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Throughout evolution, regulatory networks need to expand and

adapt to accommodate novel genes and gene functions.

However, the molecular details explaining how gene networks

evolve remain largely unknown. Recent studies demonstrate

that changes in transcription factors contribute to the evolution

of regulatory networks. In particular, duplication of transcription

factors followed by specific mutations in their DNA-binding or

interaction domains propels the divergence and emergence of

new networks. The innate promiscuity and modularity of

regulatory networks contributes to their evolvability: duplicated

promiscuous regulators and their target promoters can acquire

mutations that lead to gradual increases in specificity, allowing

neofunctionalization or subfunctionalization.
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Introduction
Even in closely related species with highly similar ge-

nome sequences, gene expression patterns can be quite

different [1,2]. This divergence in gene expression and

regulation has been postulated to play a major role in

evolution and is believed to be one of the primary sources

of phenotypic variation between species [3–11].

Changes in transcriptional regulation can occur at differ-

ent levels: through changes in DNA binding sites located

around or inside target genes (so-called cis mutations) or

by changes in trans, that is, differences in the abundance
3 These authors contributed equally to this work.
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or activity of transcription factors (TF) — regulatory pro-

teins that recognize and bind specific cis-regulatory

sequences [12]. Comparative genomics studies have indi-

cated a considerable amount of cis-regulatory sequence

variation between species [13–15] and it has been argued

for a long time that changes in cis-regulatory elements

underlie most of the observed changes in transcriptional

regulation [8,16,17]. Mutations in transcription factors

were considered to be an unlikely source of variation,

mostly because of the possible negative pleiotropic effects

such mutations can evoke [16,18]. A mutation in a protein-

coding region of a transcriptional regulator may simulta-

neously affect multiple target genes of this regulator (and

thus can have widespread detrimental effects), whereas a

mutation in a cis-regulatory element would only cause

changes in the expression pattern of this particular gene

and might thus be better tolerated by the cell [8].

Recent studies indicate that mutations in regulatory

proteins may be more common than previously appre-

ciated [19–21]. Moreover, these changes can play a prom-

inent role in regulatory network evolution by altering

expression, molecular interactions and post-translational

modifications of the regulator [22–24,25��]. In keeping

with this, it is well known that several transcription factors

have DNA binding domains belonging to large paralogous

families, although the transcription factors can differ

extensively in sequence [26]. Hence, evolution through

TFs appears to be a successful strategy for regulation of

gene expression, although the exact nature and extent to

which this mechanism has contributed to gene expression

regulation has remained unclear [27��].

Duplication of a gene encoding a transcription factor was

suggested to be the least complicated way for a transcrip-

tion factor to evolve without significantly decreasing the

fitness of an organism [28]. For example, one of the gene

copies can retain the ancestral function (thus avoiding any

negative pleiotropic effects), while the other is released

from negative selective pressure, can mutate and in some

cases evolve a different function [23]. Indeed, many

transcription factors are known to arise by gene duplica-

tion, and a number of them have acquired a new function

[29–31]. In addition, duplication of target genes — both

small-scale and whole-genome — and subsequent diver-

sification of the resulting duplicates have been shown to
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be important contributors to the evolution of transcrip-

tional networks [1,32�,33,34]. Gene duplication has been

widely recognized as the prime sources of novel genes in

genomes: 50% of the genes in prokaryotes and around

90% of the genes in eukaryotes are the result of duplica-

tion [31,35–39]. Since these new genes need to be regu-

lated correctly, the adaptation of gene regulation (and

thus of regulatory networks) is particularly important

[1,2,31].

In this review, we discuss recent insights in how dupli-

cation of a transcription factor gene can propel the

rewiring and expansion of regulatory networks. We spe-

cifically focus on how gene duplication and subsequent

divergence allows circumventing the potential negative

effects associated with pleiotropy of a single copy

transcription factor that could lead to misregulation of

target genes.

