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Histone deacetylase (HDAC) inhibitors (HDIs) have therapeutic potentials for treating cancer and other diseases.
Modulation of gene expression by HDIs is a major mechanism underlying their therapeutic effects. A novel class
of HDIswith a previously undescribed benzoylhydrazide scaffold has been discovered through a high throughput
screening campaign. Usingmicroarray profiling of gene expression, we have previously demonstrated that treat-
ment of breast cancer cellswith a lead benzoylhydrazideHDI UF010 results in cell cycle arrest and apoptosis, like-
ly through activation of tumor suppression pathways with concurrent inhibition of oncogenic pathways. In this
brief report, we showmethodological and analytical details and discuss additional pathways such as immune sig-
naling that are affected by UF010. Raw and processed data from the microarray were deposited in NCBI's Gene
Expression Omnibus (GEO) database under the accession number: GSE56823.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications
Organism/cell line/tissue
 Human/MDA-MB-231/Breast, derived from
metastatic site (pleural effusion)
Sex
 Female (51 years adult)

Sequencer or array type
 Affymetrix GeneChip Human

Transcriptome Array 2.0

Data format
 CEL files

Experimental factors
 Cultured MDA-MB-231 cells exposed to

DMSO control
(n = 3) or benzoylhydrazide HDAC
inhibitor UF010 (n = 3)
Experimental features
 Assess effects of UF010 treatment on
global gene expression in cancer cells
Consent
 N/A

Sample source location
 ATCC (www.atcc.org)
1. Direct link to deposited genomic data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56823.
and Cell Biology, University of
e, FL 32610, United Sates.

. This is an open access article under
2. Experimental design, materials and methods

2.1. Experimental design

A novel class of small molecule HDIs with a benzoylhydrazide
scaffold has been discovered recently [1]. They are specific to class I
HDACs 1–3 and appear to exhibit fast-on/slow-off target-binding
mechanism. Therefore, the new inhibitors are distinct chemically and
mechanistically from known HDIs such as hydroxamic acids and
benzamides. As histone deacetylation plays a major role in transcrip-
tional regulation [2–4], we have assessed impact of the new HDIs on
global gene expression. We used the triple-negative breast cancer cell
line MDA-MB-231 and the benzoylhydrazide analog UF010 to interro-
gate effects of the new HDIs on gene expression. The experimental de-
sign is summarized in Fig. 1.
2.1.1. Cell culture and drug treatment
MDA-MB-231 cells were obtained from ATCC and cultured with

Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10%
bovine calf serum, penicillin to 10 units/ml, and streptomycin to 10 µ/ml.
Cells (500,000 cells per well) were seeded in a 6-well plate. At 24 h
after seeding, dimethyl sulfoxide (DMSO) or UF010 was added. The
final concentration for UF010 was 1 μM.
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Fig. 1. A schematic diagram of gene expression profiling of MDA-MB-231 cells treated
with a new HDI (UF010). MDA-MB-231 cells were cultured and then exposed to DMSO
(control) or to UF010. Total RNAs were isolated from the treated cells and then processed
for hybridization to microarray chips (Affymetrix GeneChip Human Transcriptome Array
2.0). The chipswere scanned and data captured. Datawere processed (background adjust-
ment, summarization and normalization). The selected statistically significant genes in the
experimental groupswere analyzed for functional enrichments in certain pathways using
Ingenuity Pathway Analysis (IPA) software.
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2.1.2. RNA isolation and processing
Total RNAs from the treated cells were isolated using the RNeasy kit

(Qiagen) and submitted to the Gene Expression Core of the University of
Florida Interdisciplinary Center for Biotechnology Research. A NanoDrop
Spectrophotometer (NanoDrop Technologies, Inc.) was used to determine
RNA concentration and sample qualitywas assessed using anAgilent 2100
Bioanalyzer (Agilent Technologies, Inc.).
2.1.3. Microarray probe preparation, hybridization and data acquisition
The Ambion®WT Expression Kit, the GeneChipWT Terminal Label-

