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Abstract

In this paper, we introduce the generalized Pascal functional matrix and show that the existing variations
of Pascal matrices are special cases of this generalization. We study some algebraic properties of such
generalized Pascal functional matrices. In addition, we demonstrate a direct application of these properties
by deriving several novel combinatorial identities and a nontraditional approach for LU decompositions of
some well-known matrices (such as symmetric Pascal matrices).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past few decades, there has been an interest in Pascal matrices in mathematical
literature (see [2,3,4,9,10]). The (n + 1) x (n + 1) Pascal matrix, denoted by P,[x], was defined
in [4] as

i (l—]) .f . > .
X m: =z j, ..
(PulxD)ij = <]) J i,j=0,1,...,n (1)
0, otherwise,
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In [4], Call and Velleman discussed the inverse of P,[x] and a few basic properties of the
matrix. Some variations on this matrix and their factorizations were discussed by Brawer and
Pirovino in [2], most notably the symmetric Pascal matrix, Q,, defined as

i+

(Oni,j = ( j

They showed that Q, can be decomposed as the product of a lower triangular Pascal matrix,
P,[1], and an upper triangular Pascal matrix, P, 17~.
Zhang and Liu further elaborated on the results of [2] in [9] by introducing extended generalized
rectangular Pascal matrix ¥,[x, y] defined as
i+
J

and extended generalized lower triangular Pascal matrix @, [x, y] defined as

) i i=0.1... .n. @

(%uymdzﬂfﬂ”( >,Lj=QL~un 3)

xi—iyiti 5 ifi> ], .
(Dulx, yDij = Y (J =01, )
0, otherwise,

They demonstrated that ¥, [x, y] has the LU decomposition ¥, [x, y] = &,[x, y]P,,T [y/x].
Another variation of Pascal functional matrix was introduced by Bayat and Teimoori in [3]
and it is defined as

(l—])l)h i .f . > .
X . ifi > j, .
(Hp s lxDij = (]) / i,j=0,1,...,n, (5)
0, otherwise,
where x"1* is the generalized upper factorial and is defined as following:

ah X+ +20) - (x+ = DA), ifan>1,
X _{L ifn=0. ©

Their study of the algebraic properties of such a matrix yielded several interesting combinatorial
identities.

In [10], Zhao and Wang extended the Pascal functional matrix defined by Eq. (5) to more
general Pascal functional matrix, denoted by G, [x], and defined by

i
i—i(x . ifi > j, ..
(GulxDi; = ¥ i )<]> J i,j=0,1,...,n. (7
0, otherwise,

where {g,(x)} is a sequence of binomial-type polynomials, i.e., for all of {g,(x)}, g.(x + y) =
Yo (Z) 8k (x)gn—i (y) for any x and y. The authors proved some algebraic properties of such a

matrix and derived combinatorial identities from the properties.

In Section 2, we introduce a more general Pascal functional matrix and show that all the existing
Pascal matrices are special cases of one generalized Pascal functional matrix. Also, we study
algebraic properties of this generalized Pascal functional matrix. To show interesting applications
of the new Pascal functional matrix and its algebraic properties, in Section 3, we develop new
combinatorial identities and introduce a novel LU decomposition technique in Section 4. Finally,
We conclude in Section 5 by discussing future work to be done in this area.
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2. A more generalized Pascal functional matrix and its algebraic properties

The new generalized Pascal functional matrix is defined as follows. To avoid any unnecessary
confusion, we use f® to stand for the kth order derivative of f and use f* to represent the kth
power of f in the entire paper. In addition, /@ = f and f0 = 1.