Gene duplication is an important driver of
regulatory network evolution
Gene duplication is increasingly recognized as the chief

mechanism underlying evolutionary innovation. Whereas

the exact evolutionary pathways and forces are often

complex, a simplified model explains how duplication

of a gene allows one of the two copies to retain the

ancestral function whereas the other copy is relieved from

negative selection and is allowed to mutate and explore

novel functions [35,40]. Such duplication events are often

associated with genes encoding enzymes, but they may

also occur for the regulatory genes [23,41,42��,43��,44].

Duplication of a transcriptional regulator, its target

gene(s) or duplication of both may establish novel inter-

actions in the regulatory network or even lead to the

emergence of a novel regulatory cascade [31] (Figure 1).

Comparative genomics reveals that many transcription

factors, as well as their target genes, arose by duplication

[29–31]. After duplication of a regulatory gene, the two

identical copies are likely redundant, recognizing the

same binding sites, responding to the same signal and,

therefore, regulating the same set of target genes as the

ancestral pre-duplication regulator. During subsequent

divergence, one or both of the duplicated transcription

factor paralog genes may acquire mutations that change

the DNA binding domain and switch to regulating

different target genes [42��]. Alternatively, the two para-

logs can continue to regulate the same target genes as

their ancestor but respond to a different signal, or bind

different protein partners (cofactors) [45��,46,47]. A

seemingly frequently occurring scenario is that of sub-

functionalization (or ‘division of labor’), where each para-

log evolves to regulate a subset of the target genes

originally regulated by the single ancestral transcription

factor [40,45��,48] (Figure 2). Such subfunctionalization

might not seem to contribute much to evolution, but

in reality, division of labor among paralog regulators
www.sciencedirect.com 
followed by specific mutations may allow a more precise

and specific regulation of target genes. Another possible

fate for duplicated genes is neofunctionalization,

where one of the duplicates acquires a novel function

that was not present in the pre-duplication protein. Such

neofunctionalization could explain the emergence of

completely new pathways that regulate new gene func-

tions (Figure 2).

Interestingly, despite the multitude of examples of how

gene and whole-genome duplications have contributed

to the evolution and expansion of gene regulatory net-

works, the exact molecular details and mutational path-

ways are not yet well understood. How can two identical

transcription  factors gradually diverge into two distinct

proteins, each responding to a specific input and each

regulating a specific set of targets? It is important to note

that this is a complex problem, because evolution gener-

ally happens gradually, and during the entire process,

fitness valleys associated with misregulation of target

genes should be avoided. In the following paragraphs,

we describe the results of recent studies that have

elucidated mutational pathways underlying the evolu-

tion of duplicated transcription networks. Together,

these studies begin to shed light on how transcriptional

regulation evolves.

Subfunctionalization of duplicated
transcriptional networks
Many transcription factors interact with a multitude of

other proteins and also with different DNA motifs. In case

of subfunctionalization, loss of some of these ancestral

interactions in the resulting paralogs can lead to competi-

tive interference between the two paralogs, a situation

also referred to as paralog interference [41,45��]. Imagine

for example a transcription factor that needs to bind a

specific cofactor as well as DNA. If, after duplication, one

of the paralogs acquires mutations that impair cofactor

binding but do not affect DNA binding, then this paralog

will reduce transcriptional activity of the other copy by

competing for DNA binding. Baker et al. demonstrated

the negative effects of such paralog interference in the

case of a fungal MADS-box transcriptional regulator

[45��]. Duplication of the ancestral transcription factor

resulted in two paralogs that each control expression of a

specific subset of targets of the ancestral regulator [45��].
The two paralogs diverged by acquiring specific muta-

tions that altered cofactor binding preference. In a clever

set of ancestral gene reconstructions, the authors showed

that closely after the duplication the regulatory network

was indeed experiencing paralog interference. Several

specific subsequent mutations that weakened the

DNA-binding affinity of one of the paralogs were re-

quired to resolve paralog interference.

