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Demographic change towards an ever aging population entails an increasing demand for specialized

transportation systems to complement the traditional public means of transportation. Typically, users

place transportation requests, specifying a pickup and a drop off location and a fleet of minibuses

or taxis is used to serve these requests. The underlying optimization problem can be modeled as a dial-

a-ride problem. In the dial-a-ride problem considered in this paper, total routing costs are minimized

while respecting time window, maximum user ride time, maximum route duration, and vehicle

capacity restrictions. We propose a hybrid column generation and large neighborhood search algorithm

and compare different hybridization strategies on a set of benchmark instances from the literature.

& 2012 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Demand responsive transportation services are needed, e.g. in
remote rural areas, where no general public transportation
systems exist, as a complementary service to available public
transportation systems for the elderly or disabled, or in the area of
patient transportation to and from hospitals and other medical
facilities. All these services involve the transportation of persons
who place transportation requests, specifying an origin and a
destination location. The underlying optimization problem is
usually modeled in terms of a dial-a-ride problem (DARP). The
field of DARPs has received considerable attention in the litera-
ture. However, due to the application oriented character of this
problem, the objectives considered as well as the constraints
imposed vary considerably; rather recent surveys covering DAPRs
and demand responsive transportation are due to Cordeau and
Laporte [1] and Parragh et al. [2].

In the DARP under consideration in this paper, the objective
corresponds to the minimization of the total routing costs.
A homogeneous fleet of vehicles of size m has to serve a given
set of transportation requests n. These are all known in advance of
the planning. In the following, we will refer to the origin or pickup
node of a request i by i, and to its destination or drop off node by
nþ i. Users specify time windows for either the origin or the
destination. In addition, maximum user ride times, route duration
s Administration, University

. Parragh),

-NC-ND license.
limits, and vehicle capacity constraints have to be considered in
the planning.

This version of the DARP has been considered by Cordeau
and Laporte [3], who propose a tabu search algorithm and a set of
20 benchmark instances, by Parragh et al. [4], who develop a
competitive variable neighborhood search (VNS) heuristic, and by
Jain and Van Hentenryck [5], who propose a constraint program-
ming based large neighborhood search algorithm. A formal
definition of the problem can be found in [6], where a branch-a-
cut algorithm is proposed that solves instances with up to 36
requests. Ropke et al. [7] propose two new two-index formula-
tions and a number of additional valid inequalities which are used
within branch-and-cut algorithms. Instances with up to 8 vehicles
and 96 requests are solved to optimality. In [8], the same
instances are solved by means of branch-and-cut-and-price.

Since we consider a route duration limit in combination with a
time window at the depot and maximum user ride times in
connection with time windows at either the pickup or the drop off
location, the scheduling subproblem (and hence also the feasi-
bility check) is more involved than in other routing problems.
Cordeau and Laporte [6] propose an eight step evaluation scheme
to determine the feasibility of a given route. We use this scheme
in the revised version of [4]. The evaluation scheme is based on
the forward time slack as introduced by Savelsbergh [9] which is
first used to reduce the duration of the tour and then to reduce
the individual ride time of each request on the tour. If l gives the
length in terms of the number of nodes along the tour the forward
time slack computation is of complexity O(l) [1].

In recent years, the field of hybrid metaheuristics, and math-
euristics in particular, has received more and more attention
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[10,11]. In the field of vehicle routing, metaheuristic and column
generation hybrids have shown to be especially successful:
Prescott-Gagnon et al. [12], e.g., propose a branch-and-price
based large neighborhood search algorithm for the vehicle routing
problem with time windows; heuristic destroy operators are
complemented by a branch-and-price based repair algorithm.
Muter et al. [13], on the other hand, propose a hybrid tabu search
heuristic, where the column pool is filled with feasible routes
identified by the tabu search. The search is then guided by the
current best lower and upper bound; the current best lower
bound is obtained from solving the linear relaxation of a set
covering type formulation on the current column pool; the
current best upper bound is computed by imposing integrality
on the decision variables. Both methods are tested on benchmark
instances for the vehicle routing problem with time windows.
Using related ideas, Pirkwieser and Raidl [14] propose variable
neighborhood search ILP hybrid for the periodic vehicle routing
problem with time windows: feasible solutions generated by the
metaheuristic are used to populate the column pool. A set cover-
ing problem (SCP) is iteratively solved on this pool and in case of
improvement, the current solution of the VNS is replaced by the
solution of the SCP.

In line with these developments, we propose a hybrid method
for the DARP. It integrates VNS into column generation and
combines it with large neighborhood search (LNS). LNS, as a
stand-alone method, has shown to work well when applied to
routing problems in general [15], and for the pickup and delivery
problem with time windows in particular [16] (a problem closely
related to the DARP). Following recent developments in the
column generation field [17] and given its success in solving
difficult routing problems [18,19], we propose a VNS based
column generator to identify additional routes.

The remainder of this paper is organized as follows. Section 2 is
devoted to a detailed presentation of the proposed hybrid frame-
work. This is followed by computational experiments, illustrating
the merits of each of the components. Conclusions and directions
for future research are given at the end of the paper.
2. Solution framework

The proposed hybrid framework consists of two main algo-
rithmic components: LNS and column generation. These two
components are described in the following. Thereafter, their
combination is illustrated in further detail.

