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The purpose of this communication is to prove the existence of a minimal 
endseparator in any infinite graph, a problem which was set and almost solved by 
Sabidussi in [2]. The notation, terminology, and the basic tools are those of [2]. 
Throughout this paper, G stands for an infinite connected graph. 

1. The set of circuit-connected trees of G, ordered by inclusion, is obviously 
inductive. Hence G has a spanning tree T whose core T, is a maximal 
circuit-connected tree of G (with respect to inclusion). Such a tree will be said to 
be quasi circuit-connected (q.c.c.). Note that if the core T, of a q.c.c. tree T of G 
is non-empty, then G-T, is rayless. 

2. We recall the two following concepts: 
2.1. An infinite subset S of V(G) is concentrated if there is a ray R such that, for 
any finite set F of vertices, only finitely many elements of S do not belong to the 
component of G-F containing a subray of R. 
2.2. A set of vertices of G is dkpersed in G if it has no concentrated subset. 

Note that any subset of vertices of a tree T which is dispersed in some subtree 
of T, is also dispersed in T. 

3. Lemma. Let T be a tree, and let T’ and T” be subtrees of T. Zf V(T’ f~ T”) 
contains an infinite subset which rS dispersed in T” (thus in T), then T’ fl T” has a 
vertex of infinite degree. 

Proof. Let A be an infinite set of vertices of T’ rl T” which is dispersed in T”. 
Then A has no concentrated subset, thus, by [l, 3.111, it contains an infinite 
subset B such that, for some finite subset F of V(T”), the intersection of B with 
any component of T” - F has at most one vertex. But, since T” is acyclic and F is 
finite, there are x E F and an infinite subset C of B whose intersection with any 
component of T” -x has at most one element. Therefore, since C E V(T’), and 
since T’ is a tree .(thus connected and acyclic) x E V( T’) and {[x, y,]: c E C} s E( T’) 
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where, for c E C, yc denotes the only neighbor of x in the component of 
T” - x containing c. 0 

4. Theorem. Let G be a connected graph, and let T be a q.c.c. spanning tree of G. 
If D is a dendroid of G based on T such that DT is locally cofinite in T,, then D(*) 
is a minimal end-separator of G. 

Proof. (a) This first part of the proof is exactly that of Theorem (5.2) of [2], the 
last paragraph excepted. We recall the main points. 

One supposed by way of contradiction that D(*) misses some 2-ended double 
ray 2. Let X :=Z\D U U {C(e, D)\ e:eEZnD}. OneprovedthatifZOD,# 
0, then X is disconnected, and each of its components, as well as X itself, is 
l-ended in G. On the other hand, if Z n D, = 0, then X is connected. In either 
case every component of X is infinite. 

The following is now different from the sequel of the proof of (5.2). Since 
X E T\ D = T\ DT = T\ DT* and DT* is locally cofinite in T,, we have that 
X II T, is locally finite. Hence, by Lemma 3, no component of X can contain an 
infinite dispersed subset of V(Z fl T,). 

(b) Let Z. be a ray of Z, and let Z, = Z\Zo. These two rays are inequivalent in 
G since Z is 2-ended. We distinguish two cases. In each we shall show that there 
is a component of X which contains an infinite dispersed subset of V(Z fl T,), 
thus giving rise to a contradiction with the conclusion of (a). 

Case 1: Z fl D(l) = 0. 
Then X is a tree which is rayless or l-ended in G. Thus there is an i such that Zj 

is equivalent with no ray of X. Hence V(Zi rl T,), which is an infinite subset of 
V(X), is dispersed. 

Case 2: Z rl D(l) # 0. 
Since every component of X contains a ray, and since X is l-ended in G, there 

is an i such that Zi is equivalent with no ray of X. Thus there are only finitely 
many components of X meeting Zj. Hence, since V(Zj) E V(X), and since 
Zi n T, is infinite, there must be one of these components, say Y, which contains 
an infinite subset of V(Zi n T,); and this subset is then dispersed in Y. 0 

The main result of this communication is an immediate consequence of 2 and 4. 

5. Theorem. Any graph has a minimal end-separator. 
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