Definition 2.1. Let f(¢; x) be a function of ¢ with a parameter x such that the nth-order derivatives
with respect to ¢ exist. The generalized Pascal functional matrix, denoted by 2,[ f (¢; x)], is an
(n+ 1) x (n 4+ 1) matrix which is defined as

i (l_J) t' .f . > .
(Pulf:)D)ij = (J')f R A Y S I A 8)
0, otherwise,

It can be shown that all well-known variations of Pascal matrices in [3,4,10] are special cases of
this new generalization of Pascal functional matrix. Consider the following:
(1) Let f(¢; x) = ¢ in Eq. (8). When r = 0,

Pul £ (t; )]1li=0 = Pnle™1li=0 = Pulx], ©))

which is the Pascal matrix P, [x] introduced by Call and Velleman in [4].
(2) Consider the truncated exponential generating function for the binomial-type polynomial
sequence of {g, (x)}

n k
t
F2) =) (0 (10)
k=0
It is easy to see that

n k
Pl (5 X)])li=0 = Pu [Z gk(X)%} = Galx], (11)
k=0

t=0
which is the Pascal functional matrix introduced by Zhao and Wang in [10].

(3) Since {[x]¥1*} is a special binomial-type polynomial sequence (see the proof in [3]), then
choosing gi(x) = [x]¥* in Eq. (11) leads

= Hylx], 12)
t=0
which is the Pascal functional matrix introduced by Bayat and Teimoori in [3].
Next, we explore some of the algebraic properties for the new generalized Pascal functional
matrix. Using Definition 2.1 and the Leibniz rule of differentiation, we can obtain the following
theorem.

n tk
Palf (. D=0 = P4 [gmmﬁ}

Theorem 2.1. Let Z,[f(t; x)] and 2,[g(t; x)] be any two (n + 1) x (n + 1) Pascal functional
matrices defined in Eq. (8). Then

Pulf(t; )] Pulg(t; X)) = Pul f(t; x)g(t; X)) = Pulg(t; )IZul f (15 X)].
Proof. It is obvious that (Z,[f(t; x)]Z.lg(t; x)])i,j =0 for i < j because 2,[f(¢; x)] and

P,lg(t; x)] are lower triangular matrices. For i > j, we have, by the multiplication rule for
matrices, the entry in the ith row and jth column is
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CAVIGENEAHGEITEDS (j() (") FOR @ 20)8% D 13 x)

k=0 J

=2 (;) (") F0 @08 )
k=j J

(i i (i =) =) (10 1) o k=) (-
_(j>k§(i—k>!<k—j)!f (s .

Letting m = k — j and using Leibniz rule for differentiation yields

m
J m=0

N .
(Pl (t; ) Pulg(t; )i j = (’) > (’ —J ) £ @ 08 (8 x)
= (;) (f (15 )8 (1 x)) )
= (Znlf(t; x)g(t; x)Di. ;-

This completes the proof. [

(k)
If (f(t; x)~H® = (f(ll_x)) exists for k =0, 1, ..., n, then setting g(r; x) = f(z; x)""in

Theorem 2.1 leads the following corollary.

Corollary 2.1. Let 2,[f(t;x)] be any (n+1)x(n+1) Pascal functional matrix. If
(k)
(f(@; x)~H® = (ﬁ) exists fork =0, 1,...,n, then

-1 . — 9 x) 1= !
@n [f(t,x)]—yn[f(LX) ]_gnl:f(t,x)]

Proof. Let g(¢; x) = f(z; x)~! in Theorem 2.1. Then, we obtain
Pl f (3 0120l f (1507 1 = Zal f (6 0) f (107 = Pull] = L),
where [;,41) is the corresponding (n+1)x(n+1) identity matrix. This implies that

Palf ;) N=2f(t;0)]. O

Consider Pascal functional matrix G,[x] defined by Zhao and Wang in [10] (see Eq. (7)) and
let f(t;x) =) 4, gk(x)% and h(t; y) = Y p_o 8k (y)% in Theorem 2.1. Noting

n k n I
F0h(s y) = (Z gk(X)%) (Z gz()’)%)
k=0 : =0 '
n J

_ Z g{‘—m(x) gm(y) tj+tn+l.Q(t;x,y)
— (j—m)! m!
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Syt f e
=D i@ R GERY

