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Abstract

We consider the values for large minors of a skew-Hadamard matrix or conference matrix
W of order n and find that maximumn × n minor equals to(n − 1)n/2, maximum
(n − 1) × (n − 1) minor equals to(n − 1)(n/2)−1, maximum(n − 2) × (n − 2) minor equals
to 2(n − 1)(n/2)−2, and maximum(n − 3) × (n − 3) minor equals to 4(n − 1)(n/2)−3. This
leads us to conjecture that the growth factor for Gaussian elimination (GE) of completely
pivoted (CP) skew-Hadamard or conference matrices and indeed any CP weighing matrix of
ordern and weightn − 1 isn − 1 and that the first and last few pivots are(1, 2, 2, 3 or 4, . . . ,
n − 1 or (n − 1)/2, (n − 1)/2, n − 1) for n > 14. We show the uniqueW(6, 5) has a single
pivot pattern and the uniqueW(8, 7) has at least two pivot structures. We give two pivot
patterns for the uniqueW(10, 9). © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let A = [aij ] ∈ Rn×n. We reduceA to upper triangular form by using Gaussian

elimination (GE) operations. LetA(k) = [a(k)
ij ] denote the matrix obtained after the
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first k pivoting operations, soA(n−1) is the final upper triangular matrix. A diagonal
entry of that final matrix will be called a pivot. Matrices with the property that no ex-
changes are actually needed during GE with complete pivoting are called completely
pivoted (CP) or feasible. Letg(n,A) = maxi,j,k |a(k)

ij |/|a(0)
11 | denote the growth as-

sociated with GE on a CPA andg(n) = sup{ g(n,A)|A ∈ Rn×n}. The problem of
determiningg(n) for various values ofn is called the growth problem.

The determination ofg(n) remains a mystery. Wilkinson [7] proved that

g(n) 6 [n 2 31/2 · · ·n1/n−1]1/2 = f (n).

In Table 1, there are values off (n) for representative values ofn.
The above bound is certainly not sharp and the true upper bound is much smaller.

Wilkinson [8,9] noted that there were no known examples of matrices for which
g(n) > n. Cryer [2] conjectured that “g(n,A) 6 n, with equality iffA is a Hadamard
matrix”. This was proved to be untrue in [6].

A Hadamard matrixH of ordern × n is an orthogonal matrix with elements±1
andHH T = nI .

The problem is quite different if partial pivoting is allowed and Wilkinson [9, p.
212] gives an example of a matrix of ordern and elements 0, ± 1 and growth factor
2n−1.

It is easy to see thatg(1) = 1 andg(2) = 2 for all n > 2. By using algebraic
methods, it was proved [1,2] thatg(3) = 2.25,g(4) = 4 andg(5) 6 417

18.
One of the curious frustrations of the growth problem is that it is quite difficult to

construct any examples ofn × n matrices,A, other than Hadamard for whichg(n,A)

is even close ton. Wilkinson [9] has remarked that in real-world problems,g(n,A)

has never been observed to be very large. Cryer [2] did numerical experiments in
which he computedg(n,A), doing complete pivoting onn × n matrices,A, with
entries chosen randomly from the interval[−1, 1] and for sizes up ton = 8. He had
to generate over 50,000 3× 3 examples before finding one withg(3, A) > 2. Also
the largestg(n,A) he obtained by testing 10,000 random matrices for sizes up to
n = 8 was 2.8348.

Thus, in order to obtain matrices with large growth, sophisticated numerical op-
timization techniques must be applied [6]. By using such methods, matrices with
growth larger thann = 13, 14, 15, 16, 18, 20, 25 were specified, and thus the con-
jecture thatg(n,A) 6 n is false. Table 2 summarizes the growth size attained for
various values ofn [2,4].

The matrices that give rise to the growth factors of Table 2 are often extremely
sensitive to small perturbations in their entries in that tiny perturbations to a complete

Table 1

n 10 20 50 100 200 1000

f (n) 19 67 530 3300 26,000 7,900,000
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Table 2

n 13 14 15 16 18 20 25

Growth size 13.0205 14.5949 16.1078 18.0596 20.45 24.25 32.99

elimination matrix rarely results in another such matrix. This makes it rather difficult
to specify matrices which give rise to large growth.

