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Abstract

We discuss new upper limits on the electric dipole moments (EDM) of the τ -lepton and W -boson, which
follow from the precision measurements of the electron and neutron EDM.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Strict upper limits on the electric dipole moments of common elementary particles, electron
and proton, were derived from spectroscopic, almost table-top experiments [1–3]. As to the neu-
tron EDM, the best upper limit on it was obtained as a result of reactor experiments lasting many
years [4] (they say that the searches for the neutron EDM killed more theories than any other
experiment in the history of physics). And at last, the result for the muon EDM follows from the
measurements at the dedicated muon storage ring [5]. These results are summarized in Table 1.

As to the electric dipole moment of the τ -lepton, upper limits on it have been obtained up to
now from the analysis of high-energy experiments.

The approach pursued here is based on the precision results [1,4]. We establish upper limit
on the EDM of the τ -lepton through the analysis of its possible contribution to the electron
EDM. This is a clean theoretical problem. For the W -boson this result is of rather qualitative
nature. Additional upper limit on the EDM of the W -boson, also qualitative one, is derived by
the analysis of its possible contribution to the neutron EDM.
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Table 1

e p n μ

d/e, cm (0.7 ± 0.7) × 10−27 [1] < 0.8 × 10−24 [2,3] < 0.29 × 10−25 [4] (0.37 ± 0.34) × 10−18 [5]

Fig. 1.

2. Dipole moment of τ -lepton and electron EDM

We start with the analysis of the contribution of the τ EDM dτ to the electron dipole mo-
ment de. This contribution is described by the diagrams of the type presented in Figs. 1a, b, c, d.
Here the loop is formed by the τ line, and the lower solid line is the electron one. The upper wavy
line corresponds to the external electric field. The crossed vertices refer to the electromagnetic
interaction of the τ EDM

(1)Ledm
τ = −1

2
dτ τ̄γ5σμντFμν = i

1

2
dτ τ̄σμντ F̃μν, F̃μν = 1

2
εμναβFαβ.

Of course, all six permutations of the electromagnetic vertices on the electron line should be
considered. The contributions of diagrams 1b and 1c are equal.

This problem is similar to that of the contribution from the light-by-light scattering via muon
loop to the electron magnetic moment [6]. The general structure of the resulting contribution to
the electron EDM is rather obvious (to the leading order in me/mτ ):

(2)	de = a
me

mτ

(
α

π

)3

dτ ,

where a is some numerical factor (hopefully, on the order of unity). The factor me originates from
the necessary helicity-flip on the electron line; then 1/mτ is dictated by dimensional arguments.

Diagram 1a corresponds to the matrix element 〈e|τ̄ σμντ |e〉 = Cūσμνu. We use dimensional
regularization with d = 4 − 2ε dimensions and the method of regions (see the textbook [7]).
Only the region where all three loops are hard (loop momenta ∼ mτ ) contributes to the leading
power term (2); therefore, there are no logarithms ln(mτ /me) (contributions of regions with
1 or 2 hard loops are suppressed by an extra factor (me/mτ )

2). In this hard region, the problem
reduces to 3-loop vacuum integrals with a single mass mτ belonging to the simpler topology
BM [8]. We perform the calculation in arbitrary covariant gauge, and use the REDUCE package
RECURSOR [8] to reduce scalar integrals to two master integrals. Gauge-dependent terms cancel,
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and we get

(3)

C = me

mτ

e6m−6ε
τ

(4π)3d/2
�3(ε)

8

d(d − 1)(d − 5)

×
[
−2

2d2 − 21d + 61

d − 5
+ d4 − 9d3 + 8d2 + 84d − 126

2d − 9
R

]
,

where

(4)R = �(1 − ε)�2(1 + 2ε)�(1 + 3ε)

�2(1 + ε)�(1 + 4ε)
= 1 + 8ζ(3)ε3 + · · · ,

and ζ is the Riemann ζ -function. All divergences cancel, and we arrive at the finite contribution
to a:

(5)a1 = 3

2
ζ(3) − 19

12
.