(i —m)!
s m:Om'(J m)!
n J . i
J t/ n+1
=2 | () ) gimm@em ) | =+ Qs X, ),
j=0 \m=0 J:

where Q(t; x, y) is a (n — 1)th degree polynomial of 7, yields

Gulx]1Gulyl = 2Zuf (t: X)]li=0Znlh(t; y)]li=0 = Pulf (15 X)A(1; Y)]li=0

[ n J . i
t/
=70 |22 <1Jn> 8j-m(X)gm(¥) | = + Qs x, y)
| j=0 \m=0 J: =0
(0 .
=2, (> (m) gi-m@en | 55 ||+ Zalt" Q5 x, ]li=0-
| /=0 \m=0 J: =0

Noting g, (x) is the binomial-type polynomial sequence and 2, [ Q@ x, y)ll;=0 vanishes
leads

Gulx1Galyl =2 | Y gj(x + 2

Jj=0 =0

=2, f@; x +)]li=0 = Gulx +y].

In light of this result, we redevelop Theorem 2.1 from [10] and summarize it as following.

Corollary 2.2. For any real numbers x and y, we have

Gnlx1Gnlyl = Gulx + y].

By noting that G,,[0] is an identity matrix, I,,41, and letting y = —x in Corollary 2.2, we obtain
another corollary.

Corollary 2.3. The inverse matrix of G,[x] is G,[—x], i.e., G;l[x] = Gu[—x].

The immediate consequences of Corollary 2.3 are illustrated by the following examples. Note
that they are consistent with the results in [4] and [3], respectively.

Example 2.1. Let {g,(x)} = {x"} in Corollary 2.3. This yieldsPn_l[x] = P,[—x]. For
instance, when n = 3 we have

1 0 0 O 1 0 0 0
X 1 0 O 1 —Xx 1 0 0
P3[x]= 2 oy 1 o and P; [x]=P3[—x]= %2 2 1 0
X3 3x% 3x 1 —x3 3% 3x 1
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Example 2.2. Let {g,(x)} = {[x]”‘)‘} in Corollary 2.3. This yields Hn_’l[x] = H, ,[—x]. For
instance, when n = 3 we have

1 0 0 0
X 1 0 0
H s lxl = x(x 4+ 1) 2x 1 of 2d
x(x+A)x+20) 3x(x+Ar) 3x 1
1 0 0
—X 1 0

Hy,lx] = Hpl—x] = 0 — A) e

0

0

1 0

—x(x —A)x—2)1) 3x(x—Xx) -3x 1
3. Some combinatorial identities

3.1. A novel formula for (f(t)~"H®

We next obtain some novel combinatorial identities by employing the algebraic properties of
the Pascal functional matrix just developed.

(k)
Theorem 3.1. If f(t) has nth order derivatives and (f(t;x)""H® = (f(tl_x)) exists for
k=0,1,...,n, then

1 (k) —1" n—l
(%) = % > = <” K ]) (" f @), (13)
=0

wherek =1,2,...,n.

Proof. Since 2,[f(t)] — f(t)I,+1 is a lower triangular matrix with zeros along the diago-
nal, (Z,[ f ()] — f(t)I,41)"t' = 0. Expanding (2,[ f(t)] — f(t)1,+1)"T! = 0by binomial for-
mula yields

n+1

> (” i 1) floz  fm1=o. (14)
=0

Moving the last term of Eq. (14) to its right side of the equation and then dividing (—1)" f**1(z)
on both sides leads

(2ot 1= ("7 )OO+ GO (1) SO T ) 2al f©))

. (— Dy 1) —
This suggests that
o (Zatr@n = ("7 r @A @1+ O () S O h )
)] = .
n L] (=D ()
(15)

By Corollary 2.1, we have
2 O1= ("7 ) fOAT O+ + 0 (") Ol

—17 _
Zulf @07 = I

(16)
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Using Theorem 2.1 and comparing the entry in the ith row and jth column (i > j) on both sides
of Eq. (16) yields

(f™H = f(nﬂ)(t) ((f )7 - <”“) FOG " ant=o

+eo b (D" (Z i }) f”“(r)f“‘f')(r)) : (17)
Finally, lettingk =i — j,k=1,2,...,n, in Eq. (17) yields Eq. (13). O

Theorem 3.1 provides a formula that allows us to represent (f%)(k) in terms of (f H)®,
i =1,2,...,n. Furthermore, by carefully choosing f(¢) in Theorem 3.1 we are not only able to
develop many novel combinatorial identities but also redevelop some well-known identities. For
the sake of brevity, we demonstrate only four of them in this section.

