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ABSTRACT 

Matrix Kantorovich inequalities involving two positive semidefinite matrices arc 
presented. Corresponding Cauchy-Schwarz inequalities are discussed. Some of these 
are used to compare several efficient and inefficient estimators for a singular linear 
model. 0 Elsevier Science Inc., 1997 

1. INTRODUCTION 

The last decade has witnessed considerable progress in the study of the 
Kantorovich inequality (KI) and extensions, and applications in statistics. For 
recent developments we mention Wang and Chow (1994) and references 
therein. Marshall and Olkin (1990) and Baksalary and Puntanen (1991) 
presented matrix versions of the KI involving one positive definite or semidef- 
inite matrix. Wang and Shao (1992) presented a matrix version of the KI 
involving two positive definite matrices and obtained an upper bound for the 
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asymptotic covariance matrix of a weighted least-squares estimator. Mond 
and PeEa& (19931, Liu and Neudecker (1996), and PeEarid, Puntanen, and 
Styan (1996) derived some matrix Kantorovich-type inequalities (KTIs) in- 
volving one positive definite or semidefinite matrix. Mond and PeEa& (1994) 
and Liu (1995) gave additional results. 

In this paper we obtain new matrix versions of the KI involving one or 
two positive semidefinite matrices and give statistical applications for some of 
them. Note that the KIs link nicely with Cauchy-Schwarz inequalities (CSIs), 
which are applied widely. As corresponding complements of the KIs, several 
Cauchy-Schwarz or CS-type inequalities (CSTIs) are briefly studied. 

In Section 2 we report some basic results. In Section 3 we introduce 
Theorem 1, which is a matrix version of the KI for the case of one positive 
semidefinite matrix. We then generalize Theorem 1 to derive Theorems 2 
through 4 for two positive semidefinite matrices. As appropriate comple- 
ments, several CSIs (or CSTIs) are included. Mainly the first two theorems 
will be applied. In Section 4, we examine the relative efficiency of an 
extended weighted least-squares estimator (EWLSE) in comparison with the 
optimal extended weighted least-squares estimator (OEWLSE). We finish the 
paper with a concluding remark in the last section. 

2. BASICS OF THE KI AND EFFICIENCY COMPARISON 

All matrices, vectors and scalars discussed in this paper will be real. For 
symmetric matrices G and H, G > H will mean that G - H is positive 
semidefinite. Let A, > ... > h, indicate the nonzero eigenvalues of an 
n X n positive semidefinite matrix of rank T. Let (*)l/’ be the positive 
semidefinite square root of a positive semidefinite matrix. Let (*)- indicate a 
generalized matrix inverse, (e)’ indicate the Moore-Penrose inverse, B(e) 
indicate the column space of a matrix, and r(e) indicate its rank. For basic 
matrix algebra and its statistical applications in the context of linear models, 
see e.g. Rao (19731, Magn us and Neudecker (1991), Toutenburg (19921, and 
Wang and Chow (1994). H ere we mention briefly (a vector version of) the KI 
and the relative efficiency of least-squares estimators (LSEs) in comparison 
with generalized least-squares estimators (GLSES). 

The KI asserts that 

(LA-‘x)-l, (2-l) 

where A > 0 is an n X n positive definite matrix with eigenvalues h, 2 
. . . > h,, and x is an arbitrary nonzero n X 1 vector. 
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Consider then the following nonsingular linear model: 

y =xp+ E, (2.2) 

where y is an rr x 1 observation vector, X is an n X k model matrix with 
possibly deficient rank, p is a k X 1 parameter vector, and E is an n X 1 
error vector with mean E(E) = 0 and covariance matrix D(E) = R > 0. 