2.1. Large neighborhood search

LNS has been introduced by Shaw [20]. Its principle is
relatively simple: in each iteration the incumbent solution is
partially destroyed and then it is repaired again; that is, first a
given number of elements are removed and then they are
reinserted. Every time these operations lead to an improved
solution, the new solution replaces the incumbent solution,
otherwise it is discarded. Ropke and Pisinger [16] extend Shaw’s
idea and they propose to use a number of different destroy and
repair operators. Given the success of this method, all our
operators are either based on or correspond to the ones employed
in [16]. In terms of destroy operators these are the random
removal operator, the worst removal operator, and the related
removal operator; in terms of repair operators, these are a greedy
insertion heuristic, and k-regret insertion heuristics. In contrast to
[16], we do not use an adaptive layer to guide the selection of the
operators but we choose them randomly. The reason for this
design decision is the following. Our aim is to keep each
component of our hybrid framework as simple as possible and
an adaptive layer comes at the price of a large number of
additional parameters, compared to only small gains in solution
quality.

In every iteration of the proposed LNS, before a removal
operator is applied to the incumbent solution, the number of
requests to be removed q has to be determined. In our case, in
each iteration, q is chosen randomly between 0.1n and 0.5n. Then,
one of the destroy operators is selected randomly and applied to
the current incumbent solution.

The random removal operator randomly removes q requests.
The worst removal operator randomly removes requests while
biasing the selection towards requests whose removal would
improve the objective function value the most. Finally, in the
related removal operator the selection of requests is biased
towards related requests. We use a slightly different similarity
measure than the one employed in [16]. It has the advantage of
being parameter free but it is not only based on the distance
between two requests, as proposed in [21]. Two requests i and j

are said to be related if ð9Bi�Bj9þ9Bnþ i�Bnþ j9þtijþtnþ i,nþ jÞ is
small; tij denotes the distance between location i and j; and Bi the
beginning of service at i. In every iteration of the related removal
operator, we bias the choice towards those requests that are the
most similar to all requests that have already been removed.

Removed requests are put into the request bank and, in a next
step, they are reinserted using one of the repair operators. We
randomly choose a repair operator among greedy insertion, 2-
regret insertion, 3-regret insertion, 4-regret insertion and m-
regret insertion.

Using the greedy insertion heuristic, in each iteration, the
unserved request that deteriorates the objective function value
the least is inserted at its best insertion position. The regret
insertion heuristics work as follows: in each iteration the
unserved request that is associated with the largest regret value
is inserted at its best insertion position. Let Dði,r,sÞ denote the
difference in objective function value if request i is inserted at its
best position into route r of solution s. Now assume that Dði,1,sÞ is
associated with the route where i can be inserted the cheapest,
Dði,2,sÞ with the route where i can be inserted the second-
cheapest, and so on. Then, the regret value R(i) is computed as
follows:

RðiÞ ¼
Xk

r ¼ 2

½Dði,r,sÞ�Dði,1,sÞ� ð1Þ

with kAf2,3,4,mg, depending on the chosen version of the
heuristic (2-regret, 3-regret, 4-regret, and m-regret). We refer to
[16] for additional information.

In order to further diversify the search we allow solutions that
deteriorate the incumbent solution by at most 3% to be accepted
with a probability of 1%. In order to facilitate switching between
LNS and other components, we refrain from using more sophis-
ticated acceptance schemes. We note, however, that feasibility is
maintained at all times: if requests cannot be inserted in a
feasible way and thus remain in the request bank, the new
solution is not considered for acceptance. Since deteriorating
moves are allowed, besides the current incumbent solution, we
also keep track of the best solution identified during the search.

Furthermore, following the findings of [16], in each iteration,
we randomly choose if the selected repair operator is used in its
deterministic or in its randomized version. If the randomized
version is selected, every time the evaluation function is called, it
randomly chooses a noise factor in [0.5, 1.5] and multiplies the
original insertion costs by it.

Finally, like in [4], every time a new solution is generated and
it is at most 5% worse than the current best solution, the new
solution undergoes local search based improvement. Solutions
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that are worse than that have a chance of 1% to undergo local
search based improvement. The local search heuristic is of the
intra-route, first improvement type. It proceeds sequentially
along each route, considering one request at a time, trying to
improve its positioning by moving the corresponding pickup and
the corresponding delivery to a different position within their
route; we refer to [4] for details on this procedure.

As indicated above, we hybridize LNS with ideas from column
generation. These are described in the following.
2.2. Column generation

In order to use column generation based components, we
formulate the DARP in terms of a SCP. Let O denote the set of
feasible routes and let P denote the set of requests. For each route
oAO, let co be the cost of the route and let the constant bio
represent the number of times request iAP is traversed by o.
Binary variable yo takes value 1 if and only if route o is used in the
solution. The problem can thus be formulated as the following SCP:

min
X

oAO

coyo ð2Þ

subject to
X

oAO

bioyoZ1 8iAP, ð3Þ

X

oAO

yorm, ð4Þ

yoA 0,1f g 8oAO: ð5Þ

The objective function (2) minimizes total routing costs. Con-
straints (3) make sure that each request is covered by at least
one route; and constraint (4) ensures that at most m vehicles are
used in the solution. Replacing (5) by,

yoZ0 8oAO, ð6Þ

we obtain the linear relaxation of SCP denoted as LSCP.
Due to the large size of O, SCP cannot be solved directly.

Instead, a restricted version of SCP, denoted as RSCP, considering
only a small subset of columns O0 �O, is solved. The set O0 can be
generated by means of column generation.

In column generation, in each iteration the linear relaxation of
RSCP, denoted as RLSCP, is solved. The column or route that is
associated with the smallest negative reduced cost value is
searched and added to O0. The according problem is usually
referred to as the subproblem whereas RLSCP is denoted as the
master problem. The reduced cost of a newly found column can
be computed as follows:

co ¼ co�
X

iAP

biopi�s, ð7Þ

where pi denotes the dual variable associated with constraint (3)
for request i, and s the dual variable associated with constraint
(4). The master and the subproblem are solved iteratively until no
more negative reduced cost columns can be found. In this case,
the optimal solution of LSCP has been found. For further informa-
tion on column generation, we refer to the book by Desaulniers
et al. [22].