In order to calculate the contribution of Figs. 1b, c, d, we expand the corresponding initial
expressions in the external photon momentum q up to the linear term. The EDM vertex contains
εμναβ ; we put this factor aside, and calculate tensor diagrams with four indices. After summing
all diagrams, the result is finite; now we can set ε → 0, and multiply by εμναβ (cf. [9]). The
result has the structure of a tree diagram with the electron EDM vertex εμναβqνσαβ . The gauge-
dependent terms in it cancel (exactly in d), as well as the divergences. This contribution to a is

(6)a2 = 9

4
ζ(3) − 1.

As an additional check of our programs, we have reproduced the leading power term in the
contribution to the electron magnetic moment originating from the light-by-light scattering via
the muon loop (formula (4) in [6]).

The final result for the numerical coefficient is

(7)a = a1 + a2 = 15

4
ζ(3) − 31

12
= 1.924.

With this value of a, the discussed contribution to the electron EDM is

(8)	de = 6.9 × 10−12dτ .

Combining this result with the experimental one [1] (see Table 1) for the electron EDM, we
arrive at

(9)dτ /e = (1 ± 1) × 10−16 cm.

In fact, the results (5) and (6) refer to somewhat different regions of incoming momenta.
For (6) all the three momenta are hard, on the order of magnitude about mτ , but for (5) only two
of them belong to this region, and the third one, that of the outer photon, is soft, of vanishing
momentum. Still, one may expect that the effective EDM interaction is formed at momenta much
higher than mτ , so that this difference is not of much importance. Besides, the contribution of
diagram 1a is anyway numerically small. Thus, result (5) is valid at least for all momenta about
mτ ∼ 1–2 GeV.

The upper limits on the τ EDM derived from the accelerator experiments [10–13] belong
to the interval of 10−16–10−17 e cm, so that our result (9) formally does not improve them.
However, all those accelerator data refer to much larger typical momenta of the photon, from 10
to 200 GeV.
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Fig. 2.

3. Electric dipole moment of W -boson

One more contribution to the electron and neutron dipole moments can be given by the EDM
dW of W -boson. This effect was pointed out and investigated long ago [14,15].

It is convenient to start the discussion with the dW contribution to the electron EDM. Though
here we cannot add anything new to the previous works, the problem is considered here as an
introduction to the next, more serious problem of the dW contribution to the neutron EDM. The
effect is described by diagram presented in Fig. 2.

Here as well the crossed vertex refers to the electromagnetic interaction of the W -boson EDM
(it is obvious from the diagram that here it is the dipole moment of W−). In this case the EDM
interaction is described by the Lagrangian

(10)Ledm
W = 2mWidW F̃αβW †

αWβ.

The corresponding matrix element is

M = πα

sin2 θw

dWmW

∫
d4k

(2π)4
ūe(p)γμ(1 + γ5)

k̂

k2
γν(1 + γ5)ue(p)

1

[(k − p)2 − m2
W ]2

(11)×
{
F̃μν − 1

m2
W

[
(k − p)μ(k − p)αF̃αν + F̃μα(k − p)α(k − p)ν

]}
.

With straightforward, though rather tedious calculations (somewhat simplified by employing the
density matrix of polarized fermion), one arrives at the following result for the contribution of
W -boson EDM to electron dipole moment:

(12)	de = α

8π sin2 θw

me

mW

ln
Λ2

m2
W

dW .

Here Λ is the cut-off parameter for the logarithmically divergent integral over virtual momenta
in the loop. Putting (perhaps, quite conservatively) ln(Λ2/m2

W) � 1, one obtains with the exper-
imental upper limit on the electron EDM [1] (see Table 1), the following bound on the dipole
moment of W -boson:

(13)dW/e � 2 × 10−19 cm.