For any estimable function c’fl, the LSE and its variance are 

c’bL = c’( xrx)‘x’y, 

and 

D(c’bL) = c’(X’X)+Xr~X(XrX)+c; 

the GLSE and its variance are 

(2.3) 

(2.4) 

c’bc = c’( XWX)‘X’W’y, (2.5) 

and 

D( c’b,) = c’( X’R- ‘X) + c, (2.6) 

where c E R(X’> and (*)’ can be replaced by (*>- in (2.3)-(2.6). 
In the model (2.2) the GLSE is the best linear unbiased estimator 

(BLUE). The relative efficiency of the LSE in comparison with the GLSE in 
this case is customarily defined as 

eff( c’b,) := 
D(c’b,) 
D(c’b,) ’ 

(2.7) 

Obviously efflc’b,) Q 1. Using (2.1) yields [for a nice proof in which the CSI 
was used, see Wang and Chow (1994, pp. 211-212); see also Magness and 
McGuire (1962)] 

eff( c’b,) > 
4A,A,, 

(A, + A”)’ ’ 

which can be rewritten in the following way: 

D(c’b,) < 
(4 + 43 D(c,b 

%A” 

) 

G ) (2.8) 

where A, > *** > A,, are the eigenvalues of 51 > 0. 
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In Section 3, (2.8) will be used to prove part of Theorem 1. In Section 4, 
further results in the style of (2.8) will be presented. 

3. MATRIX VERSIONS OF THE KI AND CSI 

We now introduce the following result. 

THEOREM 1. 

Y+uy+’ < (4 + AA2 \ 4A A (Y’u+Y)+, 
1 r 

(3.1) 

where the n x n positive semidefinite matrix U > 0 of rank t has nonzero 
eigenvalues A, > ... > A,, Y is of order n X k, and a(Y) C %(U>. 

Proof. Let us derive a result concerning the earlier-mentioned matrices 
R and X. Noting that c E ‘%(X’>, we write c = X’a with a being an 
arbitrary nonzero k X 1 vector. From (2.41, (2.61, and (2.8) we obtain 

x+clx+ < 
(4 + A”)” 

4A * (x’n-q+, 
1 n 

(3.2) 

for 1R > 0 and X of order n X k. 
We then consider the case U > 0 and B(Y) c ‘%(U>. Write U = TAT’, 

Y = TZ, and T'T = I,, where the r X r diagonal matrix A > 0, T is of order 
n X r, 2 is of order r X k, and I, is the r x r identity matrix. Therefore 
U+= TK'T', Y'U+Y = Z'K'Z, Y+= Z'T', and Y+UY+‘= Z’RZ”. As 
A contains the nonzero eigenvalues of U, using (3.2) we get (3.1) immedi- 
ately. Note that TT’ f Z,, as A > 0. ??

The way of proving (3.2) is similar to that of proving Theorem 2 in Wang 
and Shao (1992). In (3.1), Y'U+Y = Y'VY for B(Y) c %(U). Noting this 
point we only use the Moore-Penrose inverse for such expressions in the 
following. 

Before proceeding further, we present a useful lemma. 
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LEMMA. Under either of the turn conditions 

(i) BC = CB, B, C > 0, or 
(ii) s(B) = s(C), B, C > 0, 

we have 

(~1/2~+Bli2)+ = B+LQCB+‘/“. (3.3) 

Proof. (i): As BC = CB, B, C > 0, we obviously have B = TAT’, C = 
TTT’, where A, r > 0 are n X n diagonal matrices, T’T = TT’ = I,. There- 
fore Bl/s = Thl/‘T’, B+1,‘2 = Th+ 1/2T’, C+ = Tr+T’, and 
(B1/2C+B’/“)+= (TAl/2r+Al-/2T’)+= TA+‘/‘rA+‘/“T’ = B+1/2CB’i/2, 