The subproblem we have to solve minimizes co while taking
into consideration pairing and precedence, time window, ride
time, capacity and duration constraints. We propose to generate
columns of negative reduced cost heuristically, by means of VNS.
It is described in the following.
2.3. Variable neighborhood search

VNS has been introduced by Hansen and Mladenovic [18]. It is
an iterative procedure, where within a shaking phase an incum-
bent solution is modified using a neighborhood structure N k

(where k¼ 1, . . . ,kmax). The resulting solution is further improved
using local search. The neighborhoods are typically ordered in a
nested way, i.e. the first (last) neighborhoods result in a compara-
tively small (large) modification respectively. If the current
solution improves the incumbent solution it replaces the incum-
bent solution and the procedure starts over again with the first
neighborhood. Otherwise the current solution is discarded and
the procedure continues with the next neighborhood. The proce-
dure stops as soon as a predefined termination criterion is met.

We apply VNS to individual routes: each route associated
with a column that is part of the current basic solution of RLSCP
(i.e. where yo40) is considered consecutively. The objective is to
find new columns with negative reduced cost which enrich the
column pool O0. Throughout the application of VNS all obtained
routes are evaluated and compared in terms of their reduced
costs, where lower ones are favored.

The proposed neighborhood structures N k (where k¼ 1, . . . ,9)
for the shaking phase may modify any given route in three
different ways. In any iteration a given percentage of requests is
added, exchanged, or removed. The selection probabilities for
requests to be chosen in each neighborhood are biased with
respect to the dual information of the underlying RLSCP. The
selection probability is proportional to pi (we will refer to this
strategy as p afterwards). Any neighborhood affects the route by
20dk=3e%, with respect to the current number of request pairs
scheduled on it. Neighborhoods k¼ 1,4,7 add up to 20%, 40%, 60%
of pairs currently not on route, neighborhoods k¼ 2,5,8 exchange

the corresponding fraction of pairs currently scheduled on it.
Finally neighborhoods k¼ 3,6,9 remove the required number of
pairs from the route. By means of any shaking step we try to
identify routes with negative reduced costs. When adding a
request to a given route (i.e., in neighborhoods k¼ 1,4,7), the
selection probability for any request will be directly proportional
to its dual value pi, hence favoring requests with a high pi value.
When removing requests ðk¼ 3,6,9Þ, the selection probability will
be inversely proportional. In neighborhoods k¼ 2,5,8 a request
will be removed in exchange for another one to be added; again,
the selection probabilities will be determined according to the
rules specified before. Only changes resulting in a feasible route
are considered.

After having generated a route from the current neighborhood
randomly it is further improved by means of the intra-route local
search algorithm proposed in [4]. In case the resulting route
improves the best currently known in terms of negative reduced
cost, we start over with the first neighborhood N 1, otherwise the
route is discarded and we continue with the next neighborhood
kþ1. The procedure terminates as soon as Nnew new columns
with negative reduced cost have been found or exploiting the last
neighborhood kmax did not result in a column with negative
reduced cost (we will refer to this strategy as addFirst afterwards).
Upon termination of VNS the obtained routes with negative
reduced costs are added to O0.

2.4. Hybridization scheme

A sketch of the proposed hybridization scheme is outlined in
Algorithm 1. In a first step, the column pool O0 is initialized with
single request routes (one for each request) that do not consume a
vehicle resource. Each of these columns is associated with a cost
of big M. Then, a feasible starting solution is generated by means
of the 2-regret insertion heuristic. In the case where requests
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remain in the request bank, a truncated version of the described
LNS is run: destroy and repair operators are iterated until a first
feasible solution is attained. This solution constitutes the starting
solution and the according columns are added to the pool O0.
Then, in each iteration, we first solve RLSCP on O0 and we retrieve
the according columns and the dual information. Thereafter, the
above described VNS is used to identify new columns of negative
reduced cost. It takes each route or column o part of the current
basis s0 as a starting point and generates at most Nnew new
columns for each oAs0. These are added to O0. Every Ninterval

iterations, we also solve the RSCP on O0 to obtain the best feasible
DARP solution sn, currently available. In case of duplicate
requests, which is possible because we solve a set covering and
not a set partitioning problem, the obtained solution is repaired.
Duplicate requests are removed in a greedy way, i.e. we check
each request at a time and in case it exists more than once, we
keep the one that is inserted best and remove all others. The
obtained solution serves as starting solution for LNS. Thus,
compared to the column generation component based on VNS,
LNS works on complete solutions rather than on individual routes
or columns, hence taking into account a more global view on the
solution. It is run for NLNS iterations. All routes generated during
the execution of LNS are transformed into columns and they are
added to the pool O0. The above is repeated for Niterations iterations.
In the end, RSCP is solved on the obtained column pool O0 and the
according result is returned.

Algorithm 1. Hybrid framework.
1:
 initialize column pool O0
2:
 generate a feasible starting solution s
3:
 add all oAs to O0
4:
 sbest : ¼ s; i : ¼ 0;

5:
 while ioNiterations do

6:
 solve RLSCP on O0 yielding s0
7:
 for each oAs0 do

8:
 apply VNS and add up to Nnew columns with negative

reduced costs to O0
9:
 end for

10:
 if ði mod Ninterval

Þ ¼ 0 then

11:
 solve RSCP on O0 yielding sn
12:
 apply LNS to sn for NLNS iterations yielding s00
13:
 sbest ¼ s00
14:
 end if

15:
 i : ¼ iþ1

16:
 end while

17:
 solve RSCP on O0 yielding sbest
18:
 return sbest
Table 1
Identifying the best parameter setting for hybridization step one.

