=

View metadata, citation and similar papers at core.ac.uk brought to you byjz CORE

provided by Elsevier - Publisher Connector

JOURNAL OF COMBINATORIAL THEORY, Series B 54, 213-221 (1992)

Binding Numbers and 7-Factors of Graphs
Mikio KanNo

Akashi College of Technology,
Akashi 674, Japan

AND

NORIHIDE TOKUSHIGE

Department of Computer Science, Meiji University,
Higashimita, Tama-ku, Kawasaki 214, Japan

Communicated by the Editors

Received May 25, 1988

Let G be a connected graph of order »n, a and b be integers such that
1<a<b and 2<bh, and f:V(G)—> {a,a+1,.,b} be a function such that
T(f(x); xe V(G))=0(mod 2). We prove the following two results: (i) If the
binding number of G is greater than (a+b—1)n—1)/(an—(a+b)+3) and
n>(a+b)*a, then G has an ffactor; (ii) If the minimum degree of G is greater
than (bn—2)/(a+b), and n>(a+b)*/a, then G has an ffactor. © 1992 Academic

Press, Inc.

1. INTRODUCTION

We consider a finite graph G with vertex set V(G) and edge set E(G),
which has neither loops nor multiple edges. For a vertex x of G, the
neighborhood Ng;(x) of x in G is the set of vertices of G adjacent to x, and
the degree degg{x) of x is |Ngz(x)|. We denote by 6(G) the minimum
degree of G. For a subset X of V(G), let

Ng(X):= |J Ng(x).
xeX
We say that X is independent if Ng(X)nX= . The binding number
bind(G) of G is defined by

bind(G) : = min {LAL'G% | F#XcV(G), No(X) # V(G)}
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(cf. [12]). It is trivial by the definition that bind(G) > ¢ implies that for
every subset X of V(G), we have Ng(X)=V(G) or |Ng(X)| >c | X]|. It is
also obvious that if bind(G)> 1, then G is connected. Let k be a positive
integer and f be an integer-valued function defined on V(G) (ie,
f:V(G)>{..,0,1,2,..}). Then a spanning k-regular subgraph of G is
called a k-factor of G, and a spanning subgraph F of G is called an f-factor
if deg-(x)=f(x) for all xe V(G).

In this paper, we study conditions on the binding number and on the
minimum degree of a graph G which guarantee the existence of an f-factor
in G. We begin with some known results.

THEOREM A (Anderson [1]). If a graph G has even order and
bind(G) > 4/3, then G has a l-factor.

THEOREM B (Woodall [12]). If bind(G) = 3/2, then G has a Hamilton
cycle, in particular, G has a 2-factor.

Recently, Katerinis and Woodall [8] and Katerinis [6] found the
following sufficient conditions for a graph to have a k-factor. These condi-
tions were also obtained by Egawa and Enomoto [3] independently.

THEOREM C. Let k=2 be an integer and G be a graph of order n.
Assume n= 4k — 6 and kn is even. Then the following two statements hold:

(i) If bind(G)> (2k — 1)(n— 1)/(kn—2k + 3), then G has a k-factor
(81
(ii) If 6(G) = n/2, then G has a k-factor [6].
It is shown that the conditions in (i) and (ii) are best possible. Let us
note that if k>3 and n>4k -5, then

_1_@k=D@-1)

2 k> kn—2k+3

<2

We now give our theorem, which is an extension of the above Theorem C.
Moreover, the theorem gives a result concerning the following question: If
bind(G) > ¢ > 2, what factor does a graph G have?

THEOREM 1. Let G be a connected graph of order n, a and b be integers
such that 1<a<b and 2<b, and - V(G)- {a,a+1, .., b}. Suppose that
n>(a+b)ja and ¥, ) f(x)=0(mod 2). If one of the following three
conditions is satisfied, then G has an f-factor.

(i) bind(G)> (a+b—1)(n—1)/{an—(a+b)+3); (1)
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(i)  8(G)> (bn—2)/(a+b); 2)
(i) G =((b—)n+a+b—2)(a+b—1) 3)

and for every non-empty independent subset X of V(G),

(b—1)n+]X|—1
a+b—1 ’

We now show that the conditions (1) and (2) are best possible. If a
graph G consists of n (n>2) disjoint copies of a graph H, then we write
G=nH. The join G=A+B has V(G)=V(4)uV(B) and E(G)=
E(A)VEB)u {xy|xeV(4) and ye V(B)}. Let c=[b/a’], m be a positive
integer, and G=K,,,; 2m_ 2.+ (ma— 1) K,, where K, denotes the complete
graph of order /. Define a function f: V(G)— {a,a+1, .., b} by

ING(X)| =

(4)

_ a ifxe V(K2mb~2m—20)
J)= {b otherwise.