If a Hadamard matrix,H, of ordern can be written asH = I + S whereST = −S

thenH is calledskew-Hadamard.
A (0, 1,−1) matrix W = W(n, k) of ordern satisfyingWWT = kIn is called a

weighing matrix of order n and weight kor simply aweighing matrix. A W(n, n),
n ≡ 0 (mod 4), is a Hadamard matrix of ordern. A W = W(n, k) for which WT =
−W is called askew-weighing matrix. A W = W(n, n − 1) satisfyingWT = W ,
n ≡ 2 (mod 4), is called asymmetric conference matrix. Conference matrices can-
not exist unlessn − 1 is the sum of two squares: thus they cannot exist for orders
22, 34, 58, 70, 78, 94. For more details and construction of weighing matrices the
reader can refer the book by Geramita and Seberry [5].

We have now studied, by computer, the pivots and growth factors forW(n, n −
1), n = 6, 10, 14, 18, 26, 30, 38, 42, 50, 54, 62, 74 constructed by two circulant
matrices and forn = 8, 12, 16, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100 construct-
ed by four circulant matrices and obtained the results in Tables 3 and 4.

Wilkinson’s initial conjecture seems to be connected with Hadamard matrices.
Interesting results in the size of pivots appears when GE is applied to CP skew-
Hadamard and weighing matrices of ordern and weightn − 1. In these matrices, the
growth is also large, and experimentally, we have been led to believe it equalsn − 1
and special structure appears for the first few and last few pivots. These results give
rise to new conjectures that can be posed for this category of matrices.

Conjecture (The growth conjecture for weighing matricesW(n, n − 1)). Let W =
W(n, n − 1) be a CP weighing matrix. ReduceW by GE. Then

(i) g(n,W) = n − 1.
(ii) The three last pivots are equal ton − 1 or (n − 1)/2, (n − 1)/2, n − 1.
(iii) Every pivot before the last has magnitude at mostn − 1.
(iv) The first four pivots are equal to 1, 2, 2, 3 or 4, forn > 14.

Notation. Write A for a matrix of ordern whose initial pivots are derived from
matrices with CP structure. WriteA(j) for the absolute value of the determinant
of the j × j principal submatrix in the upper left-hand corner of the matrixA and
A[j ] for the absolute value of the determinant of the(n − j) × (n − j) principal
submatrix in the bottom right-hand corner of the matrixA. Throughout this paper
when we have usedi pivots we then find all possible values of theA(n − i) minors.
Hence, if any minor is CP it must have one of these values. The magnitude of the
pivots appearing after the application of GE operations on a CP matrixW is given by

pj = W(j)/W(j − 1), j = 1, 2, . . . , n, W(0) = 1. (1)
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We useW(j), W [j ] similarly. We also use the following results

Lemma 1 [3]. Let A be an orthogonal matrix of order n satisfyingAAT = kIn. Then

A(j) = kj−(n/2)A[n − j ].

Corollary 1. If A is an n × n weighing matrix of weightk = n − 1, then the kth
pivot from the end is

pn+1−j = kA[j − 1]
A[j ] .

2. The first four pivots

Lemma 2. Let W be aCPweighing matrix, W(n, n − 1), of ordern > 6 then if GE
is performed on W, the first three pivots are1, 2,and2.

Proof. We note that in the upper left-hand corner of a CP weighing matrix,
W(n, n − 1), of ordern > 6 the following submatrices can always occur:[

1
]
,

[
1 1
1 −

]
,


1 1 1

1 − 1
1 1 −


 or


1 1 1

1 − 0
1 1 −


 .

Thus, the first three pivots, using Eq. (1), are

p1 = 1, p2 = 2 and p3 = 2. �

Proposition 1. Let W be aCPweighing matrix, W(n, n − 1), of ordern > 8. Then
if GE is performed on W, the first four pivots are1, 2, 2, 3or 4.

Proof. The first three pivots are given in Lemma 2. Now in the upper left-hand cor-
ner of a CP weighing matrix,W(n, n − 1), of ordern > 8 the following submatrices
can always occur:


1 1 1 1
1 − 1 −
1 − − 1
1 1 − −


 or




1 1 0 −
1 − − −
1 − 1 1
1 1 − 1


 .

The fourth pivots forn > 8, using Eq. (1), are

p4 = 4 or 3. �
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3. Exact calculations

We assume that row and column permutations have been carried out. So we have
a CP skew-Hadamard or CP conference matrixA in the initial steps from which we
can calculate the maximum minorsA(n), A(n − 1), A(n − 2) andA(n − 3). We
explore the use of a variation of a clever proof used by combinatorialists to find
the determinant of a matrix satisfyingAAT = (k − λ)I + λJ , whereI is thev × v

identity matrix,J the v × v matrix of ones andk, λ are integers to simplify our
proofs.

Proposition 2. Let A be a skew-Hadamard or conference matrix of order n. Then
the(n − 1) × (n − 1) minors are: A(n − 1) = 0, (n − 1)(n/2)−1.