Corollary 3.1

n—1
S (” " 1) (@ —ma)®, (18)

=0
where x*) = x(x +1)---(x + k= 1) is rising factorial and 1 < k < n.

Proof. Substituting f(¢) = ¢t in Theorem 3.1 yields

1\® = n+1
<t_a) — (t—ol)(k) — (_1)nt—(n+1)a Z(_l)l ( l > (t(n—l)a)(k)tla. (19)
1=0
Setting ¢ = 1 in Eq. (19) leads that the left hand of Eq. (19) is
(—a)(—a — D(—a —=2)- - (—a —k + 1) = (=Dka® (20)

and the right hand of Eq. (19) is

Z( ' ”(”+ ){a(n—m{a(n—l)—1}{a<n—l)—2} Ao =1 —k+1)

n—1

= Z( 1)k (”* 1) (@ = ma® @1

Equating Egs. (20)—(21) and dividing (—1)* yields the corollary. [J

If we substitute f(t) = €’ and set# = 0 in Theorem 3.1, we can yield the following combina-
torial identity:

Corollary 3.2
n—1

Z(—l)"‘l <””ILI> n—DF=(=DK k=1,2,...,n. (22)

=0
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Let us consider the Hermite polynomials Hn(v)(x) of variance v and the Euler polynomials
E,(,‘”) (x) of order w as defined in [6]. It is well-known that the exponential generating functions
for H"” (x) and E (x) are

00 v)
Z Hkk'(x) tk — ext—vt2/2 (23)
k=0 ’

and
Z k_(x)tk — ( ) e, (24)
pard k! el +1

respectively. Using Theorem 3.1 and Eqgs. (23)—(24) we obtain the following two new identities.

Corollary 3.3

n

(=) _ Z n+ 1Y ) _

Hk (_x)_ 1(_1)1’)1 (m+1> Hk (mx), k = 1,2,...,71. (25)
m=

Proof. Substituting f(z) = e*! —v%/2 in Theorem 3.1 yields

k -1
( 1 >( ) _ ( (=n" ’12:(_1)1 <n -ll- 1) (eln =Wt =In—=11ve2/2 () lxt=1v1?/2,

xt—vt2/2 xt—vt2/2yn+1
€ € s

Setting + = 0 in the above equation leads

n—1
HT (-0 = Y (=1 <” i 1) H M ([ = 11

1=0
Changing the dummy index variable [ to m = n — [ yields the corollary. [

Corollary 3.4

n
ECO(—x) = Y (=1 (r,:zill> E{"mx), k=1,2....n. (26)

m=1

Since the proof of Corollary 3.4 is similar to the proof of Corollary 3.3, we omit it.

3.2. General even—odd-subject identity

We next consider the well-known combinatorial identity
n
Z(—l)’(?)lkzo, k=1,2,....n—1. 7)
=1

Specifically, for k = 0, we get the even—odd-subject identity, Y ;_,(— 1! <?) = 0. We shall now

extend the Even—Odd-Subject identities to more general form.
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Theorem 3.2. If f(t) has nth order derivatives, then

Z(—l)’ <’l’) (Flaon® =ty =0, k=1,2,...,n—1. (28)
=1

Proof. Comparing the elements on the ith row and jth column, where (i > j), on both sides of
Eq. (14) yields

2 =D <” T 1) Flogm=aen® =o, (29)
=0

where k =i — jandk =1,2,...,n. Lettingm =n + 1 — [ yields
n+1
I (”; 1) ¢ a)® =o. (30)
m=1

Reindexing on n in Eq. (30) yields Eq. (28). O
Theorem 3.2 is a very rich identity. Using Theorem 3.2, we can derive several interesting
combinatorial identities with the appropriately chosen function f(¢). For example, if f(z) = €’

and t = 0, we obtain Eq. (27). We demonstrate three more such identities below.
For f(t) = t* in Theorem 3.2, we have the following identity.

