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Three-dimensional (3D) structure determination by single-particle analysis
of cryo-electron microscopy (cryo-EM) images requires many parameters to
be determined from extremely noisy data. This makes the method prone to
overfitting, that is, when structures describe noise rather than signal, in
particular near their resolution limit where noise levels are highest. Cryo-
EM structures are typically filtered using ad hoc procedures to prevent
overfitting, but the tuning of arbitrary parameters may lead to subjectivity
in the results. I describe a Bayesian interpretation of cryo-EM structure
determination, where smoothness in the reconstructed density is imposed
through a Gaussian prior in the Fourier domain. The statistical framework
dictates how data and prior knowledge should be combined, so that the
optimal 3D linear filter is obtained without the need for arbitrariness and
objective resolution estimates may be obtained. Application to experimental
data indicates that the statistical approach yields more reliable structures
than existing methods and is capable of detecting smaller classes in data sets
that contain multiple different structures.
© 2011 Elsevier Ltd. Open access under CC BY license.
Introduction

With recent reports on near-atomic-resolution
(i.e., 3–4 Å) structures for several icosahedral viruses
and resolutions in the range of 4–6 Å for complexes
with less or no symmetry, cryo-electron microscopy
(cryo-EM) single-particle analysis has entered the
exciting stage where it may be used for de novo
generation of atomic models.1 However, the obser-
vation that reported resolutions vary significantly
for maps with otherwise similar features2 is an
indication that existing reconstruction methods
suffer from different degrees of overfitting. Over-
fitting occurs when the reconstruction describes
noise instead of the underlying signal in the data,
and often, these noisy features are enhanced during
iterative refinement procedures. Thereby, overfit-
ting is not merely an issue of comparing the
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resolution of one reconstruction with another but
represents a major obstacle in the objective analysis
of cryo-EM maps. In particular, without a useful
cross-validation tool, such as the free R-factor in X-
ray crystallography,3 overfitting may remain unde-
tected and a map may be interpreted at a resolution
where the features are mainly due to noise.
At the heart of the problem lies the indirectness of

the experimental observations. A reasonably good
model is available for the image formation process.
Given a three-dimensional (3D) structure, this so-
called forward model describes the appearance of
the experimental images. However, the problem of
single-particle reconstruction is the inverse one and
is much more difficult to solve. The structure
determination task is further complicated by the
lack of information about the relative orientations of
all particles and, in the case of structural variability
in the sample, also their assignment to a structurally
unique class. These data are lost during the
experiment, where molecules in distinct conforma-
tions coexist in solution and adopt random orienta-
tions in the ice. In mathematics, this type of problem
where part of the data is missing is called incomplete.
Moreover, because the electron exposure of the
sample needs to be strictly limited to prevent
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radiation damage, experimental cryo-EM images are
extremely noisy. The high levels of noise together
with the incompleteness of the data mean that cryo-
EM structures are not fully determined by the
experimental data and therefore prone to over-
fitting. In mathematical terms, the cryo-EM struc-
ture determination problem is ill-posed.
Ill-posed problems can be tackled by regulariza-

tion, where the experimental data are complemen-
ted with external or prior information so that the
two sources of information together fully deter-
mine a unique solution. A particularly powerful
source of prior information about cryo-EM re-
constructions is smoothness. Because macromole-
cules consist of atoms that are connected through
chemical bonds, the scattering potential will vary
smoothly in space, especially at less than atomic
resolution. The concept of imposing smoothness to
prevent overfitting is widely used in the field
through a variety of ad hoc filtering procedures. By
limiting the power of the reconstruction at those
frequencies where the signal-to-noise ratio (SNR) is
low, these filters impose smoothness on the
reconstructed density in real space. Traditionally,
filtering procedures have relied on heuristics, that
is, to some extent, existing implementations are all
based on arbitrary decisions. Although potentially
highly effective (and this is illustrated by the high-
resolution structures mentioned above), the heuris-
tics in these methods often involve the tuning of
free parameters, such as low-pass filter shape and
effective resolution (e.g., see Ref. 4). Thereby, the
user (or, in some cases, the programmer) becomes
responsible for the delicate balance between getting
the most out of the data and limiting overfitting,
which ultimately may lead to subjectivity in the
structure determination process.
Recent attention for statistical image processing

methods5 could be explained by a general interest in
reducing the amount of heuristics in cryo-EM
reconstruction procedures. Rather than combining
separate steps of particle alignment, class averaging,
filtering, and 3D reconstruction, each of which may
involve arbitrary decisions, the statistical approach
seeks to maximize a single probability function.
Most of the statistical methods presented thus far
have optimized a likelihood function, that is, one
aims to find the model that has the highest
probability of being the correct one in the light of
the observed data. This has important theoretical
advantages, as the maximum likelihood (ML)
estimate is asymptotically unbiased and efficient.
That is, in the limit of very large data sets, the ML
estimate is as good as or better than any other
estimate of the true model (see Ref. 6 for a recent
review on ML methods in cryo-EM). In practice,
however, data sets are not very large, and also in the
statistical approach, the experimental data may
need to be supplemented with prior information in
order to define a unique solution. In Bayesian
statistics, regularization is interpreted as imposing
prior distributions on model parameters, and the
ML optimization target may be augmented with
such prior distributions. Optimization of the result-
ing posterior distribution is called regularized likeli-
hood optimization, or maximum a posteriori (MAP)
estimation (see Ref. 7).
In this paper, I will show that MAP estimation

provides a self-contained statistical framework in
which the regularized single-particle reconstruction
problem can be solved with only a minimal amount
of heuristics. As a prior, I will use a Gaussian
distribution on the Fourier components of the signal.
Neither the use of this prior nor that of the Bayesian
treatment of cryo-EM data is a new idea. Standard
textbooks on statistical inference use the same prior
in a Bayesian interpretation of the commonly used
Wiener filter (e.g., see Ref. 7, pp. 549–551), and an
early mention of MAP estimation with a Gaussian
prior in the context of 3D EM image restoration was
given by Carazo.8 Nevertheless, even though these
ideas have been around for many years, the
Bayesian approach has thus far not found wide-
spread use in 3D EM structure determination (see
Ref. 9 for a recent application). This limited use
contrasts with other methods in structural biology.
Recently, Bayesian inference was shown to be highly
effective in NMR structure determination,10 while
the Bayesian approach was introduced to the field of
X-ray crystallography many years ago11 and MAP
estimation is now routinely used in crystallographic
refinement.12

