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Abstract

We consider the values for large minors of a skew-Hadamard matrix or conference matrix
W of order n and find that maximunmm x n minor equals to(n — 1™/2, maximum
(n — 1) x (n — 1) minor equals tagn — 1)/2~1 maximum( — 2) x (n — 2) minor equals
to 2(n — 1)/2=2 and maximum(n — 3) x (n — 3) minor equals to & — 1)(*/2=3_This
leads us to conjecture that the growth factor for Gaussian elimination (GE) of completely
pivoted (CP) skew-Hadamard or conference matrices and indeed any CP weighing matrix of
ordernand weight: — 1 isn — 1 and that the first and last few pivots d@fe2,2,3or 4 ...,
n—1lor(n—1)/2, (n—1)/2,n — 1) for n > 14. We show the uniquéV (6, 5) has a single
pivot pattern and the uniqu®& (8, 7) has at least two pivot structures. We give two pivot
patterns for the uniqu# (10, 9). © 2000 Elsevier Science Inc. All rights reserved.

AMS classification: 65F05; 65G05; 20B20
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1. Introduction

Let A = [a;;] € R™". We reduceA to upper triangular form by using Gaussian
elimination (GE) operations. Let®®) = [al.(/’.‘)] denote the matrix obtained after the
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first k pivoting operations, sd "1 is the final upper triangular matrix. A diagonal
entry of that final matrix will be called a pivot. Matrices with the property that no ex-
changes are actually needed during GE with complete pivoting are called completely
pivoted (CP) or feasible. Let(n, A) = max ; « |aff)|/|ai(i)| denote the growth as-
sociated with GE on a CR andg(n) = suf g(n, A)|A € R"*"}. The problem of
determiningg (n) for various values off is called the growth problem.

The determination of (z) remains a mystery. Wilkinson [7] proved that

gn) < [n23Y2... 12 = r(p),

In Table 1, there are values ¢fn) for representative values of

The above bound is certainly not sharp and the true upper bound is much smaller.
Wilkinson [8,9] noted that there were no known examples of matrices for which
g(n) > n. Cryer [2] conjectured that¢'(n, A) < n, with equality iff Ais a Hadamard
matrix”. This was proved to be untrue in [6].

A Hadamard matribH of ordern x n is an orthogonal matrix with elementsl
andHH' =nl.

The problem is quite different if partial pivoting is allowed and Wilkinson [9, p.
212] gives an example of a matrix of ordeand elements,0 + 1 and growth factor
-1

It is easy to see thai(l) = 1 andg(2) = 2 for all n > 2. By using algebraic
methods, it was proved [1,2] that3) = 2.25,¢(4) = 4 andg(5) < 4%.

One of the curious frustrations of the growth problem is that it is quite difficult to
construct any examples ofx n matricesA, other than Hadamard for whigtn, A)
is even close tm. Wilkinson [9] has remarked that in real-world problemag;, A)
has never been observed to be very large. Cryer [2] did numerical experiments in
which he compute@(n, A), doing complete pivoting on x n matrices,A, with
entries chosen randomly from the interyall, 1] and for sizes up ta = 8. He had
to generate over 50,000:33 examples before finding one wigh3, A) > 2. Also
the largestg(n, A) he obtained by testing 10,000 random matrices for sizes up to
n = 8 was 28348.

Thus, in order to obtain matrices with large growth, sophisticated numerical op-
timization techniques must be applied [6]. By using such methods, matrices with
growth larger tham = 13, 14, 15, 16, 18, 20, 25 were specified, and thus the con-
jecture thatg(n, A) < n is false. Table 2 summarizes the growth size attained for
various values of [2,4].

The matrices that give rise to the growth factors of Table 2 are often extremely
sensitive to small perturbations in their entries in that tiny perturbations to a complete

Table 1
n 10 20 50 100 200 1000

fn) 19 67 530 3300 26,000 7,900,000
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Table 2
n 13 14 15 16 18 20 25

Growth size 13.0205 14.5949 16.1078 18.0596 20.45 24.25 32.99

elimination matrix rarely results in another such matrix. This makes it rather difficult
to specify matrices which give rise to large growth.