ing and Controls Kit (Affymetrix) were used for all microarray probe
preparation following manufacturer's protocols. We used 200 ng of
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Fig. 2. Quality control assessments for the dataset. A, a plot of the log-intensity distribution in
intensity levels between the arrays of the dataset. Either end of the box represents the upper a
comparison of the six samples in the dataset. D, DMSO; T, UF010 treatment.
total RNA as template for cDNA synthesis. The resulting cDNA was
used as template for in vitro transcription (IVT) to generate antisense
RNAs, which were then used to produce sense DNA. The sense strand
DNA was fragmented, biotinylated, and hybridized with rotation at
45 °C for 16 h to microarray chips (GeneChip® Human Transcriptome
Array 2.0, Affymetrix). The arrays were washed and stained with
streptavidin-phycoerythrin (SAPE) with an Affymetrix Fluidics Station
450, and scanned using a GeneChip® 7G scanner (Affymetrix).

2.1.4. Microarray data quality control and analysis
The Affymetrix® Expression Console™ Software (Version 1.3) was

used to generate.txt files for each RNA hybridization. All subsequent
data analyses were performed in R 3.0.0 (http://www.R-project.org/).
The Limma package [5] was used for background adjustment, summari-
zation and quantile normalization. Normalization was made using the
Robust Multichip Average (RMA) pre-normalization algorithm [6].
Data quality was assessed using various quality control measures. Spe-
cifically, density plots were generated to assess log-intensity distribu-
tions across a chip. The ideal distributions of the chips show no
significant variation (Fig. 2A). An intensity boxplot (Fig. 2B) was used
to compare the probe intensity levels between the arrays of the dataset.
After normalization, the median lines are not significantly different
from each other (Fig. 2B). A heatmap of the six sampleswas constructed
to compare the UF010-treated cells with control (Fig. 2C). For each rep-
licate array, each probe-set signal value from UF010-treated samples
was compared to the probe-set signal value of DMSO-treated control
samples to give gene expression ratios. Differentially expressed genes
were identified using the Limma package with a Benjamini and
Hochberg false discovery rate multiple testing correction. The statisti-
cally significant or differentially expressed genes were calculated
using volcano plot analysis with a fold change (FC) threshold of N1.5
and a p value of b0.05.

2.1.5. Ingenuity pathway analysis
The Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems

Inc., Redwood City, CA) was used for functional enrichment analysis of
the selected statistically significant genes in each of these experimental
groups. The association between the genes in the dataset and a func-
tional pathway were made using Fisher's exact test. Functional groups
(or pathways) with a P value less than 0.05 and at least one focused
molecule in a pathway were considered to be statistically significant.

3. Results

Analyses of themicroarray dataset reveal that the benzoylhydrazide
HDI UF010 induces gene activation and repression, consistentwithfind-
ings by others that HDIs can up and downregulate gene expression
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[7–12]. The expression of cell cycle regulators is specifically perturbed
by UF010with downregulation of genes that promote and upregulation
of those that inhibit cell-cycle progression [1]. Induction of cell cycle ar-
rest and cell death is a common mechanism of action by HDIs irrespec-
tive of cancer or inhibitor types [1,8,9]. Interestingly, UF010 treatment
activates major histocompatibility complex (MHC) genes and other
genes involved in immune response. Pathway analysis suggests that
UF010 specifically induces B-cell receptor, IL-6 and IL-4 signaling.
Activation of MHC and immune-related genes by other HDIs in prostate
cancer cell lines has been reported [8].

4. Discussion

The class I HDACs 1–3 play important roles in gene regulation and
are overexpressed in cancer [13–17]. HDACs 1 and 2 are closely related
and assembled together in deacetylase complexes such as Sin3, NuRD
and CoREST [18,19]. HDAC3 is found in the NCOR complex and depends
on the deacetylase activation domain (DAD) of NCOR1 or NCOR2 and D-
myo-inositol-(1,4,5,6)-tetrakisphosphate for catalyzing deacetylation
reaction [20]. Thus, these HDACs may regulate gene expression in a dif-
ferent way and HDIs specific to an individual HDAC isoform may exert
distinct impact on gene expression. Different chemical types of small
molecule HDIs have been discovered. Hydroxamic acids are potent
HDIs and exhibit strong Zn2+-binding property, which limits their iso-
form selectivity. Nonetheless, isoform selectivity can be achieved
through modifying the “cap” moiety that interacts with the residues in
the rim outside the substrate tunnel [21]. Benzamide analogs occupy
the catalytic center of HDACs and coordinate Zn2+ using the amine
and carbonyl groups in a bidentatemanner [22]. Benzamide derivatives
with a five or six-membered aromatic ring “internal cavity” motif
exhibit strong selectivity for HDACs 1 and 2 vs. HDAC3 [22], while
HDAC3 selectivity is achieved by modifying the “cap” groups [21]. The
benzoylhydrazide HDIs appear to use a linear aliphatic chain to bind
the internal hydrophobic cavity of HDACs and they display notable
selectivity for HDAC3, while inhibiting HDACs 1 and 2 with similar
potency [1]. UF010 shows a fast-on/slow-off target binding mechanism.
Whether the unique chemistry and pharmacology of the
benzoylhydrazide HDIs can result in distinct modulation of gene expres-
sion and therapeutic effects remains to be determined.

