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Summary

Coral reefs, one of the world’s most complex and vulnerable

ecosystems, face an uncertain future in coming decades as
they continue to respond to anthropogenic climate change,

overfishing, pollution, and other human impacts [1, 2].
Traditionally, marine macroecology is based on presence/

absence data from taxonomic checklists or geographic
ranges, providing a qualitative overview of spatial shifts in

species richness that treats rare and common species
equally [3, 4]. As a consequence, regional and long-term

shifts in relative abundances of individual taxa are poorly

understood. Here we apply a more rigorous quantitative
approach to examine large-scale spatial variation in the

species composition and abundance of corals on midshelf
reefs along the length of Australia’s Great Barrier Reef,

a biogeographic region where species richness is high and
relatively homogeneous [5]. We demonstrate that important

functional components of coral assemblages ‘‘sample’’
space differently at 132 sites separated by up to 1740 km,

leading to complex latitudinal shifts in patterns of absolute
and relative abundance. The flexibility in community compo-

sition that we document along latitudinal environmental
gradients indicates that climate change is likely to result in

a reassortment of coral reef taxa rather than wholesale loss
of entire reef ecosystems.

Results and Discussion

The accelerating impact of climate change on coral reefs is of
major concern worldwide [2, 6–8]. Contemporary research on
how climate change affects coral reefs has matured beyond
the simplistic ‘‘canary in the coal mine’’ concept to a more
nuanced recognition that climate-related pressures such as
bleaching (due to the loss of symbiotic zooxanthellae) and
ocean acidification do not affect all species equally (e.g.,
[2, 6, 7, 9–11]). In this context, a critical issue for the future
status of reefs will be their ability to maintain functional
capacity in the face of the changes in species composition
*Correspondence: terry.hughes@jcu.edu.au
that are already underway due to multiple anthropogenic
impacts [1, 6, 12, 13]. To date, all regional-scale assessments
of coral reef condition have been based on the relatively crude
metric of total coral cover, masking the extent of changes in
relative abundances [1]. Here we explicitly examine regional-
scale patterns in the composition of coral reef assemblages
along the full length of the Great Barrier Reef, which spans
a latitudinal environmental gradient from 10�S to 23�S (Fig-
ure 1). Average summer sea surface temperatures (SSTs) in
the northern Great Barrier Reef exceed southern winter
temperatures by at least 8�C–9�C [14], and even larger devia-
tions occur in shallow reef habitats or during warm or cold
spells. Our multiscale sampling and analyses are uniquely
designed to compare local and regional variation in coral
assemblages and to test the extent to which individual taxa
change in abundance at multiple scales. Our results provide
the first quantitative evidence of spatial shifts in the assem-
blage structure of contemporary corals (as distinct from
counts of species) at a hierarchy of scales, placing local varia-
tion in assemblage structure among sites, reefs, and habitats
in a broader biogeographical perspective.
The structure of coral assemblages changes substantially

at regional scales along the Great Barrier Reef, with important
functional components exhibiting large shifts in relative and
absolute abundance (Figure 2; Table 1). Coral assemblages
in two key habitats (reef crests at 1–2 m depth and reef slopes
at 6–7 m) also have highly distinctive faunas, which differ from
each other as much as the Great Barrier Reef regions sepa-
rated by up to 1740 km (Figure 2). Our data show that crest
and slope assemblages along the Great Barrier Reef do not
exhibit a monotonic trend with latitude or latitude-related
temperature gradients, because some taxa increase in abun-
dance as others decrease or remain relatively constant
among regions (Figures 2 and 3). On reef crests, 9 of the 12
major taxa that comprise these assemblages varied signifi-
cantly among regions. Similarly, on slopes, seven taxa
showed significant regional-scale variation in abundance
(Figure 3). Only Montipora spp. were uniformly abundant
along the Great Barrier Reef on both the crests and slopes.
The other 11 taxa exhibited significant regional-scale varia-
tion on the reef crests and/or slopes, regardless of their
susceptibility or resistance to thermal stress and bleaching
(Table 1). For 7 of the 12 taxa, 20%–44% of the overall varia-
tion in their abundance in at least one habitat occurred at this
largest, regional scale. These findings indicate that assembly
rules at a regional scale are surprisingly flexible and do not
show a consistent latitudinal response to climatic drivers
(Figure 2).
In comparison to regional differences in species abun-

dances, variation among adjacent reefs was generally small,
whereas variation among sites on individual reefs was often
comparable to or greater than among regions (Figure 3). Only
two taxa (Poritidae and Montipora, both on crests), showed
reef-scale differences that accounted for >12% of the total
variation. In contrast, on both crests and slopes, all taxa
showed significant differences in abundance among sites
that typically account for 15%–30% of the overall variation in
abundances (Figure 3).