Niterations 1 5 10 25 50 100

NLNS 25,000 5000 2500 1000 500 250

(LNS þ SC) Avg. 525.43 523.41 520.77 520.54 520.48 520.88

CPUa 12.33 13.99 14.42 16.79 20.08 30.75

(LNS þ LS þ SC) Avg. 526.76 521.15 520.96 519.79 520.91 520.02

CPUa 13.98 13.28 14.23 16.25 20.40 28.58

a Average run times in minutes on a Xeon computer with 2.67 GHz.
3. Results

The algorithms were implemented in Cþþ and for the solution
of the SCPs CPLEX 12.1 together with Concert Technology 2.9 was
used. All tests were carried out on a Xeon CPU at 2.67 GHz with
24 GB of RAM (shared with 7 other CPUs) and CPLEX was
restricted to one thread. In addition, each call to CPLEX was
limited to 60 s. This may entail that the attained solution of RSCP
is worse than the best solution found so far. In this case the search
proceeds with the best found solution.

In the following we describe the test data set and then the
results obtained. We first evaluate different parameter settings
and hybridization schemes. In hybridization step one, we evaluate
combinations of LNS with RSCP. In hybridization step two, we
evaluate combinations of all three components: LNS, R(L)SCP and
VNS. This is followed by a comparison of the results computed by
the proposed hybrid framework to the best known results from
the literature.

3.1. Test instances

Cordeau and Laporte [3] proposed a data set of 20 randomly
generated instances. They contain 24–144 requests. In each
instance, the first n=2 requests have a time window on the
destination, while the remaining n=2 instances have a time
window on the origin. For each vertex a service time di¼10 is
considered and the number of persons transported per request is
set to 1. Routing costs and travel times from a vertex i to a vertex
j correspond to the Euclidean distance between these two vertices.
The route duration limit is 480, the vehicle capacity is 6, and the
maximum ride time is 90, in all instances. In the first 10 instances,
narrow time windows are considered. For the second 10 instances,
wider time windows are given. The first six instances out of these
10 instances are characterized by a larger vehicle fleet, the remaining
four instances have a smaller vehicle fleet. Based on this information,
the data set can be subdivided into four sets with similar character-
istics: R1a–R6a (narrow time windows, larger vehicle fleet); R7a–
R10a (narrow time windows, smaller vehicle fleet); R1b–R6b (wider
time windows, larger vehicle fleet); R7b–R10b (wider time windows,
smaller vehicle fleet). In the following, we refer to these sets by A, B,
C, and D respectively.

3.2. Evaluating hybridization step one

In a first step, we evaluate the performance of LNS in
combination with intermediate calls to CPLEX, solving RSCP on
the columns generated by LNS (LNSþSC) and using it as a stand-
alone method, with and without local search. Following the
findings of Ropke and Pisinger [16] in the context of the pickup
and delivery problem with time windows, we decided that a total
of 25,000 LNS iterations shall be attained in each setting. In our
framework (with Ninterval

¼ 1) there are two parameters which
influence the total number of LNS iterations executed during one
run. These are Niterations and NLNS. In order to obtain the desired
25,000 iterations we test the following parameter pairs (given
in the form ðNiterations,NLNS

Þ): (1, 25,000), (5, 5000), (10, 2500),
(25, 1000), (50, 500), and (100, 250). Table 1 provides the accord-
ing average results aggregated across per-instance average values
over five random runs as well as average CPU times in minutes.
LNSþSC indicates that LNS is run without the additional local
search step and LNSþLSþSC indicates that it is run as described
in Section 2.1. Row-wise best results are indicated in bold.
The best results for LNSþSC without LS are obtained with setting
(50, 500) with an average run time of 20.08 min. The best results
across all experiments reported in Table 1 are obtained with
LNSþLSþSC and setting (25, 1000) with an average run time of
16.25 min. The latter ðNiterations,NLNS

Þ setting appears to provide a
good trade-off between solution quality and run time. It is also
used in all subsequent experiments.
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In Table 2, LNSþSC is compared to pure LNS. For both methods,
results for a version with (denoted as LNSþLSþSC and LNSþLS)
and without the additional local search step in the LNS (denoted as
LNSþSC and LNS) are reported. The values given in the table
correspond to average values across data sets with similar char-
acteristics (A, B, C, and D). For each setting, average solutions over
five random runs per instance, the best out of these five random
runs and the average CPU time in minutes are given. We
performed paired t-tests to determine if the use of local search
and hybridization step one is effective. All tests were performed at
a level of confidence of 99%. Hybridization step one leads to better
results, where the improvement is statistically significant. Using
the same number of LNS iterations (25,000), LNSþSC improves
LNS by about 1:3% and LNSþLSþSC improves LNSþLS by about
1:7%. This improvement comes at the price of less than 3 min of
additional computation time, on average (see Table 2).

In order to further validate hybridization step one, we ran LNS
and LNSþLS also for 37,000 iterations, leading to average CPU times
of 16.77 and 17.24 min, respectively. We then compare the obtained
average results to those of LNSþSC and LNSþLSþSC as given in
Table 2, i.e. using 25,000 iterations, with average CPU times of 16.79
and 16.25 min, respectively. Within comparable CPU times, LNSþSC
improves the results of LNS by 0:93% on average and LNSþLSþSC
improves the results of LNSþLS by 1:06% on average.

Hence we conclude that the proposed hybridization step is
effective and we will continue to do so in the following experiments.