In what follows, I will first describe some of the
underlying theory of existing cryo-EM structure
determination procedures to provide a context for
the statistical approach. Then, I will derive an
iterative MAP estimation algorithm that employs a
Gaussian prior on the model in Fourier space.
Because statistical assumptions about the signal
and the noise are made explicit in the target
function, straightforward calculus in the optimiza-
tion of this target leads to valuable new insights into
the optimal linear (or Wiener) filter in the context of
3D reconstruction and the definition of the 3D SNR
in the Fourier transform of the reconstruction.
Moreover, because the MAP algorithm requires
only a minimum amount of heuristics, arbitrary
decisions by the user or the programmer may be
largely avoided, and objectivity may be preserved. I
will demonstrate the effectiveness of the statistical
approach by application to three cryo-EM data sets
and compare the results with those obtained using
conventional methods. Apart from overall improve-
ments in the reconstructed maps and the ability to
detect smaller classes in structurally heterogeneous
data sets, the statistical approach reduces overfitting
and provides reconstructions with more reliable
resolution estimates.
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Theory

Conventional methods

Many different procedures have been implemen-
ted to determine 3D structures from cryo-EM
projection data. The following does not seek to
describe all of them but, rather, aims to provide an
accessible introduction to the Bayesian approach
described below. For an extensive review of existing
cryo-EM methods, the reader is referred to the book
by Frank4 or to the more recent volumes 481–483 of
the book series Methods in Enzymology.13

Almost all existing implementations for cryo-EM
structure determination employ the so-called weak-
phase object approximation, which leads to a linear
image formation model in Fourier space:

Xij = CTFij
XL
l=1

Pf
jl Vl + Nij ð1Þ

where:

• Xij is the jth component, with j=1,…,J, of the
two-dimensional (2D) Fourier transform of
the ith experimental image Xi, with i=1,…,N.

• CTFij is the jth component of the contrast
transfer function for the ith image. Some
implementations, such as EMAN,14 include
an envelope function on the contrast transfer
function (CTF) that describes the fall-off of
signalwith resolution.Other implementations,
such as FREALIGN,15 ignore envelope func-
tions at this stage and correct for signal fall-off
through B-factor sharpening of the map after
refinement.16 The latter intrinsically assumes
identical CTF envelopes for all images.

• Vl is the lth component, with l=1,…,L, of the
3D Fourier transform V of the underlying
structure in the data set. Estimating V is the
objective of the structure determination
process. For the sake of simplicity, only the
structurally homogeneous case is described
here. Nevertheless, Eq. (1) may be expanded
to describe structural heterogeneity, that is,
data sets that contain more than one under-
lying 3D structure, by adding a subscript: Vk,
with k=1,…,K. Often, K is assumed to be
known,17 so that each experimental image
can be described as a projection of one of K
different structures, each of which needs to
be estimated from the data.

• Pϕ is a J ×L matrix of elements Pjl
ϕ. The

operation
PL

l = 1 P
f
jl Vl for all j extracts a slice

out of the 3D Fourier transform of the
underlying structure, and Φ defines the
orientation of the 2D Fourier transform
with respect to the 3D structure, comprising
a 3D rotation and a phase shift accounting
for a 2D origin offset in the experimental
image. Similarly, the operation

PJ
j = 1 P

fT
lj Xij

for all l places the 2D Fourier transform of an
experimental image back into the 3D trans-
form. According to the projection-slice theo-
rem, these operations are equivalent to the
real-space projection and “back-projection”
operations. Some implementations calculate
(back)-projections in real space, such as
XMIPP;18 other implementations, such as
FREALIGN,15 perform these calculations in
Fourier space.

• Nij is noise in the complex plane. Although
explicit assumptions about the statistical
characteristics of the noise are not often
reported, commonly employedWiener filters
and cross-correlation goodness-of-fit mea-
sures rely on the assumption that the noise
is independent and Gaussian distributed.

After selection of the individual particles from the
digitized micrographs, the experimental observa-
tions comprise N images Xi. From the micrographs,
one may also calculate the CTFs, which are then kept
constant in most procedures. The estimation of V
from all Xi and CTFi is then typically accomplished
by an iterative procedure (called refinement) that
requires an initial, often low-resolution, 3D refer-
ence structure V (0). As this paper is primarily
concerned with refinement, the reader is referred
to the books mentioned above for more information
about how these starting models may be obtained.
At every iteration (n) of the refinement process,
projections of V (n) are calculated for many different
orientations ϕ and compared with each of the
experimental images. Based on some goodness-of-
fit measure, an optimal orientation ϕi⁎ is assigned to
each image. All images are then combined into a 3D
reconstruction that yields the updatedmodelV (n+1).
Many different reconstruction algorithms are avail-
able, but their description falls outside the scope of
this paper (again, the reader is referred to the books
mentioned above). In what follows, I will focus on a
class of algorithms that has been termed direct
Fourier inversion and will mostly ignore complica-
tions due to interpolations and nonuniform sam-
pling of Fourier space. The update formula for V
may then be given by (for all l):