Corollary 3.5. Forapositive integerk, k < n, 27:1(—1)1 (7) (alyx = 0, where (x);y = x(x — 1)
---(x — k+ 1) is falling factorial.

If f(¢r) = ext—vi?/ 2, Theorem 3.2 leads to a new identity for Hermite polynomials of
variance v.

Corollary 3.6. For a positive integer k, k <n, Y |_;(—1)! (7) Hk(lv)(lx) =0, where Hk(v) (x)

the Hermite polynomials of variance v.

Proof. Substituting £(¢) = e¥'~""*/2 in Theorem 3.2 yields

n
Z(_l)l <;1) (e[xt—lvzz/Z)(k)e[n—l]xt—[n—l]vzz/Z —0.
=1

Setting + = 0 in the above equation leads 3 ) (—1)’ (;’) Hk(lv) (Ix) = 0. This comletes the proof
of the corollary. [

Along the lines of the proof of Corollary 3.6, by letting f(z) = ( e,il )®e*" in Theorem 3.2,
we obtain the following novel identity for Euler polynomials with @ order:

Corollary 3.7. For a positive integer k, k < n, > (—=1)! (;‘) E,Elw) (Ix) = 0, where E,Ew) is the

Euler polynomials of order .
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3.3. Extended version of general Tepper’s identity

In addition to developing new identities, we can use our work done with the generalized Pascal
functional matrix to derive a more general Tepper’s identity. To this end, we need to introduce a
series of lemmas.

Let e;, (0 < i < n), be the unit vector in R#+TD*1 and Jet

er(t:y) =&y, £ty fPa I

Then we can obtain the following lemmas.

Lemma 3.1. For any nonnegative integers k and i, (0 < i < n), we have

e] PRIt X)Neg(t; y) = [f5 (1 ) g (t; 1D, (31)
Proof. Since Theorem 2.1,

PELL s 0))eg (13 y) = Pul 5 (15 x)eg (15 y)
= [(fR ;08 x), (R )@ y) s, (Ff @ 08 y)™TT.
(32)
Then ef 71 (1 0)leg (13 y) = [f* (1 0)g (e 1@ O

Lemma 3.2. For any positive integer | and any function f(t) with Ith order derivative, we have

[ZILf (O] — fO 411 = My, (33)

where M is the (I + 1) x (I 4+ 1) square matrix, in which all entries are zeros except (Mj); 0 =

R G)S

Proof. Since [2;[f(t)] — f(¢)[;+1] is a lower triangular matrix with zeros along the diagonal,
[2i1f ()] — f() 411" will be an (I + 1) x (I + 1) lower triangular matrix, in which all ele-
ments are zeros except (M;); o. To evaluate the entry (M;); o, we rewrite the matrix [Z;[ f(¢)] —
f(@®)I111] as asum of Q[ f(¢)] and R[ f(¢)], where

0 0 0 0 0
oLfl=| 0 2/ 0 0 - 0 0
: 0 0 - ifw 0

A+1)x(+1)
and R[f ()] = [2iILf ()] = fO) 1411 = QLf ()] It is easy to show that R[f(1)]QLf(1)] =
O[f(H)IR[f (¢)]. Therefore,

1

[2FO1 = FO Il =Y (2) O LS OIRHLF ().

k=0

Noting Q*[ £ (t)]R'¥[ £ (t)] vanishes fork = 0,1, ...,1 — 1, we have [Z;[ f ()] — f () [111] =
Ql[f(t)] = M. In order to see the structure of M, we rewrite Q[ f(¢)] as f'(¢)S, where
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00 0 0 0
10 0 0 0
s—|0 2 o0 0 0
00 0 I 0

()0 () o (o) ()<

= 2[z]|:=0.
Thus, by Theorem 2.1, we have
O'f =M = (f0))'S = (f ) [21z]l:=0] = (f' @) P1[z"]].=0.

Therefore,

M = ’ t 1
1= ('®) @ N G) oy @ 4. o 0
<f)> (Zl)(l) <ll) (Zl)(l—l) <12> (Zl)(l—Z) ... (l _l 1) (Zl)/ (;) zl
- —e=0
0
0 .
0

0 0 0 0

0 0 0 0

=a'|? 00 00
N0 o0 --- 0 0

and consequently (M;); o = l!(f’(t))l. This completes the proof. [
We can thus derive the extended version of general Tepper’s identities found in [3,10].