Proof. Since AAT = (n − 1)I and det(A) = (n − 1)n/2, the (n − 1) × (n − 1)

matrix B formed by deleting the first row and column ofA satisfies detBBT =
(n − 1)n−2 or zero accordingly as the(1, 1) element ofA is non-zero or zero. Hence
detB = (n − 1)(n/2)−1 or zero and we have the result.�

Proposition 3. Let A be a skew-Hadamard or conference matrix of order n. Then
the(n − 2) × (n − 2) minors areA(n − 2) = 0, 2(n − 1)(n/2)−2.

Proof. There are six cases: they have upper left-hand corner[
1 1
1 −1

]
,

[
1 1
0 ±1

]
,

[
1 0
0 ±1

]
or

[
1 1
1 1

]
.

These have determinants 2, ± 1, ± 1, 0 respectively. We use the lower right-
hand principal minor,C, of ordern − 2 to calculateCCT for each case. We find the
second case, where the determinant is(n − 1)(n/2)−2, is not CP as there
must be−2s after the first step of GE. Hence the maximum determinant ofC is
2(n − 1)(n/2)−2. �

Lemma 3. The possible values for the determinants of3 × 3 matrices with entries
0,±1 where there is at most one zero in each row and column are0, 1,±2, ±3 and
±4.

Proof. For matrices of the required type, up to equivalence, we have these four cases
1 1 1

1 ±1 ±1
1 ±1 ±1





0 1 1

1 ±1 ±1
1 ±1 ±1





0 1 1

1 0 ±1
1 ±1 ±1





0 1 1

1 0 ±1
1 ±1 0


 .

We used a computer to search all the possibilities and found that for no zeros the
determinant can be 0 or 4, for one zero the determinant can be 0, 2 or 4, for two
zeros the determinant can be 1 or 3, and for three zeros the determinant can be 0 or
2. �
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We now proceed to studyA(n − 3).

Proposition 4. Let A be a skew-Hadamard or conference matrix of order n. Then the
(n − 3) × (n − 3) minors areA(n − 3) = 0, 2(n − 1)(n/2)−3, or 4(n − 1)(n/2)−3

for n ≡ 0(mod 4) and2(n − 1)(n/2)−3, or 4(n − 1)(n/2)−3 for n ≡ 2(mod 4).

Proof. We first note that the submatrices
1 1 1

1 − 1
1 1 −


 and


1 1 1

1 − 0
1 1 −




always occur in any skew-Hadamard or conference matrix of order > 6. We first
consider the upper left-hand corner

1 1 1
1 − 1
1 1 −


 ,

which corresponds to a CP matrix with pivots 1, 2, 2.
We assume the CP matrix is in the form below where for ease of comprehension

we have written the elementsa, b, c, d, p, q, s in the top 6× 6 matrix although they
will not appear there in the CP matrix.




1 1 1 0 1 1

u︷ ︸︸ ︷
1 · · · 1

v︷ ︸︸ ︷
1 · · · 1

w︷ ︸︸ ︷
1 · · · 1

x︷ ︸︸ ︷
1 · · · 1

1 − 1 1 0 q 1 · · · 1 1 · · · 1 − · · · − − · · · −
1 1 − p s 0 1 · · · 1 − · · · − 1 · · · 1 − · · · −
0 a c

1 0 b

1 d 0
1 1 1
...

...
...

1 1 1
1 1 − C
...

...
...

1 1 −
1 − 1
...

...
...

1 − 1
1 − −
...

...
...

1 − −




.
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We use the orthogonality of the matrixA, and the ordern, to obtain constraints
for all the variablesa, b, c, d, p, q, s, u, v,w, x in terms of each other andn, the
original order. We then calculateCCT and then these constraints are solved by either
Matlab or a simple, but tedious, calculation to obtain the values for the minors as 0
and 4(n − 1)(n/2)−3 for n ≡ 0(mod 4) and 4(n − 1)(n/2)−3 for n ≡ 2(mod 4).

We now consider the second case with upper left-hand corner,
1 1 1

1 − 0
1 1 −


 ,

which also corresponds to a CP matrix with pivots 1, 2, 2.
We proceed, as before, to obtain the three values 0, 2(n − 1)(n/2)−3, 4(n −

1)(n/2)−3 for n ≡ 0(mod 4) and the two non-zero values 2(n − 1)(n/2)−3,

4(n − 1)(n/2)−3 as the only determinants forn ≡ 2(mod 4). �

Theorem 1. WhenGE is applied on aCP skew-Hadamard or conference matrix
W of order n the last three pivots in backward order aren − 1, (n − 1)/2, and
(n − 1)/2 or n − 1.