If a Hadamard matrix, of ordern can be written agl = I + S whereST = —§
thenH is calledskew-Hadamard

A (0,1, —1) matrix W = W(n, k) of ordern satisfyingWWT = kI, is called a
weighing matrix of order n and weightde simply aweighing matrix A W (n, n),
n = 0(mod 4, is a Hadamard matrix of ordet A W = W (n, k) for which WT =
—W is called askew-weighing matrixA W = W(n, n — 1) satisfyingW'™ = W,
n = 2(mod 4, is called asymmetric conference matri€onference matrices can-
not exist unlesa — 1 is the sum of two squares: thus they cannot exist for orders
22, 34,58, 70, 78, 94. For more details and construction of weighing matrices the
reader can refer the book by Geramita and Seberry [5].

We have now studied, by computer, the pivots and growth factor®far, n —
1), n=6,10, 14, 18 26, 30, 38, 42 50, 54, 62, 74 constructed by two circulant
matrices and fom = 8, 12, 16, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100 construct-
ed by four circulant matrices and obtained the results in Tables 3 and 4.

Wilkinson'’s initial conjecture seems to be connected with Hadamard matrices.
Interesting results in the size of pivots appears when GE is applied to CP skew-
Hadamard and weighing matrices of ordeand weight: — 1. In these matrices, the
growth is also large, and experimentally, we have been led to believe it eguals
and special structure appears for the first few and last few pivots. These results give
rise to new conjectures that can be posed for this category of matrices.

Conjecture (The growth conjecture for weighing matric8s(n, n — 1)). Let W =
W(n,n — 1) be a CP weighing matrix. Redu¥éby GE. Then
) gn,w)y=n-1.
(i) The three last pivots are equalto— 1 or(n — 1)/2,(n — 1)/2,n — 1.
(iii) Every pivot before the last has magnitude at most 1.
(iv) The first four pivots are equal to 22, 2, 3 or 4, forn > 14.

Notation. Write A for a matrix of ordem whose initial pivots are derived from
matrices with CP structure. Writa () for the absolute value of the determinant

of the j x j principal submatrix in the upper left-hand corner of the ma#tiand

A[j] for the absolute value of the determinant of {the— j) x (n — j) principal
submatrix in the bottom right-hand corner of the matkixThroughout this paper
when we have useidpivots we then find all possible values of thé: — i) minors.
Hence, if any minor is CP it must have one of these values. The magnitude of the
pivots appearing after the application of GE operations on a CP nitigxgiven by

pi=W3G i/ wWi-2, j=12,....,n, WO =1 1)
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We useW (j), W[,]similarly. We also use the following results
Lemma 1[3]. Let A be an orthogonal matrix of order n satisfyidgt T = k1,. Then
A(j) = k=2 Aln — 1.

Corollary 1. If A'is ann x n weighing matrix of weight = n — 1, then the kh
pivot from the end is

kAL -1
Pn+l-j = AL
2. The first four pivots

Lemma 2. Let W be e&CPweighing matrixW (n, n — 1), of ordern > 6 then if GE
is performed on \Whe first three pivots aré, 2,and?2.

Proof. We note that in the upper left-hand corner of a CP weighing matrix,
W(n,n — 1), of ordern > 6 the following submatrices can always occur:

1]

1 1 1 1 1
1 — 1for |1l 0f.
1 1 - 1 —

Thus, the first three pivots, using Eq. (1), are

R e

p1=1 p2=2 and p3=2. O

Proposition 1. Let W be aCPweighing matrix W (n, n — 1), of ordern > 8. Then
if GEis performed on W\Mhe first four pivots ard,, 2, 2, 3or 4.