Theorem 3.3. For any positive integers | and k, (k < 1) and any functions f(t) and g(t) with lth
order derivatives, we have
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l

2 (;) DL g1 fT 1) = 1 1) 8 (0o (34)
m=0

where &) i is Kronecker delta function.

Proof. By Lemma 3.2, we have

U PILf O] — fFOI111) eglt] = ef Myeglt] = 11(f' (1)) g ()81, (35)
On the other hand, by Lemma 3.1, we obtain

et (PILF (O] — f(O) 141 eglt]

I
=e; (Z(—l)"’” (ﬁn) Wz[f’"(t)]fl""(t)) e,lt]
m=0

[
> <fn> R VA ONO) VA OF (36)
m=0

Equating Eq. (35) and Eq. (36) yields the theorem. [
An immediate consequence of Theorem 3.3 is the well-known Tepper’s identity from [7].

Corollary 3.8 (Tepper’s identity). For any positive integer | and any real number x,
I

Z (;) (=D x +m)l =11 (37)

m=0

Proof. Letf(t) = €', g(t) = e*', and k = [ in Theorem 3.3. Then
!
Z (f/n> (_l)l_m(.x + m)le([-‘rx)l — l!el[ext. (38)
m=0

Setting ¢ = 0 in Eq. (38) leads the identity Y™, _ (ﬁn)(—l)’—m x+m)l =1 O

In addition, by choosing particular f(¢) and g(¢) in Theorem 3.3, we can develop the following
result.

Corollary 3.9. Let {gx(x)} be the sequence of binomial-type polynomials. For any positive inte-
gersl and k, k < 1, and any real numbers x and y,

/
> (é) (=1 ™" gemax + y) = 11g} ()81 (39)
m=0

Proof. Let f(r) = Zé:o gi (x)% and g(t) = le=0 gj(y)’j—j! in Theorem 3.3. If we note that
{gr(x)} is the sequence of binomial-type polynomials and then use induction, we can easily
show that
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! i
PO =3 gm0+ ) (40)
i=0 ’
and
l .
t/
1080 = Y g5mx 407 10 x, ), @1)
j=0 '

where Q1 (¢; x) and Q»(¢; x, y) are polynomials of . An application of Theorem 3.3 yields
(k)

! ! i ! i\
> (nli) S DI G N (;:gi(x)i—!)

—0
/ t=0

= 11g} (x)g0(¥)81.4- (42)
Finally, noting go(x) = go(y) = 1 and [F'T1Qs(z; x, y)]®|,—¢ vanishes for k <[, we have
o (1) (<D gelmx + 3) = 11gh (084 O

It is notable that, since {¢,(x)} defined in [10] and {[x]”‘)‘} in [3] are special sequences of
binomial-type polynomials, Theorems 4.2 and 4.4 in [10] and Corollaries 4 and 5 in [3] are
special cases of Corollary 3.9.

Another immediate consequence of Theorem 3.3 is Proposition 4.6 in [1], which is restated by
the following corollary.

Corollary 3.10. For any nth degree polynomial p(x) =Y !_, pix' and an integer g withq > n,
we have
q

> (fn) (=177 pOm + %) = n'padag. (43)

m=0

Proof. Let f(t) = ¢, g(t) = e, and t = 0 in Theorem 3.3 yields

l
Z(—l)’—’" (fn) (x +m)k =118, 1, 1 <k<l.
m=0

Then,

q

q n
<31) D7 pm+x)=Y (i) (-7 (Z pi(m +x>">
0

m=0 i=0

n q
= ;‘ pi (Z (31) (=17 (m +x>">

m=0

n
= piq8q..
i=0

m=

Since g > n, Zfﬂzo <31) (=D ™ p(m + x) = n!p,d,,,. This completes the proof. [
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4. LU decompositions of some well-known matrices