The use of the local search step (when comparing LNS vs.
LNSþLS and LNSþSC vs. LNSþLSþSC) does not lead to results
that are statistically different. However, further test runs have
shown the inclusion of LS does indeed lead to improved results,
without increasing computation times. The latter is due to the fact
that within LNS, local search is only applied to solutions that are
already close to the best solutions found so far (see Section 2.1).
Therefore, we decided to use LNSþLS within the proposed hybrid
framework and in all subsequent experiments.
Ninterval 1 2 5 10 25

Niterations 25 50 125 250 625

Best 513.96 512.44 515.50 513.90 515.29

Avg. 519.73 517.83 519.36 519.23 520.81

CPUa 23.61 21.84 32.61 39.18 58.34

a Average run times in minutes on a Xeon computer with 2.67 GHz.

Table 4
Identifying the best VNS setting.

Strategy Best Avg.

addFirst addBest addAll addFirst addBest addAll

Random 512.97 513.86 514.83 518.58 518.79 519.85

p 512.44 513.33 513.44 517.83 518.69 518.13

NRC 514.37 514.28 514.06 519.19 519.06 519.09

All 514.15 514.57 513.77 519.16 520.63 519.44
3.3. Evaluating hybridization step two

In a second step, we evaluate the incorporation of the pro-
posed VNS based heuristic column generator. In line with the
above experiments, a total of 25,000 iterations shall be attained
by the LNS in each of the experiments. Setting NLNS

¼ 1000 and
fixing Nnew

¼ 2, we vary parameter pair ðNinterval; Niterations
Þ such

that Niterations=Ninterval
¼ 25 which leads to the desired 25,000 total

LNS iterations. The tested parameter pairs are ð1,25Þ, ð2,50Þ,
ð5,125Þ, ð10,250Þ, and ð25,625Þ. In Table 3 we compare again
average and best solution values, as well as the average CPU times
required, over five random runs, aggregated across all instances.
The best setting in terms of both best and average values is ð2,50Þ
(indicated in bold): RLSCP together with the VNS based column
generator is called twice before the (new) best complete solution
is again improved by means of LNS.
Table 2
Comparing LNS and hybridization step one with and without local search.

Data set LNS LNSþLS

Avg. Best CPUa Avg. Best CPU

A 517.72 512.27 7.92 515.27 511.48 7.9

B 597.64 587.78 9.94 598.82 589.14 10.0

C 479.36 473.60 17.20 481.22 474.94 18.0

D 543.54 534.75 17.84 550.30 544.68 18.1

Avg 527.36 520.27 13.09 528.77 522.69 13.4

a Average run times in minutes on a Xeon computer with 2.67 GHz.
In a next step, we evaluate different parameter settings within
the proposed VNS, in comparison to the one described in Section
2.3. Instead of adding the first Nnew

¼ 2 (addFirst) negative
reduced cost columns derived from each column of the current
basis, we test adding the best Nnew (addBest), and adding all that
we find (addAll). Note that in the latter case Nnew

¼1. These
three settings are evaluated in combination with different selec-
tion rules used to identify those requests in the VNS that are
inserted, removed or exchanged. We test our proposed selection
rule p against three other benchmark policies: random selection
(random); biased selection based on the resulting negative
reduced costs (NRC) (i.e., as opposed to strategy p also taking
into account the actual routing costs); and a combination of all
three (all), where one of the three rules is chosen randomly in
every iteration of VNS. The results displayed in Table 4 confirm
that p dominates all other selection rules. It obtains the best
results in combination with addFirst. There is no obvious expla-
nation why addFirst works slightly better than the other two
strategies in this case (for the other selection rules it does not
always obtain the best results). Our results confirm, however, that
using the fastest strategy (addFirst requires less computation time
than addBest and addAll), does not lead to results of reduced quality.

As a final step, we evaluate the robustness of the proposed
algorithm with respect to the choice of Nnew, which is varied
between 1 and 10. The algorithm is applied using the best parameter
setting identified previously (i.e. Ninterval

¼ 2, Niterations
¼ 50, addFirst).

The results are shown in Table 5 and confirm that setting Nnew
¼ 2

leads to the best results, both in terms of the average and best
solutions obtained.

Summarizing, the merit of hybridization step two is an
improvement in both average and best solution quality of about
LNSþSC LNSþLSþSC

a Avg. Best CPUa Avg. Best CPUa

9 509.69 506.72 12.27 508.54 504.06 11.32

2 590.05 581.81 15.18 588.34 581.44 14.00

8 473.53 469.06 19.16 474.34 469.97 19.33

3 537.83 527.94 21.65 536.32 529.64 21.26

5 520.54 514.69 16.79 519.79 514.42 16.25
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0.4%. This improvement comes at the price of about 5 min of
additional computation time, on average.

3.4. Comparison to existing results

Based on the above, we identify the following parameter
setting as the best one: Niterations

¼ 50, Nnew
¼ 2, Ninterval

¼ 2 and
NLNS
¼ 1000. In Table 6, we compare the results of our hybrid

framework, using the identified parameter setting, to the best
known results and the VNS of [4] on a per-instance level. Columns
headed by Best (Avg.) report the best (average) solution values.
Average run times are reported in columns headed by CPU.
In column four we report the best known solutions, as reported
in [4]. The given deviations are deviations (columns (%)) from the
best known results. Negative deviations indicate improvements.
All results that tie with or improve the best known results of [4]
are printed in bold. Results that improve the best known solutions
available so far are highlighted by an asterisk. The proposed
hybrid framework obtains solutions of very high quality. Compar-
ing per-instance average results to the best known values, an
average deviation of only 1.25% is observed. Comparing the best
out of five random runs to the best known values, the deviation
reduces to 0.31%, on average, and four new best solutions can be
identified. Comparing the best solution values identified during
all parameter tuning tests, we are able to improve nine out of 20
best known results and we tie for another nine. Furthermore, run
on the same computer, the proposed framework requires only a
fraction of the run time of the previous best method: on average
Table 5
Identifying the best parameter setting for hybridization step two.