Proof. The first three pivots are given in Lemma 2. Now in the upper left-hand cor-
ner of a CP weighing matriX¥¥ (n, n — 1), of ordern > 8 the following submatrices
can always occur:

11 1 1 1 1 0 —
S T N
1 - - 1 1 - 1 1
11 - - 1 1 — 1

The fourth pivots fom > 8, using Eq. (1), are
ps=4 or3 O
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3. Exact calculations

We assume that row and column permutations have been carried out. So we have
a CP skew-Hadamard or CP conference mahrir the initial steps from which we
can calculate the maximum minoAgn), A(n — 1), A(n —2) andA(n — 3). We
explore the use of a variation of a clever proof used by combinatorialists to find
the determinant of a matrix satisfyingA™ = (k — 1)1 + AJ, wherel is thev x v
identity matrix,J the v x v matrix of ones and, A are integers to simplify our
proofs.

Proposition 2. Let A be a skew-Hadamard or conference matrix of order n. Then
the(n — 1) x (n — 1) minorsare A(n — 1) = 0, (n — 1)®/2-1,

Proof. Since AAT = (n — 1)1 and detA) = (n — 1)"/2, the (n — 1) x (n — 1)
matrix B formed by deleting the first row and column Afsatisfies detBBT =
(n — 1)"2 or zero accordingly as thd, 1) element ofA is non-zero or zero. Hence
detB = (n — 1)/2~1 or zero and we have the resultC]

Proposition 3. Let A be a skew-Hadamard or conference matrix of order n. Then
the(n — 2) x (n — 2) minors areA(n — 2) = 0, 2(n — 1)"/2-2,

Proof. There are six cases: they have upper left-hand corner

1 1 1 1 1 0 1 1
1 -1y 0 +1|° 0 +1 1 1|
These have determinants 2= 1, + 1, 0 respectively. We use the lower right-
hand principal minorC, of ordern — 2 to calculateC CT for each case. We find the
second case, where the determinant (is— 1)®/2~2, is not CP as there

must be—2s after the first step of GE. Hence the maximum determina@ isf
2(n —1H®2-2

Lemma 3. The possible values for the determinants3of 3 matrices with entries
0, +1 where there is at most one zero in each row and colum®arg, +2, +3 and
+4.

Proof. For matrices of the required type, up to equivalence, we have these four cases

1 1 1 0 1 1 0 1 1 0 1 1
1 £1 +1 1 £1 +£1 1 0 #£1 1 0 #£1
1 £1 +1 1 £1 +£1 1 £1 +1 1 1 O

We used a computer to search all the possibilities and found that for no zeros the
determinant can be 0 or 4, for one zero the determinant can [2edd 4, for two

zeros the determinant can be 1 or 3, and for three zeros the determinant can be 0 or
2. O
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We now proceed to study(n — 3).
Proposition 4. Let A be a skew-Hadamard or conference matrix of order n. Then the
(n —3) x (n —3) minors areA(n —3) =0, 2(n — 1)/2-3 or 4(n — 1)"/2-3
for n = 0(mod 4 and2(n — 1)*/2-3, or 4(n — 1)"/—3 for n = 2(mod 4.

Proof. We first note that the submatrices

1 1 1 1 1 1
1 - 1 and 1 - 0
1 1 - 1 1 -

always occur in any skew-Hadamard or conference matrix of order > 6. We first
consider the upper left-hand corner

1 1 1
1 - 1],
1 1 -

which corresponds to a CP matrix with pivots 1, 2, 2.

We assume the CP matrix is in the form below where for ease of comprehension
we have written the elemenisb, ¢, d, p, g, s in the top 6x 6 matrix although they
will not appear there in the CP matrix.

— u v w X 7
11 1({0 1 11 11 11 11 1
1 - 11 0¢g1 11 1 - - - -
11 —-|p s 01 1 1 1 - -
0 a ¢

1 0 b

1 d 0

11 1

11 1

1 1 - C

1 1 -

1 - 1

1 - 1

1 — —

1 - - i
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We use the orthogonality of the matr and the orden, to obtain constraints
for all the variables:, b, ¢, d, p, q, s, u, v, w, x in terms of each other ang the
original order. We then calculatdCT and then these constraints are solved by either
Matlab or a simple, but tedious, calculation to obtain the values for the minors as 0
and 4n — 1)®/2-3for n = 0(mod 4 and 4n — 1)"/2-3 for n = 2(mod 4.