V nþ1ð Þ
l =

PN
i = 1

PJ
j = 1 P

fT
i
lj
T CTFijXijPN

i = 1
PJ

j = 1 P
fT
i
lj
T CTF2ij

ð2Þ
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and this procedure is typically repeated until
changes in V and/or ϕi⁎ become small. It is
important to realize that this refinement is a local
optimization procedure that is prone to becoming
stuck in local minima (and the same is true for the
statistical approach outlined below). Consequently,
the initial reference structure V (0) may have an
important effect on the outcome of the refinement,
as wrong initial models could lead to incorrect
solutions. Still, if one ignores local minima and if the
goodness-of-fit measure used in the assignment of
all ϕi⁎ is a least-squares or cross-correlation criterion,
then one could argue that this procedure provides a
least-squares estimate of the true 3D structure.
However, as explained in Introduction, the ob-

served data alone are not sufficient to uniquely
determine the correct solution. Consequently, with-
out the inclusion of additional, prior information V
may become very noisy, especially at frequencies
where many CTFs have zero or small values and at
high frequencies where SNRs are lowest. Many
existing implementations reduce the noise levels in
V by means of a so-called Wiener filter. This image
restoration method is based on minimization of the
mean-square error between the estimate and the
true signal and effectively regularizes the ill-posed
problem by introducing prior knowledge about the
correlation structure of the signal and the noise.8

Most often, Wiener filter expressions are given for
the case of 2D averaging, as relatively little work is
publ i shed on the Wiener f i l t e r for 3D
reconstruction.19 If one assumes that both the signal
and the noise are independent and Gaussian
distributed with power spectra τ2(υ) for the signal
and power spectra σi

2(υ) for the noise, with v being
the frequency, then (variants of) the following
expression for the Wiener filter for 2D averaging
are often reported:20

Aj =

PN
i = 1

H 2 oð Þ
j2 oð ÞCTFijXijPN

i = 1
H 2 oð Þ
j2 oð ÞCTF

2
ij + 1

ð3Þ

where Aj is the jth component of the 2D Fourier
transform of average image A.
The addition of one in the denominator of Eq. (3)

reduces noise by reducing the power in the average
for those Fourier componentswhere

PN
i = 1

H 2 oð Þ
j2 oð ÞCTF

2
ij

is small. One could discern two effects of the Wiener
filter, the first of which is recognized much more
often than the second. (i) The Wiener filter corrects
for the CTF, that is, A will represent the original
signal, unaffected by the CTF. (ii) The Wiener filter
also acts as a low-pass filter. If one ignores the CTF in
theWiener filter expression by setting all CTFij in Eq.
(3) equal to 1, then a filter remains that solely
depends on the resolution-dependent SNR H 2 oð Þ

j2 oð Þ
� �

.
Since the SNR in cryo-EM images of macromolecular
images typically drops quickly with resolution (e.g.,
see Fig. 3a), this will effectively be a low-pass filter.
In the case of 3D reconstruction, consensus about

the Wiener filter has not yet been reached, and
existing implementations have worked around this
problem by employing a variety of ad hoc
procedures.19 Two common approximations are to
apply Wiener filtering to 2D (class) averages and/or
to assume that H 2 oð Þ

j2 oð Þ is a constant, the so-called
Wiener constant. Examples of these two approxi-
mations may be found in EMAN 14 and
FREALIGN,15 respectively. If one assumes that
the SNR is a constant 1/C, then 3D reconstruction
with Wiener filtering has been expressed as (e.g.,
see Ref. 15):

V nþ1ð Þ
l =

PN
i = 1

PJ
j = 1 P

fT
i
lj
T CTFijXijPN

i = 1
PJ

j = 1 P
fT
i
lj
T CTF2ij + C

ð4Þ

In many software packages, the heuristics in the
Wiener filter implementation have resulted in
additional free parameters, such as the Wiener
constant (C). Moreover, as existing implementa-
tions typically fail to adequately reproduce the
low-pass filtering effect of the true Wiener filter, it
is common practice to apply ad hoc low-pass filters
to V during the iterative refinement. This typically
involves the tuning of even more parameters, such
as effective resolution and filter shape. Suboptimal
use of these arbitrary parameters may lead to the
accumulation of noise in the reconstructed density
and overfitting of the data. Consequently, a certain
level of expertise is typically required to obtain the
optimal estimate of V, which may ultimately lead
to subjectivity in the cryo-EM structure determina-
tion process.

A Bayesian view

The statistical approach explicitly optimizes a
single target function. Imagining an ensemble of
possible solutions, the reconstruction problem is
formulated as finding the model with parameter set
Θ that has the highest probability of being the
correct one in the light of both the observed data X
and the prior information Y. According to Bayes'
law, this so-called posterior distribution factorizes
into two components:

P Q jX;Yð Þ~ P X jQ;Yð ÞP Q jYð Þ ð5Þ
where the likelihood P(X|Θ,Y) quantifies the proba-
bility of observing the data given the model, and the
prior P(Θ|Y) expresses how likely that model is
given the prior information. The model Θ̂ that
optimizes P(Θ|X,Y) is called the MAP estimate.
[Note that previously discussed ML methods
optimize P(X|Θ,Y).]
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The statistical approach employs the same image
formation model as described in Eq. (1) but
explicitly assumes that all noise components Nij
are independent and Gaussian distributed. The
variance σij

2 of these noise components is unknown
and will be estimated from the data. Variation of σij

2

with resolution allows the description of nonwhite
or colored noise. The assumption of independence
in the noise allows the probability of observing an
image given its orientation and the model to be
calculated as a multiplication of Gaussians over all
its Fourier components,21 so that:

P Xi jf;Q;Yð Þ =
YJ
j=1

1
2kj2

ij
exp

�
jXij−CTFij

PL
l=1 P

f
jl Vl j2

−2j2
ij

 !
ð6Þ

The correct orientations ϕ for all images are not
known. They are treated as hidden variables and are
integrated out. The corresponding marginal likeli-
hood function of observing the entire data set X is
then given by:

P X jQ;Yð Þ =
YN
i=1

Z
f
P Xi jf;Q;Yð ÞP f jQ;Yð Þdf ð7Þ

where P(ϕ|Θ,Y) expresses prior information about
the distribution of the orientations. These distribu-
tions may include Gaussian distributions on the
origin offsets (e.g., see Ref. 6) but their exact
expression and the corresponding parameters will
be ignored in what follows.
Calculation of the prior relies on the assumption of

smoothness in the reconstruction. Smoothness is
encoded in the assumption that all Fourier compo-
nents Vl are independent and Gaussian distributed
with zero mean and unknown variance τl

2, so that:

P Q jYð Þ =
YL
l=1

1
2kH 2

l

exp
jVl j 2
−2H 2

l

� �
ð8Þ

The assumption of zero-mean Fourier compo-
nents of the underlying 3D structures may seem
surprising at first. However, given that Fourier
components may point in any (positive or negative)
direction in the complex plane, their expected value
in the absence of experimental data will indeed be
zero. The regularizing behavior of this prior is
actually through its scale parameter τl

2. By impos-
ing small values of τl

2 on high-frequency compo-
nents of V, one effectively limits the power of the
signal at those frequencies, which acts like a low-
pass filter in removing high-frequency noise, and
thus imposes smoothness. Note that the explicit
assumptions of independent, zero-mean Gaussian
distributions for both the signal and the noise in the
statistical approach are the same ones that underlie
the derivation of the Wiener filter described above.
Eqs. (6–8) together define the posterior distribu-

tion as given in Eq. (5). For a given set of images Xi
and their CTFs, one aims to find the best values for
all Vl, τl

2, and σij
2. Optimization by expectation

maximization22 yields the following algorithm (also
see Fig. 1):

V nþ1ð Þ
l =

PN
i = 1

R
f G

nð Þ
if

PJ
j=1 P

fT
lj
CTFijXij

j2 nð Þ
ij

df

PN
i = 1

R
f C

nð Þ
i/

PJ
j=1 P

fT
lj
CTF2ij
j2 nð Þ
ij

df + 1
H 2 nð Þ
l

ð9Þ

j2 nþ1ð Þ
ij =

1
2

Z
f
G

nð Þ
if jXij−CTFij

XL
l=1

Pf
jl V

nð Þ
l j 2df ð10Þ

H 2 n + 1ð Þ
l =

1
2
jV n + 1ð Þ

l j2 ð11Þ

where Γiϕ
(n) is the posterior probability of ϕ for the

ith image, given the model at iteration number (n),
which is calculated as:

G
nð Þ
if =

P Xi jf;Q nð Þ;Y
� �

P f jQ nð Þ;Y
� �

R
fVP Xi jfV;Q nð Þ;Y
� �

P fVjQ nð Þ;Y
� �

dfV
ð12Þ

Just like in related ML methods,6 rather than
assigning an optimal orientation ϕi⁎ to each image,
probability-weighted integrals over all possible
orientations are calculated. Apart from that, Eq. (9)
bears obvious resemblance to previously reported
expressions of the Wiener filter for 3D reconstruc-
tion [see Eq. (4)]. This may not come as a surprise,
since both derivations were based on the same
image formation model and the same statistical
assumptions about the signal and the noise. How-
ever, Eq. (9) was derived by straightforward
optimization of the posterior distribution and does
not involve any arbitrary decisions. As is typical for
parameter estimation inside the expectation–maxi-
mization algorithm, both the power of the noise and
the power of the signal are learned from the data in
an iterative manner through Eqs. (10) and (11),
respectively. The result is that Eq. (9) will yield an
estimate of V that is both CTF corrected and low-
pass filtered, and in which uneven distributions of
the orientations of the experimental images are
taken into account. As such, to my knowledge, this
expression provides the first implementation of the
intended meaning of the Wiener filter in the case of
3D reconstruction.
The relative contribution of the two additive terms

in the denominator of Eq. (9) also gives an objective
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Fig. 1. A schematic interpretation of the approach. A
structure is iteratively refined through a two-step proce-
dure. The first step, which is called Expectation in
mathematical terms, has been labeled “Alignment.” In
this step, computer-generated projections of the structure
are compared with the experimental images, resulting in
information about the relative orientations of the images.
Orientations are not assigned in a discrete manner, but
probability distributions over all possible assignments
[Γiϕ

(n )] are calculated, and the sharpness of these distribu-
tions is determined by the power of the noise in the data.
The second step is called Maximization and has been
labeled “Smooth reconstruction.” In this step, the exper-
imental images are combined with the prior information
into a smooth, 3D reconstruction through Eq. (9), and
updated estimates for the power of the noise and the
signal in the data are obtained through Eqs. (10) and (11).
The relative contributions of the data and the prior to the
reconstruction are dictated by Bayes' law and depend on
the power of the noise and the power of the signal in the
data [see Eq. (9)]. The new structure and the updated
estimates for the power of the noise and the signal are then
used for a subsequent iteration. Iterations are typically
stopped after a user-defined number or when the
structures do not change anymore.
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indication of the SNR at any point in the 3D Fourier
transform of the resulting reconstruction. Under the
assumptions made above, for Fourier components
where both terms are equal, the power of the noise
in the reconstruction is expected to be as high as the
power of the signal, that is, SNR=1. Again, the
statistical approach yields a result that is similar but
not equivalent to that of existing approaches. The
ratio of these two terms is most similar to the
previously defined 3D spectral signal-to-noise
ratio23 but provides additional insights into how
to take the CTFs into account. To avoid confusion
with previously reported SSNR definitions, I will
use the notation SNRl

MAP, for SNR in the MAP
estimate. Straightforward rewriting yields the fol-
lowing expression:

SNRMAP
l =

H 2
lPN

i = 1

R
f C

nð Þ
if

PJ
j = 1 P

fT
lj
CTF2ij
r2ij

df
ð13Þ

The SNRl
MAP yields a resolution estimate that

varies in 3D Fourier space (i.e., with l), depending
on the power of the signal, the power of the noise,
the CTFs, and the orientational distribution of the
2D experimental images. However, often, a single
value for the resolution of a given reconstruction is
preferred. Therefore, the resolution-dependent
spherical average of SNRl

MAP may be useful. I
will refer to this spherical average as the SSNRMAP

and propose the highest resolution at which
SSNRMAPN=1 as an objective resolution criterium
for a structure determined by MAP estimation.
The iterative use of Eqs. (9–11) deserves further

attention. The values of τl
2(n) are calculated directly

from the squared amplitudes of Vl
(n) and then used

to calculate Vl
(n+1) in the next iteration. For those l

where SNRl
MAP is large, Vl

(n+1) will be calculated as
a weighted sum over the 2D experimental images,
much like the unregularized ML methods or the
reconstruction in Eq. (2). For those l where SNRl

MAP

is small, the amplitudes of Vl
(n+1) will be effectively

dampened. If refinement is started from a strongly
low-pass filtered reference structure, τl

2(1) (and thus
SNRl

MAP) will only be large for the lowest frequency
terms. Dampening of all higher-resolution terms
will therefore result in relatively low-resolution
estimates of V during the initial iterations. Never-
theless, the resolution of the reconstruction may
gradually improve, provided that the SNR in the
experimental images is high enough and enough
iterations are performed. At some point in the
iterative process, the resolution will stop improving
because averaging over the noisy higher-resolution
Fourier components no longer yields sufficiently
high values of SNRl

MAP.
There remains one problem with the direct

implementation of Eqs. (9–11). Their derivation
depends on the assumption of independence be-
tween Fourier components of the signal. This
assumption is known to be a poor one because the
signal, a macromolecular complex, has a limited
support in real space. Consequently, the power in the
signal will be underestimated, and the reconstruc-
tion will be oversmoothed. Because the assumptions
of independence are crucial in the derivation of a
computationally tractable algorithm, heuristics
seemed the only reasonable solution to this problem.
Therefore, in the calculations presented below, all
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estimates for τl
2 were multiplied by a constant, T=4,

in an attempt to account for the correlations between
Fourier components in the signal. As expected,
values of T close to 1 were observed to yield
reconstructions with suboptimal resolutions, where-
as for values larger than four, noticeable amounts of
overfitting were observed (results not shown). One
could argue that heuristics in existing approaches
have been traded for a similar heuristics in the
statistical approach. However, the heuristics pro-
posed here are clearly argued as a consequence of
limitations in the adopted statistical assumptions,
whereas the reasons for heuristics in existing
implementations are often arbitrary. In addition,
whereas the heuristics in other approaches often
involve multiple parameters, the heuristics
employed here involve only a single constant
whose optimal value is not expected to change
much for different data sets.
Results

The MAP approach was tested in three different
scenarios, each comprising a different cryo-EM
data set. The first scenario represents an extreme
case of reconstruction from images of suboptimal
quality and illustrates the potential pitfalls of
undetected overfitting. The second scenario com-
prises a data set of typical size and quality and
illustrates the potential benefits of the statistical
approach for data that could nowadays be collect-
ed in many cryo-EM laboratories. The third
scenario illustrates the effectiveness of the statistical
approach in dealing with structurally heteroge-
neous data sets, that is, when more than one
different structures are present.
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Reduced overfitting of data with low SNRs

The first test data set comprised 8403 archaeal
thermosome particles. In a previous study, these
data were judged to be of too low quality to allow
reliable structure determination (Yebenes et al.,
unpublished data). Still, reference-free class aver-
ages showed 8-fold symmetric top views as well as
asymmetric side views. Combination of these
images led to an initial 3D map at 50 Å with C8
symmetry, and this symmetry was imposed during
subsequent refinements. The initial map was first
subjected to conventional refinement as implemen-
ted in the XMIPP package.24 This implementation
merely represents one of many other available
implementations for cryo-EM reconstruction and is
not expected to perform significantly better or worse
than most of them. It comprises standard projection
matching in polar coordinates, reconstruction by
direct Fourier inversion, regularization by low-pass
and Wiener filtering, and resolution estimation by
Fourier shell correlation (FSC) between reconstruc-
tions of random halves of the data at every iteration.
Based on the FSC=0.5 criterion, the resulting
reconstruction was estimated to have a resolution
of 10 Å (Fig. 2a, broken green line), which might
have been considered a reasonable result given that
over 65,000 asymmetric units had been averaged.
However, further analysis of the map revealed
indications of severe overfitting, most notably a
typical “hairy” aspect of the density, that is, with
many high-resolution features superimposed on a
low-resolution ghost of the initial model. In addi-
tion, the map lacked features one would expect at
this resolution, for example, the presence of rod-
shaped densities for α-helices (Fig. 2b, left). The
presence of overfitting was confirmed by two
)

e MAP (red) and XMIPP (green) refinements. Broken lines
ogram. The broken red line indicates the SSNRMAP values
C values as estimated inside XMIPP by splitting the entire
tion. Continuous lines indicate FSC values between two
structions was refined against two completely separate
MIPP (left) and MAP (right) refinements.
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completely independent refinements of random
halves of the data that were started from the same
initial model. Whereas these refinements yielded
reconstructions with estimated resolutions of 11 and
12 Å, respectively, the two resulting maps correlated
with each other only up to 30 Å (Fig. 2a, continuous
green line). At this point, it should be noted that this
degree of overfitting could probably have been
avoided by careful low-pass filtering of the images
prior to refinement and/or tuning of the parameters
of the refinement protocol itself. However, such
procedures were not performed in the MAP
refinement described below, and they were deliber-
ately omitted from the XMIPP refinement in order to
illustrate the potential pitfalls of nonexpert use of
conventional refinement strategies.
Refinement of the same model by the MAP