Then G has no factor since for S= V(K,,;_ 22 ) and T=V(G)\ S, we
have

16(S, T)=2b—2ac—2<0 (see Lemma 1).

Moreover, we have
(a+b6—1)n—1)

bind(G)=na__(a+b)+3+2(ac——b)-

Note that for X = V(G)\(V(Kymp—am —2.)  {u}), where V(K,) = {u, v}, we
obtain
INg(X)| n—1 B (a+b—1)n—-1)
|X|  2(ma—1)—1 na—(a+b)+3+2ac—b)

= bind(G).

Therefore, if b is divisible by a, then condition (1) is best possible.

Next, suppose that a+ b is even and there exist positive integers s and
t such that bs=at+2 and s+ is even. Let G=(am+5)K,+K,,.., .,
where m is a positive integer, and let f be a function on V(G) defined by

f(x)—{b if xeV((am+s)K,),
Tla if xeV(Komy,).
Then G has no f-factor and
bn—2
8(G)=»b =—
(G)y=bm+1t PR

Hence condition (2) is also best possible in this sense.
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Note that (iii) of Theorem 1 is an extension of results in [9, 137, which
are obtained from (iii) by setting a = b. Similar results on 1-factor can be
found in [2]. Moreover, a similar sufficient condition for a graph to have
an [a, b]-factor, which is a spanning subgraph F such that a <deg (x)<b
for all vertices x, can be found in [5], and similar sufficient conditions for
a bipartite graph to have k-factors are given in [7, 4].

2. Proors

Let G be a graph and S and T be disjoint subsets of V(G). Then G- S
denotes the subgraph of G induced by V(G)\S, and eq(S, T) denotes the
number of edges of G joining a vertex in S to a vertex in T. Our proof of
Theorem 1 is analogous to those of [3, 8, 9, 13] and depends on the
following lemma, which is called the f-factor theorem.

LemMMA 1 (Tutte [10, 11]). Let G be a graph and f: V(G) - {0, 1,2, ...}
such that 3., .y f(x)=0(mod 2). Then G has an f-factor if and only if
16(S, T) =Y flx)+ ) (degs_s(x)—f(x))—hs(S, T) >0

xesS xeT

for all S, T<V(G), SNnT=, where hgy(S,T) denotes the number of
components C of G—(SuT) such that ¥, cvic)f(x)+eg(V(C), T)=

1 (mod 2).
Moreover, the following useful congruence expression holds:
16(S, T)= ) f(x)=0  (mod?2). (5)
xe V(G)

LemMma 2 [123. Let G be a graph of order n. If bind(G)>c, then
G)> ((c—V)yn+1)/c, and | No(X)| > ((c — 1) n+ | X|)/c for all non-empty
subsets X of V(G) with Ngu(X) # V(G).

Proof. Let Y :=V(G)\Ng(X). Since N;(Y) < V(G)\X, we have n— | X|
Z|Ng(Y)|>c|Y|=c(n—|Ng(X)|). Hence | No(X)| > ((c—1)n+|X]|)/c,
and so 6(G)>((c—~1)n+1)/c.

Suppose that (1) in Theorem 1 holds. Then, by Lemma 2, we have

(b—Dn+a+b=3_(b—Dn

N> b1 Zavb-1

(6)
and
(b—1Dn+ajX|+b-3)n—-|X|)(n—-1)
a+b-—1
2(b—l)n+|X|—2
a+b—1

|Ng(X)| >
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for every independent subset X of V{(G). Hence G satisfies (3) and (4).
Therefore (i) of Theorem 1 is an immediate consequence of (iii) of the
theorem, and so we shall prove (ii) and (iii) of the theorem.

Proof of (iii) of Theorem 1. Suppose that G satisfies the conditions (3)
and (4), but has no ffactor. By Lemma 1 and (5), there exist disjoint
subsets S and 7 of V(G) such that

Y f(x)+ Y (dege s(x)—f(x)—w< =2,

xeS xeT

where w denotes the number of components of G—(Su T). Note that
SuT#d since Y, T)=—h(J, &J)=0, which follows from the
assumption that G is connected and Y .., f(x)=0(mod2). In
particular, we have

a|S|+ Y (dege_s(x)—b)—w< —2. (7

xeT

We choose S and T so that |S|+|T| is as large as possible subject to
y(S, T)<0. Let s:= | S| and ¢ := | T|. It is clear that

w<n—s—t. (8)

If w>0 then let m denote the minimum order of components of
G—(SuT). Then

m< 2! 9)
w
and
HG)sm—1+s5+1 (10)

Moreover, it follows from the choice of S and T that
ifa=bthenm>=3 (11)
(cf. [8]). If T# &, let
h:= min {deg;_s(x)|xeT}.
Then obviously
G)<h+s. (12)

We consider five cases and derive a contradiction in each case.

