$, then G has a k-factor [8].
(ii) If $\delta(G) \geqslant n / 2$, then G has a k-factor [6].

It is shown that the conditions in (i) and (ii) are best possible. Let us note that if $k \geqslant 3$ and $n \geqslant 4 k-5$, then

$$
2-\frac{1}{k} \leqslant \frac{(2 k-1)(n-1)}{k n-2 k+3}<2 .
$$

We now give our theorem, which is an extension of the above Theorem C. Moreover, the theorem gives a result concerning the following question: If $\operatorname{bind}(G)>c \geqslant 2$, what factor does a graph G have?

Theorem 1. Let G be a connected graph of order n, a and b be integers such that $1 \leqslant a \leqslant b$ and $2 \leqslant b$, and $f: V(G) \rightarrow\{a, a+1, \ldots, b\}$. Suppose that $n \geqslant(a+b)^{2} / a$ and $\sum_{x \in V(G)} f(x) \equiv 0(\bmod 2)$. If one of the following three conditions is satisfied, then G has an f-factor.

$$
\begin{equation*}
\text { (i) } \quad \operatorname{bind}(G)>(a+b-1)(n-1) /(a n-(a+b)+3) \text {; } \tag{1}
\end{equation*}
$$

(ii) $\quad \delta(G)>(b n-2) /(a+b)$;

$$
\begin{equation*}
\delta(G) \geqslant((b-1) n+a+b-2) /(a+b-1) \tag{2}
\end{equation*}
$$

and for every non-empty independent subset X of $V(G)$,

$$
\begin{equation*}
\left|N_{G}(X)\right| \geqslant \frac{(b-1) n+|X|-1}{a+b-1} \tag{4}
\end{equation*}
$$

We now show that the conditions (1) and (2) are best possible. If a graph G consists of $n(n \geqslant 2)$ disjoint copies of a graph H, then we write $G=n H$. The join $G=A+B$ has $V(G)=V(A) \cup V(B)$ and $E(G)=$ $E(A) \cup E(B) \cup\{x y \mid x \in V(A)$ and $y \in V(B)\}$. Let $c=\lceil b / a\rceil, m$ be a positive integer, and $G=K_{2 m b-2 m-2 c}+(m a-1) K_{2}$, where K_{l} denotes the complete graph of order l. Define a function $f: V(G) \rightarrow\{a, a+1, \ldots, b\}$ by

$$
f(x)= \begin{cases}a & \text { if } x \in V\left(K_{2 m b-2 m-2 c}\right) \\ b & \text { otherwise }\end{cases}
$$

Then G has no f-factor since for $S=V\left(K_{2 m b-2 m-2 c}\right)$ and $T=V(G) \backslash S$, we have

$$
\left.\gamma_{G}(S, T)=2 b-2 a c-2<0 \quad \text { (see Lemma } 1\right)
$$

Moreover, we have

$$
\operatorname{bind}(G)=\frac{(a+b-1)(n-1)}{n a-(a+b)+3+2(a c-b)}
$$

Note that for $X=V(G) \backslash\left(V\left(K_{2 m b-2 m-2 c}\right) \cup\{u\}\right)$, where $V\left(K_{2}\right)=\{u, v\}$, we obtain

$$
\frac{\left|N_{G}(X)\right|}{|X|}=\frac{n-1}{2(m a-1)-1}=\frac{(a+b-1)(n-1)}{n a-(a+b)+3+2(a c-b)}=\operatorname{bind}(G)
$$

Therefore, if b is divisible by a, then condition (1) is best possible.
Next, suppose that $a+b$ is even and there exist positive integers s and t such that $b s=a t+2$ and $s+t$ is even. Let $G=(a m+s) K_{1}+K_{b m+t}$, where m is a positive integer, and let f be a function on $V(G)$ defined by

$$
f(x)=\left\{\begin{array}{lll}
b & \text { if } & x \in V\left((a m+s) K_{1}\right) \\
a & \text { if } & x \in V\left(K_{b m+t}\right)
\end{array}\right.
$$

Then G has no f-factor and

$$
\delta(G)=b m+t=\frac{b n-2}{a+b}
$$

Hence condition (2) is also best possible in this sense.

Note that (iii) of Theorem 1 is an extension of results in [9,13], which are obtained from (iii) by setting $a=b$. Similar results on 1 -factor can be found in [2]. Moreover, a similar sufficient condition for a graph to have an $[a, b]$-factor, which is a spanning subgraph F such that $a \leqslant \operatorname{deg}_{F}(x) \leqslant b$ for all vertices x, can be found in [5], and similar sufficient conditions for a bipartite graph to have k-factors are given in $[7,4]$.