approach yielded a reconstruction for which the
SSNRMAP dropped below 1 at 16 Å (Fig. 2a, broken
red line) and which did not show strong in-
dications of overfitting (Fig. 2b, right). In this
case, independent refinements of two random
halves of the data resulted in reconstructions that
both had an estimated resolution of 16 Å and
which also correlated with each other up to 16 Å
(Fig. 2a, continuous red line). Further analysis
revealed that a dip at 20–30 Å resolution in the FSC
curve between the two independently refined maps
could be related to the observation that a majority
of the CTFs passed through zero close to 30 Å
resolution. Probably, due to a scarcity of experi-
mental data at this resolution, overfitting was not
completely abolished in the statistical approach.
Still, compared to the conventional approach,
overfitting was significantly reduced, resulting in
a better map and a more reliable resolution
estimate.

Increased objectivity in map interpretation

The second test data set comprised 50,000
unliganded GroEL particles that were randomly
selected from an original data set of 284,742
particles.25 After sorting and analysis of 2D class
averages, 39,922 particles were selected for 3D
reconstruction using either MAP estimation or
conventional refinement in XMIPP. Refinements
were performed imposing D7 symmetry, and a
starting model was obtained by applying a strict
50-Å low-pass filter to the 7.8-Å reconstruction
that was reported for the original data set
(Electron Microscopy Data Bank ID: 1200). MAP
refinement yielded a reconstruction for which the
SSNRMAP dropped below one at a resolution of
8.0 Å (Fig. 3a, broken red line). Conventional
projection matching in XMIPP gave a reconstruc-
tion with an estimated resolution of 8.8 Å (Fig. 3a,
broken green line). The calculation of FSC curves
between these maps and a fitted 2.9-Å GroEL
crystal structure (Protein Data Bank ID: 1XCK, see
Experimental Procedures) confirmed that MAP
refinement had reached a higher resolution than
the conventional approach (Fig. 3a, continuous
lines). The favorable comparison in resolution with
the XMIPP reconstruction (and with the recon-
struction that was reported for the originally much
larger data set) indicates that regularization with a
Gaussian prior does not result in oversmoothing of
the reconstruction. On the contrary, through
optimal filtering of the reconstruction during the
refinement, higher resolutions may be obtained
than with conventional approaches.
Prior to visualization, the reconstructed density

maps were sharpened using the approach proposed
by Rosenthal and Henderson.16 Through the use of
the density map generated from the crystal struc-
ture as a reference, which itself has an estimated B-
factor of 250 Å2, application of this procedure led to
estimated B-factors of 560 Å2 for the XMIPP-
generated reconstruction and 715 Å2 for the
reconstruction from the MAP approach. Analysis
of the corresponding Guinier plots (Fig. 3b) shows
that the power of the XMIPP-generated map is too
strong both at low resolution and at high resolu-
tion. This suboptimal weighting of different reso-
lutions may be attributed to heuristics employed in
the Wiener filter. XMIPP uses a constant for the
SNR term in the Wiener filter and sets its value in
the same way as FREALIGN does.26 As also
mentioned above, a single value is, however,
inadequate to describe the intrinsic 3D behavior of
the SNR in Fourier space. The statistical approach
does employ a full 3D SNR model, and the Guinier
plot of the reconstruction generated by MAP
refinement is in excellent agreement with the
model from its lowest frequency terms almost up
to its estimated resolution. At the high-resolution
end, despite FSC weighting,16 the XMIPP-generat-
ed map still has relatively strong features beyond
its estimated resolution. The FSC curve with the
crystal structure (Fig. 3a, continuous green line)
indicates that these features are mainly due to
noise. These noise features result in an underesti-
mation of the B-factor in the Rosenthal and
Henderson approach. On the contrary, the signal
in the map generated by the statistical approach
drops sharply near its estimated resolution limit,
which is a direct consequence of the low-pass
filtering effects of Eq. (9). Therefore, whereas
interpretation of the XMIPP-generated map at too
high resolutions would be subject to errors,
interpretation of the reconstruction from the statis-
tical approach is unambiguous. Comparison of the
sharpened reconstructions with an 8-Å low-pass
filtered map that was generated from the crystal
structure confirms the good quality of the MAP
reconstruction and illustrates the problems of the
conventional approach (Fig. 3c).
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the MAP (red) and XMIPP (green) refinements. Broken lines indicate resolution estimates as reported by the refinement
program. The broken red line indicates the SSNRMAP values for the MAP refinement; the broken green line indicates
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refinement iteration. Continuous lines indicate FSC values between the reconstructions and the crystal structure (see
also Experimental Procedures). (c) Guinier plots for the atomic model (black) and the sharpened reconstructions from
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estimate the B-factor for sharpening the experimental reconstruction, using the atomic model as a reference. (d) Density
maps for the atomic model at 8 Å resolution (top) and the sharpened reconstruction from the MAP (middle) and
XMIPP (bottom) refinements.
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Classification of minority conformations

