major violation was found as 7 out of 51 cases. By contrast, there were no major violation and one minor violation in Arm2.

Conclusion: This ICR study with KROG-0806 showed the satisfactory protocol compliance in IMN irradiation and the major violation from several cases of IMN non-irradiation group. Quality assurance process using ICR is needed to evaluate and improve the quality of clinical trial in the field of radiation oncology.

EP-1941
Assessment of variation in planning benchmark case for ABC-07 trial of liver SBRT
D. Eaton1, M. Robinson2, R. Patel1, M. Hawkins1
1National Radiotherapy Trials QA group, RTTQA, Mount Vernon Hospital, Northwood, United Kingdom
2CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom

Purpose or Objective
Quality assurance of radiotherapy clinical trials ensures protocol compliance and robustness of outcome data. Benchmark cases are used to assess consistency of outlining and planning by different centres, and provide feedback before a centre starts recruitment. For a complex technique such as liver SBRT, it also facilitates sharing of best practice and supports centres with less experience.

Material and Methods: The planning benchmark case was a large (6cm) cholangiocarcinoma with target and organ-at-risk contours already outlined. This case was sent to all centres interested in joining the ABC-07 multicentre phase II trial (Addition of stereotactic body radiotherapy to systemic chemotherapy in locally advanced biliary tract cancers; CRUK A18752; Sponsor University College London). Centres were asked to produce a plan with prescription dose of 50Gy in 5 fractions, having PTV coverage D95% > 95% (optimal, 90% mandatory) and mean liver dose < 13Gy. If this was not possible, the prescription dose was reduced to 45Gy in 5 fractions and mean liver dose limit increased to 15Gy.

Results: 14 cases were submitted, covering a range of planning systems and treatment platforms. 5/10 VMAT, 1/1 IMRT and 0/3 Cyberknife plans were able to cover 95% of the PTV with ±90% of 50Gy, whilst maintaining the mean liver dose below 13Gy, as shown in the table.

<table>
<thead>
<tr>
<th>Modality (prescription dose)</th>
<th>Number of centres</th>
<th>D95% (% of 50 Gy)</th>
<th>Max (90% iso) (% of PTD)</th>
<th>Mean liver dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMAT (50Gy)</td>
<td>5</td>
<td>44.9 - 48.2 Gy</td>
<td>90 - 95%</td>
<td>101 - 117%</td>
</tr>
<tr>
<td>IMRT (50Gy)</td>
<td>1</td>
<td>48.2 Gy (90%)</td>
<td>106%</td>
<td>12.8 Gy</td>
</tr>
<tr>
<td>VMAT (45Gy)</td>
<td>4</td>
<td>42.4 - 45.0 Gy</td>
<td>90 - 95%</td>
<td>101 - 120%</td>
</tr>
<tr>
<td>Cyberknife (50Gy)</td>
<td>3</td>
<td>42.7 - 44.5 Gy</td>
<td>914 - 122%</td>
<td>14.6 - 15.0 Gy</td>
</tr>
</tbody>
</table>

Conclusion: Achieving the planning objectives for this case was challenging and only 5/12 centres submitted an optimal plan. The other 7 centres are repeating the exercise after feedback on what was achievable with similar equipment. Achieving the optimal plan for this case involved reduced conformity of medium doses in order to spare other parts of the liver, and thereby reducing the total mean liver dose. This approach is contrary to typical Cyberknife planning, so it may not be the optimum treatment platform for these cases, although it is possible that differences between technologies and centres were accentuated by this large and challenging case, and may be reduced for smaller lesions. All patients treated within this trial will be prospectively reviewed, which will further inform this question.

EP-1942
Initial experience with the Elekta Leksell Gamma Knife Icon system: commissioning, QA and workflow
S.W. Blake1, L. Winch1, H. Appleby1
1Bristol Haematology & Oncology Centre, Radiotherapy Physics, Bristol, United Kingdom

Purpose or Objective: Icon enables fractionated stereotactic radiotherapy using a frameless patient positioning system (PPS). For submillimetre precision, the planning MRI scans are registered to a CBCT scan set acquired using Icon. Patient position is then adjusted using the Icon scan. Movement is monitored using an Intra Fraction Motion Management (IFMM) system.

This presentation reports on the commissioning of Icon plus baseline and ongoing QA measurements. This is the first use of Icon in the UK.

Material and Methods: CTDI was assessed for both the low and high dose settings and image quality checked using CatPhan. kVp measurements were made and dose to the imager assessed to confirm the Elekta presets and baseline values.

A new Focus Precision Check tool containing diodes and ball bearings was used to ensure the accuracy of the PPS relative to the radiation focus and CBCT image positions.

The IFMM system was verified using a moveable phantom. A reflector was attached to the phantom and moved independently in the x,y and z directions in 0.5 mm steps. If the IFMM monitored position is outside tolerance for more than 2 seconds, the treatment pauses and the couch is retracted. Treatment resumes following a re-scan, with the plan recalculated on the new CBCT reference. To test this system an output measurement was interrupted using a remotely moved reflector.

An end-to-end check on a fractionated pituitary plan was made. The plan was recalculated on a CBCT scan of the spherical solid water phantom containing inserts for chamber and film. A film was positioned at the central axis with 2 additional films displaced 5 & 10 mm above and below.

Results: The Icon system performed within specification. Patient doses were acceptable and image quality resulted in good registration with the MRI scan sets. Ongoing QA results were highly reproducible demonstrating the ability of the system to within 0.5 mm. The IFMM readout agreed with the independent system to within 0.04mm and repositioning following interruption had no significant effect on the diode doserate. The end to end film dosimetry agreed to within ±3% of the planned dose.

The Icon system has allowed us to use new clinical pathways with little loss in positional accuracy including:
(a) Single fraction patients who would not tolerate a fixed frame.
(b) Fixed frame patients who have their CT scan with Icon.
(c) Fractionated patients.

Conclusion: Icon is an efficient system which has enabled the delivery of fractionated stereotactic radiotherapy plus improvements for single fraction patients. Accuracy is comparable with fixed frame treatments.

EP-1943
Implications of gold nanoparticles used for dose enhancement in proton radiotherapy
R. Ahmad1, G. Royle1, K. Ricketts2
1UCL, Division of Surgery and Interventional Science, London, United Kingdom
2UCL, Medical Physics and Bioengineering, London, United Kingdom

Purpose or Objective: Heavy metal nanoparticles (NPs) have been widely investigated within x-ray radiotherapy as radiosensitisers, where gold NPs (GNPs) have been deemed to be effective at enhancing the dose to the tumour. Few studies have been carried out for protons, where an extensive investigation of the enhancing factors needs to be carried out to determine the implications that introducing GNPs can have on known dose profiles. In the present work, we demonstrate our model which uses Geant4 to carry out Monte Carlo simulations of NP concentrations being irradiated by a proton beam. These simulations offer an indication as to