Conflict of interest

None.

Acknowledgments

The authors thank theUniversity of Florida Interdisciplinary Center for
Biotechnology Research Gene Expression & Genotype Core (Dr. Yanping
Zhang) and Bioinformatics Core (Dr. Jiqiang Yao) for microarray data ac-
quisition and analysis. This work was supported by grants from the
Bankhead-Coley Cancer Research Program, Florida Department of Health
and the UF Health Cancer Center.

References

[1] Y. Wang, R.L. Stowe, C.E. Pinello, G. Tian, F. Madoux, D. Li, L.Y. Zhao, J.L. Li, Y.Wang, Y.
Wang, H. Ma, P. Hodder,W.R. Roush, D. Liao, Identification of histone deacetylase in-
hibitors with benzoylhydrazide scaffold that selectively inhibit class I histone
deacetylases. Chem. Biol. 22 (2015) 273–284 (http://www.ncbi.nlm.nih.gov/
pubmed/25699604).

[2] C.A. Hassig, T.C. Fleischer, A.N. Billin, S.L. Schreiber, D.E. Ayer, Histone deacetylase ac-
tivity is required for full transcriptional repression by mSin3A. Cell 89 (1997)
341–347 (http://www.ncbi.nlm.nih.gov/pubmed/9150133).

[3] L. Nagy, H.Y. Kao, D. Chakravarti, R.J. Lin, C.A. Hassig, D.E. Ayer, S.L. Schreiber, R.M.
Evans, Nuclear receptor repression mediated by a complex containing SMRT,
mSin3A, and histone deacetylase. Cell 89 (1997) 373–380 http://www.ncbi.nlm.
nih.gov/pubmed/9150137.

[4] Z. Wang, C. Zang, K. Cui, D.E. Schones, A. Barski, W. Peng, K. Zhao, Genome-wide
mapping of HATs and HDACs reveals distinct functions in active and inactive
genes. Cell 138 (2009) 1019–1031 (http://www.ncbi.nlm.nih.gov/pubmed/
19698979).

[5] G.K. Smyth, Linear models and empirical Bayes methods for assessing differential
expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3 (2004) (Article
3. http://www.ncbi.nlm.nih.gov/pubmed/16646809).

[6] R.A. Irizarry, B. Hobbs, F. Collin, Y.D. Beazer-Barclay, K.J. Antonellis, U. Scherf, T.P.
Speed, Exploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics 4 (2003) 249–264 (http://www.ncbi.nlm.nih.
gov/pubmed/12925520).

[7] Y.J. Kim, C.B. Greer, K.R. Cecchini, L.N. Harris, D.P. Tuck, T.H. Kim, HDAC inhibitors in-
duce transcriptional repression of high copy number genes in breast cancer through
elongation blockade. Oncogene 32 (2013) 2828–2835 (http://www.ncbi.nlm.nih.
gov/pubmed/23435418).

[8] M.S. Kortenhorst, M.D. Wissing, R. Rodriguez, S.K. Kachhap, J.J. Jans, P. Van der
Groep, H.M. Verheul, A. Gupta, P.O. Aiyetan, E. van der Wall, M.A. Carducci, P.J.
Van Diest, L. Marchionni, Analysis of the genomic response of human prostate can-
cer cells to histone deacetylase inhibitors. Epigenetics 8 (2013) 907–920 (http://
www.ncbi.nlm.nih.gov/pubmed/23880963).