(ii): Using a(C) c Z(B) and r(C) = r(B) = r, we write R = SAS’, 
where the diagonal matrix A > 0 is of order r X r, S is of order II X r, 
S’S = I and C1i2 = SL = L’S’ for some L. Then C = C’/‘C’/2 = SII S’ 
with rI ‘L LL! > 0, where r(n) = r(L) = r(C) = r(B) = r(A) = r(S) = r. 
~~~~~ we obtain (Bl/2c+Bl/2)+= (S~l/“n-l~l/‘S’)+= SA-‘/‘~A-~/“S’ 

= Bt’/2CB+1/2. Note that SS’ # I,,. ??

Now we are in a position to present several matrix versions of the KI 
involving two positive semidefinite matrices. This covers the case of two 
positive definite matrices as considered by Wang and Shao (1992). 

THEOREM 2. Let 

(i) BC = CB, B,C > 0, 8(X) C s(B), and 8(X) C %(C), or 
(ii) Z(B) = 3(C), B, C > 0, and nny compatib2e X. 

Also let h, 2 ... > h, he the nonzero eigenvalues of BC ‘. Then 

(A, + %>” 
(X’BX)+X’BC+BX(X’BX)+< 4* A (X%X)+. (0.4) 

I r 

Proof. Let U = B1/2C+B1/2 > 0. The lemma then implies C’+ = 
B+‘/“CBt1/2. Let Y = B’/“X; then X’BX = Y’Y, X’BC+BX = Y’u1’, and 
(X’BX)‘X’BC’BX(X’BX)‘= Y’UY+‘. As (i) !R(X) c Z(B), i.e. X = 
B+1/2B1/2X, or (ii) ‘8(B) = 3(C), and hence B”2B+1’2C = C, we always 
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have X’CX = X’B’~2B~1~2CB~‘~2B’~2X = Y’U+Y. In order to apply Theo- 
rem I, we have to show that x(Y) c ‘S(U). In fact, we have in the two 
cases: 

(i): If BC = CB, then B’/‘C+= B1/2C+B1/2B+1’2 = UB+l12. As 
s(X) c R(C), we have X = CfL for some L. Hence Y = B’12X = 
B’/‘C+L = UB+l/‘L, i.e. S(Y) C S(U). 

(ii): If S(B) = s(C), then B1i2 = B112C+C and C+= C+B1’zB+1/2. 
Hence Y = B112X = B’/2C+B’/2B+1/2CX = UB+l12CX, i.e. s(Y) C 
WJ). 

Then (3.4) follows. ??

We can obtain two additional theorems, which are similar to Theorem 2. 

THEOREM 3. Let G and H be n X n symmetric matrices and GH = 
HG > 0 (then GH+> 0). Let A, > .** > A, be the nonzero eigenvalues of 
GH+, 8(X) c S(G), and R(X) C S(H). We have 

(X’GHX)+X’G2X(X’GHX)+ < 
(A, + hJ2 

4h h (X’H’X)+. (3.5) 
1 r 

Proof. This result follows by inserting U = GH+, Y = (GH )l12X [clearly 
U > 0 and s(Y) C x(U) in th’ is case], and therefore Y’Y = X’GHX, 
Y’UY = X’G’HH+X = X’G2X, and Y’U+Y = X’H’GG+X = X’H2X in 
(3.1). ??

For related results on matrix determinants and traces, see Khatri and Rao 
(1981, 1982). 

THEOREM 4. Let A, B a.. 
values of n X n matrix Ukmh, 

> A, generically denote the nonzero eigen- 
where U > 0, and k and h are arbitrary 

scalars. We then have for any compatible matrix X 

(X’UkX)+X’U Bk-hx( X’UkX) + < ‘A%,“r’2 ( x'uhx) +, (3.6) 
1 r 

Proof. By replacing U and Y in (3.1) by Uk-’ and Uk12X respectively, 
we get this result immediately. ??
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Keep in mind that U” = UU + and U- a = (U’) a for (Y a positive scalar. 
In fact, Theorem 4 is a special case of Theorem 2(ii) with B = Uk and 
c = u”. 

KEMARK. 

(a) It is also worthwhile to present several complementary CSIs (or 
CSTIs). A more general inequality is 

Z’F’X( X’CX) + X’FZ < Z’F’C+FZ, (3.7) 

where Z, F, and X are compatible matrices, C > 0, and 3(X> C !ri(C) or 
91(F) c 8(C). This is proved as follows. As %(X1 C S(C) or s(F) C 
!ri(C), then X’F = X’C’/2Ct- ‘j2F. Pre- and postmultiplying 
C”‘X(X’CX)+X’C1’2 < Z by P?‘F’C+“~ and C ’ ““FZ respectively, we get 
(3.7). We can also prove (3.7) by using (due to a referee) 

F’C+F - F’X( X’CX) + X’F 

= F’C+CC+F - F’X( X%X)+ X’CX( X’CX)+X’F 