https://core.ac.uk/display/82648778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cub.2012.02.068
http://dx.doi.org/10.1016/j.cub.2012.02.068
mailto:terry.hughes@jcu.edu.au


TERS

Figure 1. Map of the Great Barrier Reef Showing the Locations of Five

Regions and Thirty-Three Reefs Where Abundances of Corals Were

Measured on the Reef Crest and Slope
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Figure 2. Spatial Variation in Community Structure of Coral Assemblages

Revealed by Canonical Discriminant Analysis, Based on Percent Cover of

Twelve Taxonomic Categories Measured on 1,320 Ten-Meter Transects

The ten circles depict assemblage structure in two habitats (C, crest; S,

slope) in each of five regions, numbered 1–5 from north to south along the

Great Barrier Reef (see Figure 1). The diameter of the circles indicates that

reef-scale variation in assemblage structure is uniformly small in compar-

ison to differences among regions or habitats. The vectors (for clarity,

only 6 of 12 are shown) indicate which taxa are primarily responsible for

discriminating among habitats and regions.

Macroecology of Coral Reefs
737
Shallow-water reef crests are readily distinguished from
deeper slopes (multivariate analysis of variance Fregion*habitat =
24.55, df = 48, 5,156, p < 0.001; Figure 2). Intuitively, crests
have higher abundances of wave-tolerant taxa (encrusting,
bushy, and/or tabular species of Acropora), whereas many
slopes are dominated by more delicate staghorn Acropora
that are virtually absent from crests (Figure 2). The crest
assemblages in some regions overlap slightly (regions 2 and
3 and regions 1 and 4; see Figure 1 for locations), whereas
the slope assemblages in different regions are all distinctive
(Figure 2). On crests, the total abundance of corals (all taxa
combined) was remarkably uniform among regions and among
adjacent reefs but differed substantially at smaller scales (see
the right-hand hatched bars in Figure 3). On slopes, total abun-
dances varied significantly among regions and to a lesser
extent among reefs. However, like the crests, much greater
differences in total coral cover (>65% of the overall variation)
occurred locally among and within sites.

These multiscale patterns in assemblage structure align
with the spatial scales of variation in demographic processes
(recruitment, growth, and mortality) that affect the abundance
of different coral taxa. Recruitment by brooding and spawning
corals on the Great Barrier Reef also varies latitudinally among
regions, among depths, and among local sites but is relatively
uniform among adjacent reefs [22, 23]. Similarly, growth of
corals varies among habitats with changes in depth and
exposure [24] and regionally in response to latitudinal
gradients in light, water flow, and temperature [25, 26].
However, colony growth is unlikely to vary significantly among
neighboring reefs that share similar physical conditions,
a pattern that is consistent with our finding that species abun-
dances vary least at this intermediate scale. Persistent, larger-
scale differences in some sources of mortality may also
contribute to patterns of abundance among regions. For
example, outbreaks of crown-of-thorns starfish, Acanthaster
planci, are less prevalent at either end of the northern Great
Barrier Reef, and cyclones are 4–5 times more frequent in
the central Great Barrier Reef compared to northern or
southern regions [14].
An unknown amount of the multiscale spatial variation we

describe could be due to recent disturbance events such as
cyclones, crown-of-thorn starfish predation, episodes of
bleaching, or to pulses of recruitment. Major, regional-scale
bleaching due to thermal stress has affected the Great Barrier
Reef twice since scientific observations began more than 60
years ago, in 1998 and in 2002 [27]. Adjacent reefs tended to
bleach (or not) in clusters at scales of tens of kilometers,
with strong bleaching recorded in each of the events on 18%
of reefs scattered throughout most of the length of the Great
Barrier Reef [27]. In the most extreme case, the spatial varia-
tion among regions, reefs, and sites that we have documented
could simply represent otherwise identical assemblages that
are transiting through a successional trajectory that converges
in theory to the same climax community at all spatial scales,



Figure 3. Components of Variation in Percent Cover of Corals at Three Spatial Scales, Region, Reef, and Site, on Reef Crests and Slopes