2. Proofs

Let G be a graph and S and T be disjoint subsets of $V(G)$. Then $G-S$ denotes the subgraph of G induced by $V(G) \backslash S$, and $e_{G}(S, T)$ denotes the number of edges of G joining a vertex in S to a vertex in T. Our proof of Theorem 1 is analogous to those of $[3,8,9,13]$ and depends on the following lemma, which is called the f-factor theorem.

Lemma 1 (Tutte $[10,11]$). Let G be a graph and $f: V(G) \rightarrow\{0,1,2, \ldots\}$ such that $\sum_{x \in V(G)} f(x) \equiv 0(\bmod 2)$. Then G has an f-factor if and only if

$$
\gamma_{G}(S, T):=\sum_{x \in S} f(x)+\sum_{x \in T}\left(\operatorname{deg}_{G-S}(x)-f(x)\right)-h_{G}(S, T) \geqslant 0
$$

for all $S, T \subset V(G), S \cap T=\varnothing$, where $h_{G}(S, T)$ denotes the number of components C of $G-(S \cup T)$ such that $\sum_{x \in V(C)} f(x)+e_{G}(V(C), T) \equiv$ $1(\bmod 2)$.

Moreover, the following useful congruence expression holds:

$$
\begin{equation*}
\gamma_{G}(S, T) \equiv \sum_{x \in V(G)} f(x) \equiv 0 \quad(\bmod 2) . \tag{5}
\end{equation*}
$$

Lemma 2[12]. Let G be a graph of order n. If $\operatorname{bind}(G)>c$, then $\delta(G)>((c-1) n+1) / c$, and $\left|N_{G}(X)\right|>((c-1) n+|X|) / c$ for all non-empty subsets X of $V(G)$ with $N_{G}(X) \neq V(G)$.

Proof. Let $Y:=V(G) \backslash N_{G}(X)$. Since $N_{G}(Y) \subseteq V(G) \backslash X$, we have $n-|X|$ $\geqslant\left|N_{G}(Y)\right|>c|Y|=c\left(n-\left|N_{G}(X)\right|\right)$. Hence $\left|N_{G}(X)\right|>((c-1) n+|X|) / c$, and so $\delta(G)>((c-1) n+1) / c$.

Suppose that (1) in Theorem 1 holds. Then, by Lemma 2, we have

$$
\begin{equation*}
\delta(G)>\frac{(b-1) n+a+b-3}{a+b-1} \geqslant \frac{(b-1) n}{a+b-1}, \tag{6}
\end{equation*}
$$

and

$$
\begin{aligned}
\left|N_{G}(X)\right| & >\frac{(b-1) n+a|X|+(b-3)(n-|X|) /(n-1)}{a+b-1} \\
& \geqslant \frac{(b-1) n+|X|-2}{a+b-1}
\end{aligned}
$$

for every independent subset X of $V(G)$. Hence G satisfies (3) and (4). Therefore (i) of Theorem 1 is an immediate consequence of (iii) of the theorem, and so we shall prove (ii) and (iii) of the theorem.

Proof of (iii) of Theorem 1. Suppose that G satisfies the conditions (3) and (4), but has no f-factor. By Lemma 1 and (5), there exist disjoint subsets S and T of $V(G)$ such that

$$
\sum_{x \in S} f(x)+\sum_{x \in T}\left(\operatorname{deg}_{G-S}(x)-f(x)\right)-w \leqslant-2,
$$

where w denotes the number of components of $G-(S \cup T)$. Note that $S \cup T \neq \varnothing$ since $\gamma(\varnothing, \varnothing)=-h(\varnothing, \varnothing)=0$, which follows from the assumption that G is connected and $\sum_{x \in V(G)} f(x) \equiv 0(\bmod 2)$. In particular, we have

$$
\begin{equation*}
a|S|+\sum_{x \in T}\left(\operatorname{deg}_{G-S}(x)-b\right)-w \leqslant-2 . \tag{7}
\end{equation*}
$$

We choose S and T so that $|S|+|T|$ is as large as possible subject to $\gamma(S, T)<0$. Let $s:=|S|$ and $t:=|T|$. It is clear that

$$
\begin{equation*}
w \leqslant n-s-t . \tag{8}
\end{equation*}
$$

If $w>0$ then let m denote the minimum order of components of $G-(S \cup T)$. Then

$$
\begin{equation*}
m \leqslant \frac{n-s-t}{w} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta(G) \leqslant m-1+s+t . \tag{10}
\end{equation*}
$$

Moreover, it follows from the choice of S and T that

$$
\begin{equation*}
\text { if } a=b \text { then } m \geqslant 3 \tag{11}
\end{equation*}
$$