Nnew 1 2 3 4 5 7 10

Best 514.28 512.44 514.78 512.98 513.92 514.82 513.67

Avg. 519.63 517.83 519.00 519.15 519.17 520.74 519.56

CPUa 21.74 21.84 22.79 23.92 25.86 26.96 25.09

a Average run times in minutes on a Xeon computer with 2.67 GHz.

Table 6
Proposed hybrid LNS vs. best known results.

Instance m n VNS [4] H

BKSa Best Avg. CPUb B

R1a 3 24 190.02 190.02 190.02 5.18 1
R2a 5 48 301.34 301.34 301.78 12.06 3
R3a 7 72 532.00 533.01 536.08 19.31 5

R4a 9 96 570.25 573.92 578.21 24.13 5

R5a 11 120 628.11 636.77 637.72 87.69 6

R6a 13 144 794.06 802.12 809.27 94.10 7
R7a 4 36 291.71 291.71 294.26 5.09 2
R8a 6 72 487.84 490.58 495.70 44.29 4

R9a 8 108 658.31 666.96 673.18 103.97 6

R10a 10 144 857.11 866.97 873.15 211.29 8

R1b 3 24 164.46 164.46 164.46 6.24 1
R2b 5 48 295.66 296.65 299.19 15.71 2

R3b 7 72 486.57 490.16 494.23 28.83 4
R4b 9 96 530.70 533.15 540.50 72.66 5

R5b 11 120 578.61 583.12 588.48 131.85 5

R6b 13 144 740.35 742.28 751.55 227.25 7
R7b 4 36 248.21 248.21 248.21 8.77 2
R8b 6 72 461.39 462.50 468.97 39.10 4

R9b 8 108 597.75 600.18 607.94 75.70 5
R10b 10 144 795.16 796.90 805.93 250.20 8

Avg 510.48 513.55 517.94 73.17 5

a Best known solutions computed by Parragh et al. as reported in [4].
b Average run times (5 independent random runs per instance) in minutes on a Xe
c Average run times in minutes on a Xeon computer with 2.67 GHz.
about 22 min compared to 73 in case of the VNS. These results
clearly indicate that the proposed framework is a highly compe-
titive method for the DARP. (All new best results are available at
http://prolog.univie.ac.at/research/DARP/.)

In a next step, we apply the proposed hybrid LNS to two sets of
instances for which optimal solutions are known. These instances
were proposed by Ropke et al. [7] and consist of 2–8 vehicles and
16–96 requests. The first set (‘‘a’’ instances) represents the
context where (smaller) vehicles (Q¼3) are used for the trans-
portation of individuals whereas the second set (‘‘b’’ instances)
includes (larger) vehicles (Q¼6) for the transportation of indivi-
duals or groups of individuals. The generation of these instances
and their main characteristics are described in detail in [6,7].

In Table 7 we compare per-instance average and best results
(out of five random runs) obtained by our method to the optimal
values as reported in [7]. We were able to find the optimal solution
for 13 out of 21 instances per set. Those results are printed in bold.
Comparing per-instance average results to the optimal solutions,
an average deviation of only 0.16% (0.12%) is observed for instances
in set a (b). When comparing the best out of five random runs to
the optimal solutions, the average deviation reduces to 0.05%
(0.06%). The average run time required is 2.26 min.

In a final step, we also compare the proposed hybrid LNS to
results reported by Jain and Van Hentenryck [5] for the instances
of Cordeau and Laporte [3] using a method they name large
neighborhood search with first feasible probabilistic acceptance
(LNS–FFPA). It combines constraint programming with LNS. The
authors report results for a run time limit of 5 min, whereas they
argue that since the modeling framework COMET is used, their run
times have to be divided by a factor of 3 in order to obtain
comparable run times to a program based on Cþþ code. Thus, their
algorithm is in fact run for 15 min on a Core 2 Quad Q6600 CPU. In
order to obtain comparable results, we run the proposed hybrid
LNS with a run time limit of 5 min: we iterate between SC and the
column generation component based on VNS, with the best
settings identified above, and LNS, run for 1000 iterations at each
call, until the run time limit is reached. We compare the proposed
hybrid LNS also to pure LNS (i.e. without any of the hybridization
ybrid LNS All tests

est (%) Avg. (%) CPUc Best (%)

90.02 0.00 190.02 0.00 0.54 190.02 0.00

01.34 0.00 302.53 0.40 2.76 301.34 0.00

35.28 0.62 538.21 1.17 5.11 532.00 0.00

71.09 0.15 576.26 1.05 16.29 570.25 0.00

29.52 0.22 637.59 1.51 26.70 627.68n
�0.07

88.88n
�0.65 800.35 0.79 48.48 785.26n

�1.11

91.71 0.00 292.56 0.29 1.02 291.71 0.00

91.93 0.84 495.20 1.51 5.92 489.33 0.30

61.47 0.48 676.09 2.70 24.89 659.85 0.23

72.31 1.77 878.93 2.55 47.17 855.15n
�0.23

64.46 0.00 166.06 0.97 0.61 164.46 0.00

95.96 0.10 298.88 1.09 3.00 295.66 0.00

84.83n
�0.36 491.29 0.97 8.19 484.83n

�0.36

34.84 0.78 541.19 1.98 22.58 529.33n
�0.26

87.67 1.57 590.22 2.01 44.09 577.98n
�0.11

38.01n
�0.32 743.64 0.45 71.50 737.69n

�0.36

48.21 0.00 248.21 0.00 1.30 248.21 0.00

63.67 0.49 470.25 1.92 9.54 461.39 0.00

93.49n
�0.71 606.25 1.42 27.49 593.49n

�0.71

04.22 1.14 812.81 2.22 69.57 793.21n
�0.24

12.44 0.31 517.83 1.25 21.84 509.44 �0.15

on computer with 2.67 GHz.