Crests are colored green; slopes are yellow. Individual species are grouped here into 12 taxa according to their taxonomic, morphological, and ecological

traits (Table 1). The order of taxa is arranged from high to low amounts of regional-scale variation in either habitat. The taxonomic groups are: 1, encrusting

Acropora; 2, Faviidae; 3, tabular Acropora; 4, Mussidae; 5, Pocilloporidae; 6, bushy Acropora; 7, soft corals; 8, other sessile animals; 9, Poritidae; 10,

Montipora; 11, other scleractinians; 12, staghorn Acropora (slopes only). The hatched bars show variation in total cover of all taxa combined. Asterisks

indicate significant differences in abundance among regions (A), reefs (B), or sites (C): *p < 0.05; **p < 0.01; ***p < 0.001.
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as cover increases. However, we find no evidence of such
convergence. At the regional and reef scale, we see no logical
ordering of crest or slope assemblages (e.g., from low cover by
newly recruited corals to high cover by competitive dominants)
that is consistent with an ecological succession (Figure 2;
Table 1). Among habitats, the divergence between crests
and slopes is clearly not a temporary phenomenon and is
consistent with many studies that have documented coral
reef zonation along environmental gradients [28–32]. At longer
evolutionary time frames, the relative abundances of abundant
species in time-averaged fossil coral assemblages in the
Caribbean varied most at regional and local scales, but only
a little at an intermediate scale among adjacent reefs [33],
the same pattern we have found here for extant assemblages
in the Pacific (Figure 3). We conclude that a relatively small
amount of the spatial patterns that we recorded among habi-
tats and regions of the Great Barrier Reef (Figure 2) is likely
to be attributable to temporal variation. Longer-term influ-
ences such as physiological tolerances of individual taxa and
spatial patterns of mortality, growth, and larval recruitment
appear to be the major drivers of multiscale spatial variation
in these coral assemblages among habitats and along the
length of the Great Barrier Reef.
Implications for the Future of Coral Reefs
Our results have profound implications for the future expecta-
tions of regional-scale impacts of climate change on coral
reefs. Importantly, the susceptibility of corals to thermal stress
and bleaching, reduced alkalinity, and other climate-related
phenomena all vary substantially within and between taxa
(e.g., [2, 6, 7, 10, 15, 30, 34]). For example, some coral genera
and species, such as slow-growing, massive Porites and
Leptastrea, bleach far less readily than faster-growing branch-
ing and tabular Acropora (e.g., [6, 10, 16]; Table 1). Similarly, in
short-term experiments, some corals retain their calcifying
abilities over a realistic range of aragonite concentrations,
whereas others are much more sensitive [2, 9, 35]. Further-
more, recolonization and recovery after disturbances such
as cyclones or bleaching events varies greatly among species
(e.g., [22, 36, 37]). Species such as Acropora and Pocillopora
that are susceptible to bleaching and other mortality agents
can also be good colonizers (Table 1), complicating our
capacity to predict future assemblage structures on tropical
reefs.
Our results show that the diverse pool of species that we

sampled along a latitudinal gradient can assemble in markedly
different configurations (Figures 2 and 3) across a wide range



Table 1. Twelve Taxonomic Groups, and Their Ecological Characteristics, Used to Quantify Changes in Composition of Reefs along the Length of the

Great Barrier Reef

Taxon Growth Form

Susceptibility to Bleaching

[7, 10, 15–17] Life History Traits [18–21]