Proof. The last three pivots are given by

pn = W(n)

W(n − 1)
, pn−1 = W(n − 1)

W(n − 2)
, pn−2 = W(n − 2)

W(n − 3)
.

Since

W(n) = (n − 1)n/2,

W(n − 1) = (n − 1)(n/2)−1,

W(n − 2) = 2(n − 1)(n/2)−2,

W(n − 3) = 2(n − 1)(n/2)−3 or 4(n − 1)(n/2)−3,

the values of the three last pivots aren − 1, (n − 1)/2, and(n − 1)/2 or n − 1,
respectively. �

4. Numerical calculations

Lemma 4. The maximum determinant of alln × n matrices with elements±1 or 0,
where there is at most one zero in each row and column is:

Order Maximum Possible determinantal values
determinant

2 × 2 2 0, 1, 2
3 × 3 4 0,1, 2, 3, 4
4 × 4 16 0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16
5 × 5 48 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 36, 40, 48
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Remark. In fact, we found that considering all 5× 5 matrices with elements±1 and
no more than one zero per row and column, if the matrix had no zeros the determinant
could be 0, 16, 32 or 48; had exactly one zero the determinant could be 0, 8, 16, 24,
32 or 40; had exactly two zeros the determinant could be 0, 4, 8, 12, 16, 20, 24, 28,
32 or 36; had exactly three zeros the determinant could be 0, 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28, 30 or 36; had exactly four zeros the determinant could be 1,
3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 or 27; had exactly five zeros the determinant
could be 0, 2, 4, 6, 8, 10, 12, 18, 20, 22.

Considering all 4× 4 matrices with elements±1 and no more than one zero per
row and column, if the matrix had no zeros the determinant could be 0, 8, 16; had
exactly one zero the determinant could be 0, 4, 8, 12; had exactly two zeros the
determinant could be 0, 2, 4, 6, 8, 10; had exactly three zeros the determinant could
be 1, 3, 5, 7, 9; had exactly four zeros the determinant could be 1, 3, 5, 9.

Considering all 3× 3 matrices with elements±1 and no more than one zero per
row and column, if the matrix had no zeros the determinant could be 0, 4; had exactly
one zero the determinant could be 0, 2, 4; had exactly two zeros the determinant
could be 1, 3; had exactly three zeros the determinant could be 0, 2.

Considering all 2× 2 matrices with elements±1 and no more than one zero per
row and column, if the matrix had no zeros the determinant could be 0,±2; had
exactly one zero the determinant could be±1; had exactly two zeros the determinant
could be±1.

Lemma 5. W(4) = 10 for a W(6, 5).

Proof. Every 4× 4 subdeterminant ofW(6, 5) must contain two zeros. Hence, its
determinant can only be 0, 2, 4, 6, 8, or 10. We show that the first four non-zero
values are not possible in aW(6, 5).

Without any loss of generality we assume that the 4× 4 subdeterminant has first
row and column comprising only+1s. Because we are dealing with a weighing
matrix the second row and column must contain two 1s and two−1s.

We denote the vectors(1,−,−), (1,−, 1) and(−,−, 1) asa1, a2 anda3, respec-
tively. We denote the 2× 2 submatrices

[
x 0
0 y

]
and

[
0 x

y 0

]
,

by b1 andb2, respectively, wherex andy are both 1 or−1.
Calculation shows that the 4× 4 matrix with second row and column comprising

a1 andaT
1 can be completed by bothb1 andb2, but are equivalent under permutation

of rows and columns, to the matrixA1 below.
Furthermore calculations show that the 4× 4 matrix with second row and column

ai andaT
j , and completion matrix of shapebk, give only two inequivalent matrices,

A2 andA3, under row and column permutations.
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(a2, a
T
2 , b1), (a3, a

T
3 , b1) and (a3, a

T
2 , b2) are equivalent toA1.

(a2, a
T
2 , b2), (a3, a

T
3 , b2) and (a3, a

T
2 , b1) are equivalent toA2.

Now, writing x for ±1, and using the orthogonality conditions for theW(6, 5),
we have

A1 =




1 1 1 1

1 1 − −
1 − x 0

1 − 0 x̄


 ,

A2 =




1 1 1 1

1 − 1 −
1 1 0 −
1 − − 0


 ,

A3 =




1 1 1 1

1 − 1 −
1 1 − 0

1 − 0 1


 .

Now A1 has determinant 0.A2 andA3 have determinant 10. This gives the result.
�

Lemma 6. The unique pivots of theW(6, 5) are
{
1, 2, 2, 5

2, 5
2, 5

}
.