http://prolog.univie.ac.at/research/DARP/


Table 7
Proposed hybrid LNS vs. optimal results.

m n Set a Set b

Instance BUC [7] Hybrid LNS Instance B&C[7] Hybrid LNS

Opta CPUb Best Avg. CPUc Opta CPUb Best Avg. CPUc

2 16 a2-16 294.25 0.01 294.25 294.25 0.12 b2-16 309.41 0.04 309.41 309.41 0.15

2 20 a2-20 344.83 0.05 344.83 344.83 0.28 b2-20 332.64 0.01 332.64 332.64 0.21

2 24 a2-24 431.12 0.12 431.12 431.12 0.35 b2-24 444.71 0.06 444.71 444.83 0.40

3 24 a3-24 344.83 1.31 344.83 344.83 0.29 b3-24 394.51 0.55 394.51 394.51 0.31

3 30 a3-30 494.85 15.48 494.85 495.27 0.50 b3-30 531.44 3.20 531.45 531.45 0.48

3 36 a3-36 583.19 8.13 583.19 583.25 0.83 b3-36 603.79 37.57 603.79 604.13 0.74

4 32 a4-32 485.50 0.12 485.50 485.71 0.55 b4-32 494.82 75.42 494.82 494.82 0.43

4 40 a4-40 557.69 0.51 557.69 557.69 0.78 b4-40 656.63 0.15 656.63 656.63 1.00

4 48 a4-48 668.82 1.01 668.82 669.04 1.62 b4-48 673.81 0.63 673.81 674.93 1.73

5 40 a5-40 498.41 0.24 498.41 498.41 0.85 b5-40 613.72 0.59 613.72 613.73 0.78

5 50 a5-50 686.62 2.67 686.63 686.87 1.60 b5-50 761.40 0.92 761.40 762.12 1.49

5 60 a5-60 808.42 2.59 808.48 809.34 2.51 b5-60 902.04 1.96 902.52 903.46 3.00

6 48 a6-48 604.12 0.90 604.12 604.54 1.14 b6-48 714.83 0.27 714.83 714.83 1.07

6 60 a6-60 819.25 3.94 820.30 821.91 2.29 b6-60 860.07 0.86 860.07 860.15 2.07

6 72 a6-72 916.05 8.16 916.66 919.77 4.43 b6-72 978.47 127.71 979.61 980.27 4.43

7 56 a7-56 724.04 5.36 724.04 724.04 1.67 b7-56 823.97 56.65 823.97 824.17 1.82

7 70 a7-70 889.12 6.13 889.58 893.50 2.88 b7-70 912.62 4.66 913.11 914.97 3.70

7 84 a7-84 1033.37 29.43 1036.17 1040.39 7.04 b7-84 1203.37 11.51 1211.27 1213.55 6.72

8 64 a8-64 747.46 6.48 747.46 747.99 2.14 b8-64 839.89 8.11 840.63 840.63 2.56

8 80 a8-80 945.73 26.14 948.69 951.36 5.73 b8-80 1036.34 4.04 1036.65 1038.28 3.84

8 96 a8-96 1232.61 1210.56 1234.78 1236.27 9.92 b8-96 1185.55 847.41 1187.80 1190.74 10.32

Avg 671.92 63.30 672.40 673.35 2.26 727.33 56.30 727.97 728.58 2.25

Avg (%) 0.05 0.16 0.06 0.12

a Optimal solutions computed by Ropke et al. as reported in [7].
b Run times in minutes on a AMD Opteron 250 computer with 2.4 GHz.
c Average run times in minutes on a Intel Xenon computer with 2.67 GHz.

Table 8
Proposed hybrid LNS vs. LNS-FFPA [5], VNS [4] and pure LNS (run time limit: 5 min).

Instance m n LNS-FFPA [5]a VNS [4]b LNS Hybrid LNS

Avg. Avg. (%) Avg. (%) Avg. (%)