1. Encrusting Acropora encrusting mounds high moderate growth rate, often long-lived, resistant

to cyclones, brooders

2. Faviidae massive, encrusting,

less commonly plate-like

low to medium slow-growing, long-lived, resistant to cyclones,

broadcast spawners

3. Tabular Acropora tabular, foliaceous high fast-growing, competitive dominants, highly susceptible

to cyclones, spawners

4. Mussidae massive, encrusting low slow-growing, long-lived, resistant to cyclones,

aggressive competitors, broadcast spawners

5. Pocilloporidae small bushes medium to high moderate growth rate, short-lived, usually brooders

6. Bushy Acropora small to medium bushes high moderate growth rate, short-lived, broadcast spawners

7. Soft corals encrusting, tree-like high often highly clonal and persistent

8. Other sessile animals mixed usually low often cryptic and ephemeral

9. Poritidae massive, finger-like low slow-growing, long-lived, resistant to cyclones,

mixed spawners and brooders

10. Montipora sheet-like, foliaceous,

submassive

medium to high variable growth rates, often long-lived, resistant

to cyclones, spawners

11. Other scleractinians mixed low to medium tend to be rarer species, with mixed life histories

12. Staghorn Acropora tall, loosely branching high fast-growing, highly clonal, highly susceptible

to cyclones, spawners
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of contemporary environments [14, 38]. These findings,
combined with the emerging literature on widespread shifts
in species composition of coral reefs in recent decades
(e.g., [1, 39]) and on range expansions by coral reef species
[40, 41], support the hypothesis that coral reef assemblages
will change substantially but could continue to function as
highly altered systems in the future if emissions of CO2 and
other greenhouse gasses are reduced sufficiently to avoid a
complete collapse of reefs. Furthermore, the geographic
ranges of 93% of the 416 coral species found on the Great
Barrier Reef extend northwards toward the equator (e.g., to
Papua New Guinea, the Solomon Islands, and/or the Indone-
sian archipelago), and 46% are also found in colder conditions
further to the south [5]. Average SSTs on the Great Barrier
Reef in the past 30 years (1976–2005) have risen by 0.25�C in
the north and0.4�C in the south compared to the earliest instru-
mental records from 1871 to 1900, and they are projected to
rise by 1�C–3�C by 2100 under ‘‘business as usual’’ carbon
emission scenarios [14].Consequently, average thermal condi-
tions in the southern Great Barrier Reef are unlikely to exceed
those now being experienced by these same species in the
more equatorial regions of their current geographic ranges.

Compared to temperature, spatial and temporal patterns of
pH and aragonite saturation state on coral reefs are poorly
understood, because global and regional patterns are well
described only for the open ocean. Furthermore, separating
the extent to which aragonite concentrations and tempera-
tures control reef growth or physiology at relevant scales is
difficult because both are strongly correlated with each other
and with latitude [2]. Tropical oceans will remain saturated
with aragonite unless extreme levels of atmospheric CO2

occur (approximately 1700 ppm, or six times preindustrial
levels) [35]. Globally, ocean surface pH has decreased by 0.1
unit since 1750 due to the uptake of atmospheric CO2, with
a smaller 0.06 decline recorded for the tropics [35]. In compar-
ison, contemporary variation in pH among reef habitats on the
Great Barrier Reef and among short-term replicate measure-
ments spans a range of 0.39 units, from 8.37 to 7.98 [42].
This short-term and habitat-scale variability swamps latitudi-
nal trends, which were undetectable on reef habitats along
510 km stretching from the northern to central Great Barrier
Reef [42]. Some individualPorites colonies on theGreat Barrier
Reef exhibit a small reduction in growth rate in recent years
due to unknown causes, as reveled by skeletal growth bands
[43]. However, other colonies show no decline. A similar study
along the length of the western coast of Australia found no
change in calcification rates in the 20th century, whereas
growth of high-latitude corals is increasing in response to
rising temperatures [26].
Using natural gradients in pH close to volcanic carbon

dioxide seeps, Fabricius et al. [11] compared coral cover and
assemblage structure under a range of conditions that mimic
future climate change scenarios. Coral cover did not change
between ‘‘low pCO2 sites’’ (pH range 7.97–8.14) and ‘‘high
pCO2 sites’’ (pH range 7.73–8.00). Cover of massive Porites
was double under the less alkaline conditions, whereas
branching and other three-dimensional corals were less abun-
dant [11]. These studies and our large-scale analysis of coral
assemblages all point to a surprisingly resilient response by
some elements of coral assemblages to spatial and temporal
shifts in climatic conditions. Nonetheless, the impacts of
climate change on more vulnerable taxa are already substan-
tial [7, 44–46]. Key areas for future research include the
capacity of coral reef organisms to acclimate and adapt to
rapidly changing conditions, the abilities of warm-adapted
genotypes to disperse, and the dynamics and resilience of
altered and depleted assemblages [2, 6].
In conclusion, our multiscale spatial analyses demonstrate