(cf. [8]). If $T \neq \varnothing$, let

$$
h:=\min \left\{\operatorname{deg}_{G-s}(x) \mid x \in T\right\} .
$$

Then obviously

$$
\begin{equation*}
\delta(G) \leqslant h+s . \tag{12}
\end{equation*}
$$

We consider five cases and derive a contradiction in each case.
Case 1. $\quad T=\varnothing$. By (7) and (8), we have

$$
\begin{equation*}
a s+2 \leqslant w \leqslant n-s . \tag{13}
\end{equation*}
$$

Hence we have by (6), (10), (9), and (12) that

$$
\begin{aligned}
\frac{(b-1) n}{a+b-1} & <\delta(G) \leqslant m-1+s \leqslant \frac{n-s}{w}-1+s \\
& \leqslant \frac{n-s}{a s+2}-1+s \\
& =\frac{n-2}{a+1}-\frac{(n-2-a s-s)(a s-a+1)}{(a+1)(a s+2)} .
\end{aligned}
$$

Since $n-2-s a-s \geqslant 0$ by (13), it follows that

$$
\frac{(b-1) n}{a+b-1}<\frac{n-2}{a+1}
$$

which implies $a(b-2) n<-2(a+b-1)$. This is clearly impossible since $b \geqslant 2$.

Case 2. $T \neq \varnothing$ and $h=0$. Let $Z:=\left\{x \in T \mid \operatorname{deg}_{G-S}(x)=0\right\} \neq \varnothing$ and $z=|Z|$. Since Z is independent, we have by (4)

$$
\begin{equation*}
\frac{(b-1) n+z-1}{a+b-1} \leqslant\left|N_{G}(Z)\right| \leqslant s \tag{14}
\end{equation*}
$$

On the other hand, we have by (7), (8), and the fact that $b-1 \geqslant 1$

$$
a s-b z+(1-b)(t-z)-(b-1)(n-s-t) \leqslant-2 .
$$

Hence

$$
s \leqslant \frac{(b-1) n+z-2}{a+b-1}
$$

This contradicts (14).

Case 3. $T \neq \varnothing$ and $1 \leqslant h \leqslant b-1$, By (7), (8), and the fact that $b-h \geqslant 1$, we have

$$
a s+(h-b) t-(b-h)(n-s-t) \leqslant-2
$$

Thus

$$
\begin{equation*}
s \leqslant \frac{(b-h) n-2}{a+b-h} \tag{15}
\end{equation*}
$$

On the other hand, we obtain by (3) and (12) that

$$
\frac{(b-1) n-1}{a+b-1}+1 \leqslant \delta(G) \leqslant s+h .
$$

This inequality together with (15) gives us

$$
\frac{(b-1) n-1}{a+b-1}+1-h \leqslant \frac{(b-h) n-2}{a+b-h}
$$

Hence

$$
(h-1) a n \leqslant(h-1)(a+b-1)(a+b-h)-(a+b+h-2)
$$

This implies $h \geqslant 2$ and

$$
a n \leqslant(a+b-1)(a+b-h)-\frac{(a+b+h-2)}{h-1}
$$

This contradicts our assumption that $n \geqslant(a+b)^{2} / a$.
Case 4. $T \neq \varnothing$ and $h=b$. We have $w \geqslant a s+2$ by (7), and so we obtain by (9) that

$$
\begin{equation*}
m \leqslant \frac{n-s-t}{w} \leqslant \frac{n-s-1}{a s+2} \tag{16}
\end{equation*}
$$

If $b \geqslant 3$ then we get the following inequality from $a n \geqslant(a+b)^{2}>$ $(a+b+1)(a+b-1)$:

$$
\begin{equation*}
a n(b-2)>(a+b-1)\left(a b+b^{2}-2 a-b-2\right) \tag{17}
\end{equation*}
$$

By (3) and (12), we have

$$
\frac{(b-1) n-1}{a+b-1}+1 \leqslant \delta(G) \leqslant h+s=b+s
$$

and so

$$
\begin{align*}
s & \geqslant \frac{(b-1) n-1}{a+b-1}-(b-1) \tag{18}\\
& =\frac{n-3}{a+1}+\frac{a n(b-2)+(a+b-1)(3-(a+1)(b-1))-(a+1)}{(a+b-1)(a+1)} \\
& >\frac{n-3}{a+1}+\frac{(a+b-1)\left(b^{2}-a-2 b\right)+2 b+a-3}{(a+b-1)(a+1)} \tag{17}
\end{align*}
$$