Case 1. T=. By (7) and (8), we have

as+2<wsn—s. (13)
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Hence we have by (6), (10), (9), and (12) that

(b—1)n n—s
<m—14s<——
a+b_l<6(G)\m I+s " 1+
<272 14
< —1+s
as+2

n=2 (n—2—as—s)as—a+1)
Ta+1 (a+1)(as+2)

Since n —2 —sa— s> 0 by (13), it follows that

(b—Un _n—2
a+b—1 a+1

which implies a(b—2)n< —2(a+ b —1). This is clearly impossible since
b=12.

Case 2. T# and h=0. Let Z:= {xeT|degs_s(x)=0}+# & and
z=|Z]|. Since Z is independent, we have by (4)

(b-1)n+z-1
2+h—1 < |Ng(Z) <. (14)
On the other hand, we have by (7), (8), and the fact that b—1>1
as—bz+(1=b)t—2)—(b—1)n—s—1t)< -2.
Hence

b-)n+z-2
K- - =
a+b—1

This contradicts (14).

Case 3. T#Z and 1<h<b—1, By (7), (8), and the fact that
b—h>=1, we have

as+(h—byt—(b—h)(n—s—1)< 2.
Thus

_(b=h)yn—2

~3 . 1
a+b—h (15)
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On the other hand, we obtain by (3) and (12) that

(b—1)n—1

1<8(G)<s+h.
a+b—1 + (G)<s+
This inequality together with (15) gives us

(b—l)n—l+
a+b—1

Hence
(h—Dan<h—1Da+b—1)la+b—hy—(a+b+h-2)
This implies 2> 2 and

b+h-2
an<(a+b— 1)(a+b—h)—(—“i}:—l-——).
This contradicts our assumption that n> (a + b)%/a.

Case 4. T# (& and h=»b. We have w > as + 2 by (7), and so we obtain
by (9) that

n—s—t n—s—1
< .
w as+2

m< (16)

If >3 then we get the following inequality from an>(a+b)*>
(@a+b+1)a+b—1)

an(b—2)>(a+b—1)ab+b*—-2a—b-2). (17)
By (3) and (12), we have

(ba;-i-l[z%_ii-FIS(s(G)gh-i-S:b-{-s
and so
b-—1)n—-1
> avb—1 =D )
_.n—3+an(b—2)+(a+b—1)(3_(a+1)(b_1))_(a+1)
..a+1 @tb—D@atl)

>n—3 (@+b—-1)b*—a—2b)+2b+a-3
a+1 (a+b—1)a+1)

(by (17))
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Hence, if >3 then s> (n—3)/(a+ 1), and so m<1 by (16), a contra-
diction. If a=b=2 then s> (n—4)/3 by (18), and so m <3 by (16). This
contradicts (11). Therefore we may assume that a=1 and b=2. By (16)
and (18), we have m=1. Thus it follows from (10) and (12) that

HG)<s+t and 0(G)<bhb+s=s5+2
Hence, by (7) and (8), we obtain
MG)Ss+2=as+2<wsn—s—t1<n—94G).

Hence 6(G) < n/2. This contradicts (3).

Case 5. T# J and h>b. By (7), we have as+ (h—b)t—w< -2, and
$0

w2as+t+2=2s5+t+2. (19)
Suppose that m = 3. Then, by (10) and (9), we have

H(G)Sm—1+s+t<m+w—3

1
<Km+w—3+=(m—3)w—3)= =

< <
3 3

w3

This contradicts (4). Thus we may assume that m < 2. It follows from (8)
and (19) that s+ ¢+ 1 <n/2. Then by (3) and (10), we have

(b—1)n

n
H(E)<s+t+ 1<,
a+b—1<( )<s+t+

2
Thus #(2b —a— 1)< 0. This is impossible. Consequently, (iii} is proven.

Proof of (ii) of Theorem 1. This is almost identical to the proof of (iii).
Since n > (a + b)*/a, we have
bn—2>(b—l)n+a+b—2
at+b” a+b—1

3

and so (4) still holds by (3). Thus Cases 1, 3, 4, and 5 carry over without
modification from (iii) to (ii) because we don’t use (4) in these cases. The
only case that needs to change is the following:

Case 2. T+# ¢ and h=0. By (7) and (8), we have

—2zas—bt—(n—s—t)zas—bt—b(n—s—1),
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and so s<(bn—2)/(a+b). Then (3) and (11) give

a

bn—2 bn—-2
) Sh+s=s< ,
+b< (G)<hts=s a+b

contradiction. Consequently the proof is complete.
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