that assembly rules of coral assemblages are flexible, as indi-
cated by the individualistic variation in abundance of each
taxon (Figure 3). In the past three decades, corals have shown
a wide range of susceptibilities to episodic bleaching events
(and to other climate-related phenomena such as cyclones
and emergent diseases), depending on their physiology, life
history, morphology, and spatial distribution ([10, 15, 16, 30];
Table 1). Different reef taxa will continue to react to environ-
mental change at a variety of scales, both in time (e.g., behav-
ioral, physiological, and evolutionary responses) and in space
(e.g., changes in growth form, local abundance, and geo-
graphic ranges). At any one location, some coral reef taxa
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that are currently dominant are likely to decline or disappear
while others may simultaneously increase or expand their
geographic range from elsewhere, producing highly altered
assemblages analogous to the evolution of novel terrestrial
plant assemblages that occurred in response to Quaternary
climate change [47]. However, in the case of corals and other
reef organisms, these alterations are likely to be much more
rapid and unpredictable because of the rapid pace of anthro-
pogenic climate change and the greater potential for dispersal
of marine larvae compared to most terrestrial plants [48].
As with Pleistocene marine and terrestrial assemblages
[41, 47], many of these novel coral reef communities are likely
to lack contemporary analogs, with unknown but potentially
far-reaching consequences for the ecology and evolution of
reef organisms.
Experimental Procedures

Multiscale Sampling Design

We used a hierarchical, nested sampling design to quantify scale-depen-

dent patterns of coral abundances. Five regions of the Great Barrier Reef

were sampled from north to south, each 250–500 km apart. Within each

region, we sampled three to six midshelf reefs, separated by approximately

10–15 km. A total of 33 reefs were sampled over a 12-month period. On each

reef, four sites were located 0.5–3 km apart. Coral composition and abun-

dances (number of colonies and percent cover) were measured at each of

the 132 sites using ten replicate 10-meter-long line intercept transects

placed a few meters apart following the depth contour. Thus, our sampling

protocol is based on 1,320 standardized sampling units (each transect)

that were spaced apart at different scales from meters to hundreds of

kilometers. Using this multiscale sampling design, abundances were

measured in each of two habitats: the reef crest (1 m below datum) and

the reef slope (6 m below datum).

We identified and measured a total of 35,428 coral colonies on 33 reefs.

We categorized each colony that we encountered (including the majority

of species that are too rare to analyze individually) into ecologically relevant

groups depending on their physiology, morphology, and life history

(see Table 1) and then quantified multiscale variation in abundance

of each those groups. The most common species and genera (in paren-

theses) in each of the 12 taxonomic groups were: 1, encrusting and

submassive Acropora (A. palifera, A. cuneata); 2, Favidae (Cyphastrea,

Echinopora, Favia, Favites, Goniastrea, Leptastrea,Montastrea, Platygyra);

3, tabular Acropora (A. cytherea, A. hyacinthus, A. paniculata); 4, Mussidae

(Acanthastrea, Lobophyllia, Symphyllia); 5, Pocilloporidae (Pocillopora,

Stylophora, Seriatopora); 6, bushy Acropora (A. gemmifera, A. humilis,

A. loripes, A. nasuta, A. secale, A. tenuis, A. valida); 7, soft corals (alcyona-

ceans, zooanthids); 8, other sessile animals (sponges, tunicates, mollusks);

9, Poritidae (P. annae, P. cylindrica, P. lobata); 10, encrusting and submas-

sive Montipora (M. foliosa, M. grisea, M. hispida, M. montasteriata,

M. tuberculosa); 11, other scleractinians; 12, staghorn Acropora (A. danai,

A. florida, A. formosa, A. intermedia, A. microphthalma, A. robusta). The

amount of variation at the regional scale exhibited by each of the 12 taxo-

nomic groups was independent of their species richness (r2 = 0.27 and

0.04 on crests and slopes, respectively), indicating that the large-scale

predictability of these functional components (Table 1) is insensitive to the

classification we used.

Statistical Analyses

The sampling was designed for a three-factor nested analysis of variance

where regions, reefs, and sites were random factors, with the residual

within-site variation among replicate transects represented by the error

term. Heterogeneity of variances was removed using log (x+1) transforma-

tions. Analyses based on cover and on counts of colonies yielded almost

identical results, so we present only the former here, as is conventional for

sessile, clonal organisms. We used variance components analysis [49]

to quantify the importance of scale by partitioning the overall variation in

abundance of each taxon into components associated with regions, reefs,

sites, and within sites, separately for the two habitats. Spatial variation in

community structure of coral assemblages among habitat and regions was

analyzed viamultivariate analysis of variance followed by canonical discrim-

inant analysis, based on percent cover of the 12 taxonomic categories.
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