In the case of the W -boson contribution to the neutron EDM, our line of reasoning somewhat
differs from that of [14,15]. We note first of all that the electron mass me does not enter explicitly
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matrix element (11). It arises in the result (12) only as the mass of an external fermion, via the
Dirac equation p̂u = meu. Therefore, there are all the reasons to expect that the contribution of
dW to the neutron EDM will be proportional to the neutron mass mn, i.e. enhanced as compared
to (12) by three orders of magnitude. In this case, the forward scattering amplitude of the virtual
W -boson can be written in a general form as follows1:

(14)ūn(p)γμ(1 + γ5)
[
k̂g(k2) + p̂h(k2)

]
γν(1 + γ5)un(p);

here k is the total momentum of intermediate hadronic states. Of course, the invariant functions
g and h depend in fact not only on k2, but on (kp) as well. However, in our case k2 ∼ m2

W �
(kp) ∼ mnmW , so that the dependence on (kp) can be safely ignored. By the analogous reason, in
the usual case of the deep inelastic neutrino scattering, the structure with p̂ in the corresponding
amplitude is also omitted. In the present case, however, we should keep in amplitude (14) p̂,
in addition to the common k̂, since after integrating over d4k both structures give comparable
contributions to the result.

At last, the usual dimensional and scaling arguments dictate that asymptotically, for k2 ∼ m2
W ,

both functions g and h behave as follows:

g
(
k2) = g0

k2
, h

(
k2) = h0

k2
.

In particular, one can neglect the gluon corrections in these functions. Without any additional
parameters, it is natural to assume that g0, h0 ∼ 1.

Now, the same calculations as those in the case of electron EDM, result in the following
expression for the discussed contribution to the neutron dipole moment:

(15)	dn = α

8π sin2 θw

mn

mW

[
g0 ln

Λ2

m2
W

+ h0

(
ln

Λ2

m2
W

+ 1

)]
dW .

For numerical estimate we put

g0 ln
Λ2

m2
W

+ h0

(
ln

Λ2

m2
W

+ 1

)
∼ 1,

so that

	dn ∼ α

8π sin2 θw

mn

mW

dW ≈ α

2π

mn

mW

dW .

Then, with the result of [4] for the neutron EDM (see Table 1), we arrive at the following quite
strict upper limit on the W -boson dipole moment:

(16)dW/e � 2 × 10−21 cm.
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1 Compare with the corresponding structure ūe(p)γμ(1 + γ5)(k̂/k2)γν(1 + γ5)ue(p) in formula (11) for electron.



290 A.G. Grozin et al. / Nuclear Physics B 821 (2009) 285–290
References

[1] B.C. Regan, et al., Phys. Rev. Lett. 88 (2002) 071805.
[2] W.C. Griffith, et al., Phys. Rev. Lett. 102 (2009) 101601.
[3] V.F. Dmitriev, R.A. Sen’kov, Phys. Rev. Lett. 91 (2003) 212303.
[4] C.A. Baker, et al., Phys. Rev. Lett. 97 (2006) 131801.
[5] J.M. Bailey, et al., J. Phys. G 4 (1978) 345.
[6] S. Laporta, E. Remiddi, Phys. Lett. B 301 (1993) 440.
[7] V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses, Springer Tracts in Modern Physics,

vol. 177, Springer, 2002, Chapter 5.
[8] D.J. Broadhurst, Z. Phys. C 54 (1992) 599.
[9] S.A. Larin, Phys. Lett. B 303 (1993) 113.

[10] F. del Aguila, M. Sher, Phys. Lett. B 252 (1990) 116.
[11] K. Inami, et al., Belle Collaboration, Phys. Lett. B 551 (2003) 16.
[12] R. Escribano, E. Massó, Phys. Lett. B 395 (1997) 369.
[13] A.E. Blinov, A.S. Rudenko, arXiv:0811.2380, Nucl. Phys. B (Proc. Suppl.), submitted for publication.
[14] F. Salzman, G. Salzman, Phys. Lett. 15 (1965) 91;

F. Salzman, G. Salzman, Nuovo Cimento A 41 (1966) 443.
[15] F.J. Marciano, A. Queijeiro, Phys. Rev. D 33 (1986) 3449.


	Upper limits on electric dipole moments  of tau-lepton and W-boson
	Introduction
	Dipole moment of tau-lepton and electron EDM
	Electric dipole moment of W-boson
	Acknowledgements
	References