= [F’C+- F’X(XTX)+X’]C[C+F - X(X’CX)+X’F] > 0. 

Consequently for B, C > 0, and (i) %(X1 C S(C) or (ii) f)?(B) C R(C), we 
have 

X’BX( X’CX) + X’BX < X’BC+ BX. (3.8) 

The counterpart of (3.4) is the following CSI: 

( XlCX) + < ( Xlz?X) + x’Bc+sx( XlBX) + ) (3.9) 

for B, C > 0, and 

(i) r( X’BX) = r(X) and S(X) c %(C) or 
(ii) r(X’BX) = r(X) and ‘8(B) C 8(C) or 
(iii) S(B) = S(C) and any X. 

From (3.8) we can easily derive (3.9) under (i) and (ii> by using 
X(X’BX)+X’BX = X, which is equivalent to r(X’BX) = r(X) provided 
above [we see this equivalence by noting that %(X’SX) C 8(X’) with 
r(X’BX) = r( X’) yields %(X’SX) = 8(X’); for related matters, see Rao 
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and Mitra (1971, pp. 22-231, Baksalary and Puntanen (1989) and Searle 
(I994)], or under (iii) by using a(B) = ‘%(C), CB+B = C, and hence 
CX(X’BX)+X’BX = CX for any X. For special cases of (3.9), see e.g. GafIke 
and Krafft (1977) Pukelsheim and Styan (1983) and Toutenburg (1992, pp. 
104-105). 

(b) Under the conditions of Theorem 3 we have 

X,G2X < (4 + 4Y \ 
4hi A, 

X’GHX( X’H “X) + X’GHX. (3.10) 

We use X’GHX(X’GHX)+X’G” = X’G’ and X’GHX(X’GHX)+X’H’ = 
X’H ‘, and hence prove that (3.10) is equivalent to (3.5). From 
HX( X’H ‘X)+X’H < I, a CSI counterpart follows: 

X’GHX( X’H “X) + X’GHX < X’G”X, (3.11) 

for H symmetric, G such that HG = GH, and X 

(c) The following result is equivalent to (3.6): 

a compatible matrix. 

X’U2k-hX Q 
(4 + 4)” 

44 4 
X’UkX( X’CPX) + X’UkX. (3.12) 

We easily prove this equivalence by noting that U 2k - h = U ek - h U ‘, U h = 
UhUo, and U”X(X’UkX)+X’UkX = U’X. A CSTI counterpart of (3.12) is 

Z’UkX( X’UhX) + X’UkZ < Z’U”k-hz, (3.13) 

where U > 0, X is of order n x p, and Z is any compatible matrix. Insertion 
of C = Uh and F’ = F = Uk in (3.7) yields (3.13) immediately. For (3.13) 
with h and 2k - h being any integers, and various CSTIs, see PeEarid, 
Puntanen, and Styan (1996). 
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We shall now look into statistical applications of some of these results. 

4. A SINGULAR MODEL AND A COMPARISON BETWEEN AN 
EWLSE AND THE OEWLSE 

Consider the singular model 

y = xp + E, E(E) = 0, D(E) =*a>,, (4.1) 

where 1I’ has nonzero eigenvalues A, > ... > A,. 
It is well known that X/3 is an estimable function. To estimate Xp, we 

use the following extended weighted least-squares estimator (EWLSE) with 
W > 0 a given positive semidefinite weight matrix, viz. 

Xb,, = X( XlWX) + xwy. (4.2) 

The covariance matrix of this estimator is 

D( Xi?,,.) = X( X’WX) ~ X’WWVX( X’WX) + X’. (4.3) 

We first make the following alternative assumptions: 

r( X’WX) = r(X) and 8(X) C ?Ij(T) (4.4) 

or 

r( X’WX) = r(X) and 8(W) c S(q) (4.5) 

or 

1H(W) = %(v’). (4.6) 

Of these three assumptions the first is very common. The condition 
r( X’WX) = r(X), i.e. X( X’WX)‘X’WX = X, makes of (4.2) an unbiased 
estimator. For using (X’WX)- instead of (X’WX)‘, see e.g. Baksalary and 
Puntanen (1989) and Searle (1994). 

There are several choices for \V in (4.2). An important one is W,, = q’. 
It yields the estimator 

xb, = X( xtw+x> + x’w+y. (4.7) 
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Its covariance matrix is 

D( xb,) = X( xw+x) + x’v!+x( x’*+x)+ X’ = X( XY’X) + X’. 

(4.8) 

Under any of the three groups of assumptions stated above, we have by using 