The other interesting application, which we would like to discuss, of the generalized Pascal
functional matrix and its properties is its use in the LU decomposition of a certain class of matrices,
whose components can be represented by a Wronskian of some function set. Rather than directly
obtaining the LU decomposition of a matrix, our method is to find the LU decomposition of its
Wronskian matrix first. Let us start by defining the Wronskian matrix of functions fjy(x), f1, (x),

coes fun(x).
Definition 4.1. Assume that f;(x), j = 0, 1, ..., n, has the mth order derivative. The Wronskian

matrix of { fo(x), f1, (x), ..., fu(x)}, denoted by Wy, »[ fo, f1,..., fulsisan(m + 1) x (n + 1)
matrix and defined by

Wl fou fro oo fuDij = fP (), i=0,1,....m, and j=0.1,....n.
The following theorem is an immediate consequence of Theorem 2.1.
Theorem 4.1. Let hy(t) be a kth degree polynomial, fork = 0,1, ..., n, and f(t) be any function
with nth order derivative. Then Wy 4 f()ho(2), f(O)h1(2), ..., f()ha,(t)] has LU decomposi-
tion form
LU = 2, f(O1Wynlho(0), hi (1), ..., hn(D)].
We can redevelop the LU decomposition of symmetric Pascal matrix Q,, defined in Eq. (2)
(which is presented in [2,4]) by choosing special f(¢) and {h(#)} in Theorem 4.1. The result is

the following corollary:

Corollary 4.1. An (n + 1) x (n + 1) symmetric Pascal matrix Q, can be decomposed as the
product of lower triangular and upper triangular Pascal matrices, i.e.,

0. = PP 1] = P Py

1 0 0
1 1 0 0 0 1 2 (fl)
1 2 1 0 !

- . L ) |- @

0 O

o
N
~—

Proof. It is well known that Q,=W, ,[e'ho(r),e hi(t),e ha(), ..., e hy()]l;=0, Where
hi(t) = Zf:o (f);—i, and e'h(t) is the exponential generating function of the kth column
of Q.
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By Theorem 4.1, we have

On = Wynle'ho(t), e hi(t), e ha(t), ..., " h ()] |i=0
= (Zale Dli=oWanlho(@), h1 (1), ha (1), . ..., ha(D)D]i=0= P,[11P[1] = PLPy. O

We also can re-derive Theorem 5 in [9], the LU decomposition of generalized rectangular
Pascal matrix ¥, [x, y] defined in Eq. (3) by applying Theorem 4.1.

Corollary 4.2. ¥,[x, y] = ?[x, y]PnT[y/x], where ¥, [x, y], Plx, y] and P,[x] are defined in
[9] and Egs. (3), (4), and (1), respectively.

Proof. It is not difficult to show that
an[-xs Y] = Wn,n[exytho(t; x& )’)7 exythl(l; -xv )7)1 ceey exythn(t; xe )’)]|t:0,
k—1,1
where A (1; x, y) = Y1 (;‘) (y/xl#yﬂ. By Theorem 4.1, we have that

Wulx, Y1 = (Pule MWy nlho(t; x, ¥), hi(t; %, Y), - ., ha(t5 %, ) D=0
= (P,[e""] - Diag[l, y*, ..., y*"1- Waulao(t; x, y), a1(t; x, ), . . .,
ap(t; x, y)Dli=o0,

1 . .
where a(t: x, y) = Y, (j‘)(g)k—lg—!. Noting 2, [e®)]|,—o - Diag[1, y2, ..., y2"] = ®[x, y]

and W, nlao(t; x,y), a1(t;x,y), ..., an(t; x, Y)]|1=0 = PT[y/x] allows us to conclude the
results of the corollary. [

5. Future work

We have thus introduced a more generalized Pascal functional matrix and shown that its
algebraic properties are very useful for deriving new combinatorial identities and finding LU
decompositions of some special matrices. It is noteworthy that our LU decomposition tech-
nique is nontraditional. This novel approach sheds light upon the LU factorizations for classical
Vandermonde matrix, three kinds of generalized Vandermonde matrices discussed in [8], and
Striling matrices of the first and second kinds studied in [5]. Our future work will explore such
factorizations.
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