The third test data set comprised 10,000 Escherichia
coli ribosome particles that were proposed as a
benchmark for 3D classification algorithms.27 Su-
pervised classification had previously suggested
that 5000 of these particles correspond to ratcheted
ribosomes in complexwith elongation factorG (EF-G)
and a single tRNA molecule, while the other 5000
particles were interpreted as unratcheted ribosomes
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without EF-G and in complex with three tRNAs.
Various classification algorithms have been tested
using this data set, and all of them have reported
results similar to the ones obtained using supervised
classification.28–31 However, simultaneous refine-
ment of K=4 reconstructions in the MAP approach
(see also Experimental Procedures) identified a third
previously unobserved class. Whereas, as expected,
the first twomaps of this refinement were interpreted
as 70S ribosomes in complex with EF-G, and the third
map as a 70S ribosome without EF-G, the fourth map
corresponded to a 50S ribosomal subunit (Fig. 4a). A
second calculation with randomly different initial
models yielded similar results, with a 94% overlap in
the 50S class.Although this class contains only a small
minority of the particles (i.e., 6%), visual inspection of
these particles and their reference-free 2D class
averages confirmed the existence of 50S particles in
the data (cf. Fig. 4b and c). Note that, as expected, the
effective resolution as measured by the SSNRMAP is
much lower for the minority class (30 Å) than for the
other three classes (20–21 Å), which is a direct
consequence of the lower number of particles
contributing to the term on the left-hand side of the
denominator of Eq. (9). The absence of such class-
specific regularization is likely to lead to very noisy
reconstructions for small classes in existing classifica-
tion approaches, which may explain their failure in
identifying the 50S class.
As in related ML classification approaches,6 the

number of classes K is assumed to be known, that is,
this number needs to be provided by the user, but
2023:272 2501:974
21 Å 21 Å

(b) (

(a)

Fig. 4. Ribosome test case. (a) Reconstructed maps for a MA
in red, 50S subunits are shown in blue, 30S subunits are show
maps were interpreted as 70S ribosomes in complex with EF-G
EF-G, and the fourth map was interpreted as a 50S ribosomal
that according to supervised classification correspond to riboso
green, respectively. (The true class assignments are not know
below 1 is indicated for each class. (b) A representative refere
experimental images (right) for particles assigned to the class c
for the class corresponding to 50S subunits.
this assumption is hardly ever met. Often, compar-
ing calculations with different values of K provides a
useful band-aid, but admittedly, there is no well-
established, objective criterion to decide on its
optimal value. In this case, refinements with K=3
were not successful in revealing the 50S class, but
refinements with K=5 did give results similar to the
ones in Fig. 4, albeit with an additional class
corresponding to the 70S ribosome without EF-G
(results not shown).
Discussion and Conclusions

Because the accumulation of noise in cryo-EM
reconstructions is a consequence of the ill-posed
character of the reconstruction problem, which in
turn is caused by the high noise levels and the
incompleteness of the experimental data, one could
discern three general ways of improving cryo-EM
reconstructions. Firstly, lower noise levels in the
data will reduce ill-posedness and thus lead to
better reconstructions. In this light, ongoing de-
velopments to improve microscopes (e.g., see Ref.
32) and detectors (e.g., see Ref. 33) are expected to
make an important contribution to the field.
Secondly, reducing incompleteness (due to un-
known relative orientations) will also reduce ill-
posedness and thus lead to better reconstructions.
Obvious examples of less incomplete reconstruc-
tion problems are those where the molecules adopt
some kind of internal symmetry, for example,
364:3180 112:574
30 Å20 Å

c)

P refinement with K=4 classes. Density for EF-G is shown
n in yellow, and tRNAs are shown in green. The first two
, the third map was interpreted as a 70S ribosome without
subunit. For each class, the numbers of assigned particles
mes with EF-G and without EF-G are indicated in red and
n.) In addition, the resolution at which SSNRMAP drops

nce-free class average (left) and two individual, unaligned
orresponding to 70S particles without EF-G. (c) As (b), but
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helical assemblies or 2D crystals. It is therefore not
surprising that, in particular for those systems,
cryo-EM has been most successful in terms of
resolution and map quality,34 but also for recon-
struction of asymmetric single particles, one might
devise modifications of existing sample prepara-
tion protocols that somehow provide information
on the orientations of the particles and thus reduce
incompleteness (e.g., see Ref. 35) Thirdly, and this
is the approach that has been taken in this paper,
ill-posedness may be reduced by regularization,
that is, the incorporation of prior information in
the refinement.
In this paper, the use of smoothness has been

explored as a source of prior information about
cryo-EM reconstructions. However, the observation
that overfitting was not completely abolished in
the thermosome example illustrates that smooth-
ness alone might not be sufficient to fully
determine a unique structure from very noisy
cryo-EM data. One could envision the use of
additional, more powerful sources of prior knowl-
edge, such as non-negativity, solvent flatness, or
ultimately the large amount of chemical knowl-
edge that is available about proteins and nucleic
acids. It might also be possible to identify
alternative sources of prior knowledge from exist-
ing approaches that are aimed at reducing over-
fitting, such as that of Stewart et al.36 The statistical
framework described in this paper may be used to
combine any source of prior information with the
experimental data, provided that suitable numeri-
cal expressions may be formulated. In addition, it
is foreseeable that the heuristics employed in this
paper to prevent oversmoothing (multiplication of
the estimates for τl

2 with a constant) may be
improved in the future. More detailed analyses of
the correlations between Fourier components of
macromolecules or the use of power spectra of pre-
viously determined structures may lead to better
estimates for τl

2. Meanwhile, reconstructions
obtained by MAP refinement should report the
value of T employed, and values much larger than
4 should probably be avoided.
In general, the Bayesian view provides a rigorous

theoretical framework for cryo-EM single-particle
reconstruction, in which the explicit statistical
assumptions can be criticized and, if possible,
modified to provide better reconstructions. The
procedures presented here render commonly
employed heuristics in low-pass and Wiener
filtering largely superfluous, as Bayes' law unique-
ly determines how observed experimental data
should be combined with prior knowledge. As
such, the Bayesian approach leaves little scope for
arbitrary decisions by the user, which will alleviate
the need for user expertise and ultimately contrib-
ute to increased objectivity in the reconstruction
process.
Experimental Procedures