R1a 3 24 190.77 190.02 �0.39 190.02 �0.39 190.02 �0.39

R2a 5 48 304.45 304.49 0.01 303.82 �0.21 303.63 �0.27

R3a 7 72 547.39 540.63 �1.24 539.11 �1.51 536.77 �1.94

R4a 9 96 595.05 582.42 �2.12 594.83 �0.04 581.41 �2.29

R5a 11 120 662.56 658.45 �0.62 653.95 �1.30 643.72 �2.84

R6a 13 144 832.74 844.77 1.44 834.74 0.24 837.01 0.51

R7a 4 36 292.86 295.75 0.99 293.30 0.15 291.93 �0.32

R8a 6 72 505.15 504.07 �0.21 502.42 �0.54 498.44 �1.33

R9a 8 108 711.60 701.24 �1.46 697.90 �1.93 697.22 �2.02

R10a 10 144 911.18 975.34 7.04 918.13 0.76 908.12 �0.34

Avg 555.38 559.72 0.34 552.82 �0.48 548.83 �1.12

R1b 3 24 164.46 164.54 0.05 165.52 0.65 164.46 0.00

R2b 5 48 301.67 299.53 �0.71 300.85 �0.27 297.99 �1.22

R3b 7 72 504.69 498.41 �1.24 501.92 �0.55 495.02 �1.92

R4b 9 96 566.48 562.05 �0.78 562.95 �0.62 540.76 �4.54

R5b 11 120 610.33 619.32 1.47 614.38 0.66 607.17 �0.52

R6b 13 144 785.13 820.17 4.46 789.75 0.59 772.21 �1.65

R7b 4 36 248.31 250.14 0.74 248.21 �0.04 248.21 �0.04

R8b 6 72 477.75 475.52 �0.47 476.18 �0.33 473.19 �0.95

R9b 8 108 633.51 618.54 �2.36 628.90 �0.73 620.39 �2.07

R10b 10 144 857.95 936.09 9.11 862.31 0.51 874.36 1.91

Avg 515.03 524.43 1.03 515.10 �0.01 509.38 �1.10

Total avg 535.20 542.07 0.69 533.96 �0.24 529.10 �1.11

a Results of [5] on a Core 2 Quad Q6600 and a run time limit of 15 min (the run times given in the paper [5] correspond to run times divided by a factor of 3).
b Computed with the code of [4] and a run time limit of 5 min on a Xeon Computer with 2.67 GHz.
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components) and to the VNS of [4]. For the latter, since the
acceptance scheme of the VNS of [4] is based on the number of
iterations we first identify how many iterations are necessary to
obtain the run time limit of 5 min for each instance. Then, we add
105 iterations to this limit and run the method until the desired
5 min are reached. For all four methods, average results per
instance over five random runs are reported in Table 8. For VNS,
LNS, and the proposed hybrid LNS, per instance percentage
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deviations from the results of [5] for LNS–FFPA are given. On
average, VNS obtains results that are 0.69% worse than LNS–FFPA.
The main issue of the VNS of [4] is that, in case of the largest
instances, within 5 min only very few iterations (fewer than 105)
can be completed, leading to a rather poor performance for
instances R10a and R10b. Pure LNS obtains results that improve
the results of LNS–FFPA by 0.24% on average and the proposed
hybrid LNS is able to improve the results of [5] by 1.11% on
average, within the run time limit of 5 min. Only in two cases
LNS–FFPA is able to converge to better solutions more quickly.
Note that in our hybrid framework we use a parameter setting
that is tailored to longer run times, especially for larger instances.
Therefore, it can be assumed that even better results could be
obtained for this more restrictive run time limit with a different
parameter setting tailored to short computation times. Summar-
izing, these results clearly show that, in general, the proposed
hybrid LNS converges faster to good solutions than the other three
methods. Furthermore, it emphasizes that integrating ideas from
column generation help to increase the convergence speed and
thus lead to improved solutions within shorter computation times.
4. Discussion and conclusions

In this paper, we have implemented and tested a hybrid
solution framework for the dial-a-ride problem. It combines ideas
from large neighborhood search and column generation, integrat-
ing a variable neighborhood search based column generator, in an
efficient way: we were able to find new best solutions for 9 out of
20 instances. On the same computer, it requires less than one
third of the run time of the current state-of-the-art method.

The proposed hybridization scheme extends the one of Pirk-
wieser and Raidl [14] who iteratively solve a set covering problem
on the routes generated by a variable neighborhood search
algorithm which works on complete solutions. In our approach,
a large neighborhood search algorithm works on complete solu-
tions and additional routes are generated by a variable neighbor-
hood search based heuristic column generator, relying on dual
information. The obtained results indicate that using dual infor-
mation in this way, within a column generation metaheuristic
hybrid, leads to improved solution quality.

Also other authors have experimented with using dual infor-
mation within a set covering–metaheuristic hybrid. Muter et al.
[13], e.g., evaluate the integration of dual information to guide the
selection of customers within the tabu search algorithm of their
hybrid framework and to control the size of the column pool.
Neither strategy leads to improving results. Experiments in the
context of our hybrid large neighborhood search algorithm with a
destroy and a repair operator that exploit dual information in the
request selection decision (results are reported in [23]) support
this finding: the additional operators did not lead to improved
solutions.

The conclusions we draw from these observations are that
dual information incorporated into a metaheuristic working on
complete solutions rather than on individual routes does not have
a positive impact on the performance of the entire method; but,
dual information can be useful when exploited in the standard
way, that is in the generation of additional individual routes or
columns. In our case, these additional columns help to further
diversify the column pool and thus to reach solutions of improved
quality.
Future research will address the application of the proposed
hybrid framework to other (real-world) routing problems.
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[19] Hansen P, Mladenović N. Variable neighborhood search: principles and
applications European Journal of Operational Research 2001;130(3):449–67.

[20] Shaw P. Using constraint programming and local search methods to solve
vehicle routing problems. In: Proceedings CP-98 (fourth international con-
ference on principles and practice of constraint programming); 1998.

[21] Ropke S, Pisinger D. A unified heuristic for a large class of vehicle routing
problems with backhauls. European Journal of Operational Research 2006;
171:750–75.

[22] Desaulniers G, Desrosiers J, Solomon MM, editors. Column generation.
Number 5 in GERAD 25th anniversary. Springer; 2005.

[23] Parragh SN, Schmid V. Hybrid large neighborhood search for the dial-a-ride
problem. In: Proceeding of the VII ALIO/EURO—workshop on applied combi-
natorial optimization, Porto, Portugal, May 4–6; 2011.

dx.doi.org/http://dx.doi.org/10.1007/978-3-642-23786-7_31
dx.doi.org/http://dx.doi.org/10.1007/978-3-642-23786-7_31

	Hybrid column generation and large neighborhood search for the dial-a-ride problem
	Introduction
	Solution framework
	Large neighborhood search
	Column generation
	Variable neighborhood search
	Hybridization scheme

	Results
	Test instances
	Evaluating hybridization step one
	Evaluating hybridization step two
	Comparison to existing results

	Discussion and conclusions
	Acknowledgments
	References