[9] J.E. Bolden, W. Shi, K. Jankowski, C.Y. Kan, L. Cluse, B.P. Martin, K.L. MacKenzie, G.K.
Smyth, R.W. Johnstone, HDAC inhibitors induce tumor-cell-selective pro-apoptotic
transcriptional responses. Cell Death Dis. 4 (2013) e519 (http://www.ncbi.nlm.
nih.gov/pubmed/23449455).

[10] Y. Huang, S.N. Vasilatos, L. Boric, P.G. Shaw, N.E. Davidson, Inhibitors of histone de-
methylation and histone deacetylation cooperate in regulating gene expression and
inhibiting growth in human breast cancer cells. Breast Cancer Res. Treat. 131 (2012)
777–789 (http://www.ncbi.nlm.nih.gov/pubmed/21452019).

[11] T. Roger, J. Lugrin, D. Le Roy, G. Goy, M. Mombelli, T. Koessler, X.C. Ding, A.L.
Chanson, M.K. Reymond, I. Miconnet, J. Schrenzel, P. Francois, T. Calandra, Histone
deacetylase inhibitors impair innate immune responses to Toll-like receptor ago-
nists and to infection. Blood 117 (2011) 1205–1217 (http://www.ncbi.nlm.nih.
gov/pubmed/20956800).

[12] M.J. LaBonte, P.M.Wilson,W. Fazzone, S. Groshen, H.J. Lenz, R.D. Ladner, DNAmicro-
array profiling of genes differentially regulated by the histone deacetylase inhibitors
vorinostat and LBH589 in colon cancer cell lines. BMC Med. Genet. 2 (2009) 67
http://www.ncbi.nlm.nih.gov/pubmed/19948057.

[13] B.M. Muller, L. Jana, A. Kasajima, A. Lehmann, J. Prinzler, J. Budczies, K.J. Winzer, M.
Dietel, W. Weichert, C. Denkert, Differential expression of histone deacetylases
HDAC1, 2 and 3 in human breast cancer–overexpression of HDAC2 and HDAC3 is as-
sociated with clinicopathological indicators of disease progression. BMC Cancer 13
(2013) 215 (http://www.ncbi.nlm.nih.gov/pubmed/23627572).

[14] W. Weichert, C. Denkert, A. Noske, S. Darb-Esfahani, M. Dietel, S.E. Kalloger, D.G.
Huntsman, M. Kobel, Expression of class I histone deacetylases indicates poor prog-
nosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia
10 (2008) 1021–1027 (http://www.ncbi.nlm.nih.gov/pubmed/18714364).

[15] W. Weichert, A. Roske, V. Gekeler, T. Beckers, M.P. Ebert, M. Pross, M. Dietel, C.
Denkert, C. Rocken, Association of patterns of class I histone deacetylase expression
with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol. 9
(2008) 139–148 (http://www.ncbi.nlm.nih.gov/pubmed/18207460).

[16] W. Weichert, A. Roske, V. Gekeler, T. Beckers, C. Stephan, K. Jung, F.R. Fritzsche, S.
Niesporek, C. Denkert, M. Dietel, G. Kristiansen, Histone deacetylases 1, 2 and 3
are highly expressed in prostate cancer and HDAC2 expression is associated with
shorter PSA relapse time after radical prostatectomy. Br. J. Cancer 98 (2008)
604–610 (http://www.ncbi.nlm.nih.gov/pubmed/18212746).

[17] W.Weichert, A. Roske, S. Niesporek, A. Noske, A.C. Buckendahl, M. Dietel, V. Gekeler,
M. Boehm, T. Beckers, C. Denkert, Class I histone deacetylase expression has inde-
pendent prognostic impact in human colorectal cancer: specific role of class I his-
tone deacetylases in vitro and in vivo. Clin. Cancer Res. 14 (2008) 1669–1677
(http://www.ncbi.nlm.nih.gov/pubmed/18347167).

[18] X.J. Yang, E. Seto, The Rpd3/Hda1 family of lysine deacetylases: from bacteria and
yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9 (2008) 206–218 (http://www.
ncbi.nlm.nih.gov/pubmed/18292778).