Proof. We use the determinants ofW(1) = 1, W(2) = 2, W(3) = 4, W(4) = 10,
W [1] = 1, W [2] = 2.

Hence the pivot pattern is given by

p1 = 1, p2 = W(2)

W(1)
= 2, p3 = W(3)

W(2)
= 2,

p4 = W(4)

W(3)
= 5

2
, p5 = 5

W [1]
W [2] = 5

2
, p6 = 5

W [0]
W [1] = 5. �

Lemma 7. The pivots of theW(8, 7) are
{
1, 2, 2, 4, 7

4, 7
2, 7

2, 7
}

or
{
1, 2, 2, 3,

7
3, 7

2, 7
2, 7

}
.

Proof. From Lemma 2 and Proposition 1, we have that

p1 = 1, p2 = 2, p3 = 2, p4 = 4 or 3.
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From Theorem 1, we also have that

p8 = 7, p7 = 7

2
and p6 = 7

2
.

SinceP8
i=1, pi = detW(8, 7) = 74 the only values thatp5 can take are74 or 7

3.

�

Remark. The following matrices have pivot patterns 1, 2, 2, 4, 7
4, 7

2, 7
2, 7 and

1, 2, 2, 3, 7
3, 7

2, 7
2, 7, respectively.




1 1 1 1 1 1 1 0
1 − − 1 1 − 0 −
1 − 1 − − 0 1 −
1 1 − − 0 1 − −
1 − 0 1 − 1 − 1
1 1 − 0 − − 1 1
0 1 1 1 − − − −
1 0 1 − 1 − − 1




and




1 1 0 − − 1 1 −
1 − − − 1 1 0 1
1 − 1 1 0 1 − −
1 1 − 1 − 0 − 1
0 1 1 1 1 1 1 1
1 1 1 − 1 − − 0
1 − 1 0 − − 1 1
1 0 − 1 1 − 1 −




.

Lemma 8. The pivots of theW(10, 9) can be
{
1, 2, 2, 3, 3, 4, 9

4, 9
2, 9

2, 9
}

or{
1, 2, 2, 4, 3, 3, 9

4, 9
2, 9

2, 9
}

.

Proof. TheW(10, 9) is unique up to permutation of rows and columns and multi-
plication of rows and columns by−1. We have found two CPW(10, 9) which have
difference pivot patterns showing the sensitivity of the pivots to permutations of rows
and columns.

The following matrices have pivot patterns
{
1, 2, 2, 3, 3, 4, 9

4, 9
2, 9

2, 9
}
, and{

1, 2, 2, 4, 3, 3, 9
4, 9

2, 9
2, 9

}
, respectively.
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


1 1 0 1 1 1 1 1 1 1
1 − 1 − 1 − 1 − 1 0
1 − − 1 0 − − 1 1 −
1 1 − − − 1 0 − 1 −
1 − 1 1 − 1 1 0 − −
1 1 1 1 − − − − 0 1
0 − 1 − − 1 − 1 1 1
1 0 − − − − 1 1 − 1
1 − − 0 1 1 − − − 1
1 1 1 − 1 0 − 1 − −




and 


1 1 1 1 1 1 1 1 0 1

1 − − 1 1 − 1 0 − −
1 − 1 − − − 0 1 − 1

1 1 − − 1 − − 1 1 0

1 1 − 1 − 0 − − − 1

1 − − − 0 1 1 − 1 1

1 1 1 0 − − 1 − 1 −
0 − 1 1 1 − − − 1 1

1 − 0 1 − 1 − 1 1 −
1 0 1 − 1 1 − − − −




. �

We calculated the values of all the large minors of the uniqueW(12, 11). These
are given in the next table. We also calculated all the minors for one of theW(20, 19)
and found exactly the same results as those in the table.

Minor Minimum non-zero determinant All determinants

W(n − 1) m = (n − 1)n/2−1 0, m
W(n − 2) m = (n − 1)n/2−2 0, m, 2m
W(n − 3) m = (n − 1)n/2−3 0, m, 2m, 3m, 4m
W(n − 4) m = (n − 1)n/2−4 0, m, 2m, 3m, 4m, 6m, 8m,

9m, 10m, 12m, 16m

Tables 3 and 4 give us the pivot patterns calculated by a computer for the first
few W(n, n − 1) for both n ≡ 2(mod 4) andn ≡ 0(mod 4). Although our theory
predicts that the third last pivot could ben − 1 or (n − 1)/2, in both these tables
only the value(n − 1)/2 has been observed.
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