Cryo-electron microscopy

Thermosome complexes from the hyperthermophylic
archaeum Thermococcus strain KS-1 containing only α-
subunits37 were imaged under low-dose conditions in a
FEI T20 microscope at 200 kV and a magnification of
50,000×. Micrographs were recorded on photographic
film, scanned using a Zeiss SCAI scanner with a pixel size
of 7 μm, and subsequently downsampled by a factor 2.
Particles were picked manually and extracted in boxes of
120×120 pixels with a resulting pixel size of 2.8 Å.
The GroEL data set used here is a random subset of the

284,742 particles described by Stagg et al.25 In that study,
data were collected in an automated manner using
Leginon38 on a FEI T20 microscope that was operated at
120 kV, and images were recorded on a 4k×4k Gatan
Ultrascan CCD at a magnification of 50,000×. Particles
were selected automatically using template-based pro-
cedures and extracted in boxes of 128×128 pixels with a
pixel size of 2.26 Å.
The ribosome data set used here is a subset of the 91,114

particles described previously21 and was downloaded
from the Electron Microscopy Data Bank†. In this case, E.
coli ribosomes in a pre-translational state were imaged
under low-dose conditions on a FEI T20 electron
microscope at 200 kV with a calibrated magnification of
49,650×. Particles were selected by preliminary automated
particle picking, visual verification, and subsequent
selection based on cross-correlation coefficient with a
template. Particles were extracted in boxes of 130 ×130
pixels with a pixel size of 2.8 Å. Supervised classification
had previously suggested that 5000 of the 10,000 particles
used here correspond to unratcheted ribosomes without
EF-G, and the other 5000 particles, to ratcheted ribosomes
in complex with EF-G.

Implementation

The iterative algorithm in Eqs. (9–11) was implemented
in a stand-alone computer program called RELION
(REgularised LIkelihood OptimisatioN), which may be
downloaded for free online‡. Although, for the sake of
clarity, Eqs. (9–11) do not describe the case of simulta-
neous refinement of K different 3D models, derivation of
the corresponding algorithm is straightforward. More-
over, the same theory may be used to derive the algorithm
that simultaneously refines K 2D models. RELION
implements both the 2D and the 3D cases of multi-
reference refinement, and as such may be used for 3D
classification of structurally heterogeneous data sets, as
well as the calculation of 2D class averages.
As was recognized by Sindelar and Grigorieff,39 the

power of the noise estimated from unmasked images is
higher than that estimated from images that are masked to
the area where the actual particle resides. Therefore, if
unmasked images were used, this would lead to an
overestimation of the noise by Eq. (10) and thus over-

http://www.emdatabank.org/emtestdata.html
http://www2.mrc-lmb.cam.ac.uk/relion
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smoothing of the maps by Eq. (9). On the other hand, the
use of masked images would lead to correlations between
the assumedly independent Fourier components. All
calculations presented in this paper were done using
unmasked images, but an option to usemasked images has
also been implemented.
Whereas Eq. (10) implies that the power of the noise is

estimated as a 2D array for each experimental image, in
practice, estimates for the power of the noise are obtained
by averaging σij

2 over resolution rings and groups of
images, for example, all images from a single micrograph.
Also, estimates for the power of the signal, that is, τl

2, are
obtained by averaging over resolution shells. Note that,
despite this averaging, SNRl

MAP still varies in 3D depend-
ing on the orientational distribution of the images. Also,
for the sake of simplicity, Eq. (9) does not reflect the
corrections that are needed to account for interpolation
operations and nonuniform sampling of the 3D Fourier
transform. In practice, the 3D transform is oversampled
three times, and projections as well as back-projections are
performed by nearest-neighbor interpolation. An iterative
gridding approach40 is then used to deal with the
nonuniform sampling of the oversampled 3D transform,
prior to calculation of the inverse Fourier transform.
Image processing

All other image processing operations were performed in
the XMIPP package.18 Prior to refinement, all data setswere
normalized using previously described procedures.5 MAP
refinements and projectionmatching refinements in XMIPP
were performed with similar settings where possible.
Although the implementation of theMAP approach readily
handles anisotropic CTF models, all refinements were
performed with isotropic CTFs (without envelope func-
tions) for the sake of comparison with XMIPP. All
orientational searches, or integrations in the statistical
approach, were performed over the full five dimensions,
that is, three Euler angles and two translations. For both the
thermosome and the GroEL refinements, the first 10
iterations were performed with an angular sampling of
7.5°, and subsequent iterations were performed with an
angular sampling interval of 3.75°. Thermosome refine-
ments were stopped after 15 iterations, and GroEL
refinements, after 20. Translational searches were limited
to ±10 pixels in both directions in the first 10 iterations and
to ±6 pixels in the subsequent iterations. Although it is
common practice in XMIPP to reduce computational costs
by breaking up the orientational search into separate
rotational and translational searches and to limit rotational
searches to local searches around previously determined
orientations, this was not done in the refinements presented
here for the sake of comparison with the MAP approach.
Refinements with angular sampling intervals as fine as 1°
where such tricks were employed did not result in better
reconstructions (results not shown).
The true resolution of the GroEL reconstructions was

assessed by FSCwith a published crystal structure (Protein
Data Bank ID: 1XCK). This structure contains 14 unique
monomers in its asymmetric unit. Each of these monomers
was fitted separately into the reconstructions using UCSF
Chimera,41 and for each monomer, the equatorial, inter-
mediate, and apical domains were allowed to move
independently as rigid bodies. The resulting coordinates
were converted to an electron density map that was
symmetrized according to D7 symmetry. Optimization of
the relative magnification between this map and the cryo-
EM reconstructions revealed that the effective pixel size of
the cryo-EM images was 2.19 Å, differing by 3% from the
nominal value, and this value was used to generate all
plots in Fig. 3.

Ribosome refinements were performed for 25 iterations
with an angular sampling of 7.5° and translational
searches of ±10 pixels. To generate K=4 unsupervised
initial starting models from a single 80-Å low-pass filtered
initial ribosome structure, during the first iteration, we
divided the data set into four random subsets in a way
similar to that described before.21
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