[19] G.P. Delcuve, D.H. Khan, J.R. Davie, Roles of histone deacetylases in epigenetic regu-
lation: emerging paradigms from studies with inhibitors. Clin. Epigenetics 4 (2012)
5 (http://www.ncbi.nlm.nih.gov/pubmed/22414492).

[20] P.J. Watson, L. Fairall, G.M. Santos, J.W. Schwabe, Structure of HDAC3 bound to co-
repressor and inositol tetraphosphate. Nature 481 (2012) 335–340 (http://www.
ncbi.nlm.nih.gov/pubmed/22230954.

[21] F.F. Wagner, M. Weiwer, M.C. Lewis, E.B. Holson, Small molecule inhibitors of zinc-
dependent histone deacetylases. Neurotherapeutics 10 (2013) 589–604 (http://
www.ncbi.nlm.nih.gov/pubmed/24101253).

[22] B.E. Lauffer, R. Mintzer, R. Fong, S. Mukund, C. Tam, I. Zilberleyb, B. Flicke, A. Ritscher,
G. Fedorowicz, R. Vallero, D.F. Ortwine, J. Gunzner, Z. Modrusan, L. Neumann, C.M.
Koth, P.J. Lupardus, J.S. Kaminker, C.E. Heise, P. Steiner, Histone deacetylase
(HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation
but not transcription and cell viability. J. Biol. Chem. 288 (2013) 26926–26943
(http://www.ncbi.nlm.nih.gov/pubmed/23897821).

http://www.ncbi.nlm.nih.gov/pubmed/25699604
http://www.ncbi.nlm.nih.gov/pubmed/25699604
http://www.ncbi.nlm.nih.gov/pubmed/9150133
http://www.ncbi.nlm.nih.gov/pubmed/9150137
http://www.ncbi.nlm.nih.gov/pubmed/9150137
http://www.ncbi.nlm.nih.gov/pubmed/19698979
http://www.ncbi.nlm.nih.gov/pubmed/19698979
http://www.ncbi.nlm.nih.gov/pubmed/16646809
http://www.ncbi.nlm.nih.gov/pubmed/12925520
http://www.ncbi.nlm.nih.gov/pubmed/12925520
http://www.ncbi.nlm.nih.gov/pubmed/23435418
http://www.ncbi.nlm.nih.gov/pubmed/23435418
http://www.ncbi.nlm.nih.gov/pubmed/23880963
http://www.ncbi.nlm.nih.gov/pubmed/23880963
http://www.ncbi.nlm.nih.gov/pubmed/23449455
http://www.ncbi.nlm.nih.gov/pubmed/23449455
http://www.ncbi.nlm.nih.gov/pubmed/21452019
http://www.ncbi.nlm.nih.gov/pubmed/20956800
http://www.ncbi.nlm.nih.gov/pubmed/20956800
http://www.ncbi.nlm.nih.gov/pubmed/19948057
http://www.ncbi.nlm.nih.gov/pubmed/23627572
http://www.ncbi.nlm.nih.gov/pubmed/18714364
http://www.ncbi.nlm.nih.gov/pubmed/18207460
http://www.ncbi.nlm.nih.gov/pubmed/18212746
http://www.ncbi.nlm.nih.gov/pubmed/18347167
http://www.ncbi.nlm.nih.gov/pubmed/18292778
http://www.ncbi.nlm.nih.gov/pubmed/18292778
http://www.ncbi.nlm.nih.gov/pubmed/22414492
http://www.ncbi.nlm.nih.gov/pubmed/22230954
http://www.ncbi.nlm.nih.gov/pubmed/22230954
http://www.ncbi.nlm.nih.gov/pubmed/24101253
http://www.ncbi.nlm.nih.gov/pubmed/24101253
http://www.ncbi.nlm.nih.gov/pubmed/23897821

	Microarray gene expression profiling reveals potential mechanisms of tumor suppression by the class I HDAC-�selective benzo...
	1. Direct link to deposited genomic data
	2. Experimental design, materials and methods
	2.1. Experimental design
	2.1.1. Cell culture and drug treatment
	2.1.2. RNA isolation and processing
	2.1.3. Microarray probe preparation, hybridization and data acquisition
	2.1.4. Microarray data quality control and analysis
	2.1.5. Ingenuity pathway analysis


	3. Results
	4. Discussion
	Conflict of interest
	Acknowledgments
	References