Hence, if $b \geqslant 3$ then $s>(n-3) /(a+1)$, and so $m<1$ by (16), a contradiction. If $a=b=2$ then $s \geqslant(n-4) / 3$ by (18), and so $m<3$ by (16). This contradicts (11). Therefore we may assume that $a=1$ and $b=2$. By (16) and (18), we have $m=1$. Thus it follows from (10) and (12) that

$$
\delta(G) \leqslant s+t \quad \text { and } \quad \delta(G) \leqslant b+s=s+2
$$

Hence, by (7) and (8), we obtain

$$
\delta(G) \leqslant s+2=a s+2 \leqslant w \leqslant n-s-t \leqslant n-\delta(G)
$$

Hence $\delta(G) \leqslant n / 2$. This contradicts (3).
Case 5. $\quad T \neq \varnothing$ and $h>b$. By (7), we have as $+(h-b) t-w \leqslant-2$, and so

$$
\begin{equation*}
w \geqslant a s+t+2 \geqslant s+t+2 . \tag{19}
\end{equation*}
$$

Suppose that $m \geqslant 3$. Then, by (10) and (9), we have

$$
\begin{aligned}
\delta(G) & \leqslant m-1+s+t \leqslant m+w-3 \\
& \leqslant m+w-3+\frac{1}{3}(m-3)(w-3)=\frac{m w}{3} \leqslant \frac{n}{3} .
\end{aligned}
$$

This contradicts (4). Thus we may assume that $m \leqslant 2$. It follows from (8) and (19) that $s+t+1 \leqslant n / 2$. Then by (3) and (10), we have

$$
\frac{(b-1) n}{a+b-1}<\delta(G) \leqslant s+t+1 \leqslant \frac{n}{2} .
$$

Thus $n(2 b-a-1)<0$. This is impossible. Consequently, (iii) is proven.
Proof of (ii) of Theorem 1. This is almost identical to the proof of (iii). Since $n \geqslant(a+b)^{2} / a$, we have

$$
\frac{b n-2}{a+b} \geqslant \frac{(b-1) n+a+b-2}{a+b-1}
$$

and so (4) still holds by (3). Thus Cases $1,3,4$, and 5 carry over without modification from (iii) to (ii) because we don't use (4) in these cases. The only case that needs to change is the following:

Case 2. $\quad T \neq \varnothing$ and $h=0$. By (7) and (8), we have

$$
-2 \geqslant a s-b t-(n-s-t) \geqslant a s-b t-b(n-s-t)
$$

and so $s \leqslant(b n-2) /(a+b)$. Then (3) and (11) give

$$
\frac{b n-2}{a+b}<\delta(G) \leqslant h+s=s \leqslant \frac{b n-2}{a+b}
$$

a contradiction. Consequently the proof is complete.

Acknowledgment

The authors thank the referees for their helpful suggestions by which proofs became much shorter and clearer.

References

1. I. Anderson, Perfect matchings of a graph, J. Combin. Theory Ser. B 10 (1971), 183-186.
2. I. Anderson, Sufficient conditions for matchings, Proc. Edinburgh Math. Soc. (2) 18 (1972), 129-136.
3. Y. Egawa and H. Еnomoto, Sufficient conditions for the existence of k-factors, in "Recent Studies in Graph Theory" (V. R. Kull, Ed.), pp. 96-105, Vishwa International Publications, 1989.
4. H. Enomoto, K. Ota, and M. Kano, A sufficient condition for a biparitite graph to have a k-factor, J. Graph Theory 12 (1988), 141-151.
5. M. Kano, Sufficient conditions for a graph to have $[a, b]$-factors, Graphs Combin. 6 (1990), 245-251.
6. P. Katerinis, Minimum degree of a graph and the existence of k-factors, Proc. Indian Acad. Sci. Math. Sci. 94 (1985), 123-127.
7. P. Katerinis, Two sufficient conditions for a 2 -factor in a bipartite graph, J. Graph Theory 11 (1987), 1-6.
8. P. Katerinis and D. R. Woodall, Binding numbers of graphs and the existence of k-factors, Quart. J. Math. 38 (1987), 221-228.
9. N. Tokushige, Binding number and minimum degree for k-factors, J. Graph Theory 13 (1989), 607-617.
10. W. T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952), 314-328.
11. W. T. Tutte, A short proof of the factor theorem for finite graphs, Cnad. J. Math. 6 (1954), 347-352.
12. D. R. Woodall, The binding number of a graph and its Anderson number, J. Combin. Theory Ser. B 15 (1973), 225-255.
13. D. R. Woodall, k-Factors and neighbourhoods of independent sets in graphs, J. London Math. Soc. (2) 41 (1990), 385-392.