We now consider the second case with upper left-hand corner,

1 1 1
1 - 0},
1 1 -

which also corresponds to a CP matrix with pivots 1, 2, 2.

We proceed, as before, to obtain the three value@@ — 1)"/2-3, 4(n —
1)®/2-3 for n=0(mod 4 and the two non-zero values(2— 1)/2-3
4(n — 1)"/2=3 as the only determinants far= 2(mod 4. O

Theorem 1. WhenGE is applied on aCP skew-Hadamard or conference matrix
W of order n the last three pivots in backward order are- 1, (n — 1)/2, and
(n—1)/2o0rn—1.
Proof. The last three pivots are given by
W(n) W(n —1) W(n —2)

PEwa—n PP T wa-y PP wWa -y
Since

W(n) = (n — "2,

Wn—1) = (n— 1)1

W(n —2) =2(n—1)"/272,

Wn—3)=2mn—-1"273 or 4n-—1)"273
the values of the three last pivots are- 1, (n — 1)/2, and(n — 1)/2 orn — 1,
respectively. [

4. Numerical calculations

Lemma 4. The maximum determinant of allx » matrices with elements1 or O,
where there is at most one zero in each row and column is

Order Maximum Possible determinantal values
determinant
2x2 2 0,1,2
3x3 4 0,1,2,3,4
4x4 16 0,1,2,3,4,5,6,7,8,9,10,12, 16
5x5 48 0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 36, 40, 48
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Remark. Infact, we found that considering all’6 5 matrices with elements1 and

no more than one zero per row and column, if the matrix had no zeros the determinant
could be 0, 16, 32 or 48; had exactly one zero the determinant could be 0, 8, 16, 24,
32 or 40; had exactly two zeros the determinant could be 0, 4, 8, 12, 16, 20, 24, 28,
32 or 36; had exactly three zeros the determinant could be 0, 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28, 30 or 36; had exactly four zeros the determinant could be 1,
3,5,7,9,11, 13,15, 17, 19, 21, 23, 25 or 27; had exactly five zeros the determinant
couldbeO0, 2, 4, 6, 8,10, 12, 18, 20, 22.

Considering all 4x 4 matrices with elements1 and no more than one zero per
row and column, if the matrix had no zeros the determinant could be 0, 8, 16; had
exactly one zero the determinant could be 0, 4, 8, 12; had exactly two zeros the
determinant could be 0, 2, 4, 6, 8, 10; had exactly three zeros the determinant could
be 1, 3,5, 7, 9; had exactly four zeros the determinant could be 1, 3, 5, 9.

Considering all 3x 3 matrices with elements1 and no more than one zero per
row and column, if the matrix had no zeros the determinant could be 0, 4; had exactly
one zero the determinant could be 0, 2, 4; had exactly two zeros the determinant
could be 1, 3; had exactly three zeros the determinant could be 0, 2.

Considering all 2< 2 matrices with elements1 and no more than one zero per
row and column, if the matrix had no zeros the determinant could k€20 had
exactly one zero the determinant couldbg; had exactly two zeros the determinant
could be+1.

Lemmab5. W(4) = 10fora W6, 5).

Proof. Every 4x 4 subdeterminant o/ (6, 5) must contain two zeros. Hence, its
determinant can only be 0, 2, 4, 6, 8, or 10. We show that the first four non-zero
values are not possible inVé(6, 5).

Without any loss of generality we assume that the 4 subdeterminant has first
row and column comprising only-1s. Because we are dealing with a weighing
matrix the second row and column must contain two 1s and+d®.

We denote the vecto4, —, —), (1, —, 1) and(—, —, 1) asas, a2 andas, respec-
tively. We denote the % 2 submatrices

x 0 and 0x
Oy yOl’

by b1 andby, respectively, wherg andy are both 1 or1.

Calculation shows that the» 4 matrix with second row and column comprising
ai andaI can be completed by both andb, but are equivalent under permutation
of rows and columns, to the matrik; below.