the CSI (3.9) 

In this sense, (4.7) is an optimal extended weighted least squares estimator 
(OEWLSE). 

We further focus attention on the following alternative assumptions: 

S(X) = R(W), ‘%(X) c ‘%(Yr), and W* = lIrW (4.10) 

or 

?-( X’WX) = r(X) and a(W) = s(q) (4.11) 

or 

S(W) = s(q). (4.12) 

The two assumptions (4.10) and (4.11) are stronger than (4.4) and (4.5) 
respectively, and the assumption (4.12) is the same as (4.6). Under any of 
these three groups of assumptions (4.10), (4.11), and (4.12), we obtain an 
efficiency comparison by applying Theorem 2, viz. 

(4.13) 

where A, 2 ... > A, are the nonzero eigenvalues of W q. 
From (4.9) we see that in the class of estimators concerned, the OEWLSE 

is more efficient than the EWLSE [in fact, if s(X) C %(Yr), then W = V 
can be used to give the unique BLUE estimator-see Theorem 1 in 
Baksalary and Puntanen (1989) and Theorem 2 in Searle (1994); for an 
interesting related study in the context of minimum-distance estimators, see 
Satorra and Neudecker (1994)]. H ence (4.9) is an extended Gauss-Markov- 
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Aitken theorem. From a different point of view, (4.13) also compares the 
two covariance matrices and presents the relative (in)effciencies of 
EWLSE vis-a-vis OEWLSE. Note that (4.13) is in the style of (2.8). If 
(A, + h,Y/4A,A, in (4.13) is not too far from one, we can say that 
D( Xb, ) is close to D( xbo), and therefore can use Xh, instead of Xb, in 
practical situations. 

We shall now study in detail the special case of W = I. It is easy to see 
that two conditions B(X) c ‘%(W) and Whir = *W of the assumption 
(4.10) are satisfied [the condition ‘%(X> c a(*) has still to be assumed]. In 
this case the EWLSE, i.e. (4.2), becomes the LSE, which has covariance 
matrix XX+WX”X’, and (4.7) remains the GLSE. As s(X) C B(q), the 
GLSE is actually the BLUE now; see e.g. Corollary 2 in Baksalary and 
Puntanen (1989) and Theorem 2 in Searle (1994). Compare also (2.3) 
through (2.6) in Section 2 for the LSE, the GLSE, and their covariance 
matrices. 

By applying Theorem 1 we get the following comparison between the 
LSE and the GLSE: 

(4.14) 

where W > 0 has nonzero eigenvalues A1 > ... > A,, and s(X) C z(q). 
Also, under the assumptions (4.11) and (4.121, W = 1 implies * > 0. 

Then (4.14) holds automatically. For related discussions for the case V! > 0, 
see Wang and Chow (1994) and PeEariE, Puntanen, and Styan (1996). See 
also (2.8). For corresponding measures of efficiency in terms of matrix 
determinants and traces, and more related results, see e.g. Bloomfield and 
Watson (1975), Knott (1975), Khatri and Rao (1981, 19821, Styan (1983), Rae 
(1985), and Liski, Puntanen, and Wang (1992). 

5. CONCLUDING REMARK 

We have shown in this paper that KIs can be used to study the relative 
efficiencies of several LS-type estimators. KIs can cover not only the case of 
two positive definite matrices [see e.g. Wang and Shao (199211, but also the 
case of two positive semidefinite matrices as discussed already. The algebraic 
treatment in Section 4 is very general and can be applied widely, e.g. to 
compare minimum-distance estimators whose asymptotic covariance matrices 
also involve two positive semidefinite matrices [see e.g. Satorra and Neudecker 
(1994)]. 
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