Furthermore calculations show that the 4+ matrix with second row and column
a; anda/T, and completion matrix of shagpe, give only two inequivalent matrices,
Az andAgs, under row and column permutations.
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T T T ;
(az,a,,b1), (a3, az,b1) and (as, a,,bp) are equivalent tai;.

(a2,a),b), (a3,al,bz) and (a3, al, by) are equivalent tol.

Now, writing x for 1, and using the orthogonality conditions for th&®6, 5),
we have

11 1 1]
11 - —
A=l L ol
1 — 0 x|
101 1 1]
Az = oo ,
11 0 —
1 - — 0
11 1 1]
1 — _
As=1, 1 _
1 — 0 1]

Now A1 has determinant M, and Az have determinant 10. This gives the result.
O
Lemma 6. The unique pivots of th& (6, 5) are {1, 2, 2, 3, 3, 5}.
Proof. We use the determinants & (1) =1, W(2) =2, W(3) = 4, W(4) = 10,
W[l =1,W[2] =2.
Hence the pivot pattern is given by

., W@ wWE)
p1r=4, PZ——W(l)— , P3——W(2)— ,

W@ 5 _ W5 w0
P=ye T2 BTSNy T P Sy T

Lemma 7. The pivots of thaV (8, 7) are{l, 2,24, %, 5 35, 7] or{l, 2, 2, 3,
77 7

32 7]-

Proof. From Lemma 2 and Proposition 1, we have that

p1=1 p2=2 p3=2  psg=4or3
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From Theorem 1, we also have that

7 7
=7, = - and = —.
P8 p7 > Pe6 2

Sincell®_;, p; = detW(8,7) = 7% the only values thaps can take arg; or Z.
O

Remark. The following matrices have pivot patterns 2, 2, 4, 1 A 2, 2, 7 and
1,2 2 3, %, 4 %, 7, respectively.

11 1 1 1 1 1 O
i1 - - 1 1 - 0 -
i1 -1 - - 0 1 -
11 - - 0 1 - -
1 - 0 1 - 1 - 1
11 - 0 - — 1 1
o 1 1 1 - - - -
1 01 - 1 - - 1]
and
1 1 0 - — 1 1 -
1 - - - 1 1 0 1
1 - 1 1 0 1 - -
11 - 1 - 0 - 1
o 1 1 1 1 1 1 1
11 1 - 1 - — O
i1 - 1 0 - —-— 1 1
1 0 - 1 1 - 1 -]

Lemma 8. The pivots of théV (10, 9) can beil 2,2 3,3, 4, 2 I %, 9} or

{122433,2,9,9 9}
Proof. The W (10, 9) is unique up to permutation of rows and columns and multi-
plication of rows and columns by1. We have found two CW (10, 9) which have
difference pivot patterns showing the sensitivity of the pivots to permutations of rows
and columns.

The following matrices have pivot patter{ﬁs 2,233 4 2, 3, 3, 9], and

{1 22,433 3. 3,3 9} respectively.



C. Koukouvinos et al. / Linear Algebra and its Applications 306 (2000) 189-202 199
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We calculated the values of all the large minors of the unigi@2, 11). These
are given in the next table. We also calculated all the minors for one 6¥{126, 19)
and found exactly the same results as those in the table.

Minor Minimum non-zero determinant All determinants

Wmn —1) m= (n—1)"/%1 0,m

W(n —2) m= (n—1)"/2%2 0,m, 2m

W(n —3) m = (n— 1)"/23 0,m, 2m, 3m, 4m

W(n — 4) m = (n—1)"/%4 0, m, 2m, 3m, 4m, 6m, 8m,

9m, 10m, 12m, 16m

Tables 3 and 4 give us the pivot patterns calculated by a computer for the first
few W(n,n — 1) for bothn = 2(mod 4 andn = O(mod 4. Although our theory
predicts that the third last pivot could lme— 1 or (n — 1)/2, in both these tables
only the valug(n — 1)/2 has been observed.
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