However, in some cases, paralog interference can also be

an integral part of the emergence of new regulatory loops.
Current Opinion in Biotechnology 2015, 34:180–188
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Figure 1
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Duplication events are important drivers of regulatory network evolution. (a) Duplication of a transcription factor (TF) initially leads to both

regulators (TF and TF0) controlling the same target gene (TG). Subsequent divergence can cause one of the paralogs (TF0) to acquire different

target(s) (TG2) (see also Figure 2). (b) After duplication of a target gene (TG), both copies (TG and TG0) are initially regulated by the same

transcription factor (TF). Divergence can cause the duplicated target to become regulated by a different transcription factor (TF2). It should be

noted that both in scenario a and b, paralog divergence does not necessarily happen after duplication: the two copies of the regulator can

regulate the same target genes (a); and the two copies of the target can be regulated by the same transcription factor (b) (not depicted).

Alternatively, the duplicated copies can also be lost from the genome (not depicted). (c) Concerted duplication of a transcriptional regulator and its

target (e.g., following whole-genome duplication events) can expand the regulatory network through divergence of target and/or regulator.
Bridgham et al. showed that in the evolution of steroid

hormone receptors, mutations in one of the paralogs after

duplication abolished its activation by a specific ligand

[41]. Upon ligand binding, these receptors normally un-

dergo a conformational change that allows them to recruit

cofactors that facilitate transcription of their targets.

Mutations affecting ligand binding caused one of the

paralogs to evolve a new function: it acted as a repressor

for the transcriptional activity of the other paralog by

competing for the same DNA binding site (neofunctio-

nalization through loss-of-function). This in turn allowed

for fine-tuning of expression of the target genes of these

transcriptional regulators.
Current Opinion in Biotechnology 2015, 34:180–188 
Neofunctionalization of transcriptional
networks
While subfunctionalization of duplicated networks clear-

ly plays an important role in the evolution of gene

regulation, other cases, such as the one described in

the paragraph above, involve the emergence of novel

functions (neofunctionalization). This is often the case

when novel gene functions arise, since this likely requires

the evolution of new regulatory networks to ensure

proper regulation of the novel functions. A recent study

of the evolutionary history of the MAL gene family in

yeast reveals in detail how such ‘neofunctionalization’

of networks can occur. In this case, duplication and
www.sciencedirect.com
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Figure 2
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Transcription factor duplication can lead to expansion of the existing regulatory network or emergence of a novel network. Early after the duplication

of the ancestral transcription factor (TF) the resulting paralogs are redundant and regulate the same set of target genes (TG1 and TG2). Subsequent

diversification can occur through subfunctionalization (or division of labor, 1 [45]) or neofunctionalization (2–4). (2) Some transcription factor paralogs

diversify at the level of signal or cofactor recognition, so that they still regulate the same set of target genes but are activated by different cofactors

[46]. (3) Duplication of the target genes together with the regulator can lead to emergence of a novel network, where each transcription factor paralog

activates its own set of target gene copies (TG1, TG2 and TG10 and TG20 are regulated by TF and TF0 respectively) [43]. (4) Some transcription factor

paralogs can acquire regulatory control over new target genes that were not part of the ancestral network before duplication (TG3) [42].
neofunctionalization of a hydrolytic enzyme was followed

by duplication of its transcription regulator gene, which

eventually allowed the emergence of a novel regulatory

circuit [43��]. The MAL gene family is involved in the

uptake and metabolism of complex carbohydrates such as

maltose, palatinose and other a-glycosides. It consists of

three subfamilies: MALS, MALT and MALR [44,49]. The

MALT subfamily encodes a set of different transporters

that import a range of disaccharides, which are subse-

quently hydrolyzed by a set of specific MalS glycosidases.

Some of the intracellular disaccharides likely bind to the

so-called MalR regulator proteins, and this complex reg-

ulates expression of MALS and MALT genes [49].

The present-day MalS enzymes originated from a single-

copy ancestral gene through multiple duplication events
www.sciencedirect.com 
followed by functional diversification. These events cre-

ated two main groups of MalS enzymes, each with its own

specific substrate preference: one group can hydrolyze

carbohydrates with an a 1-4 glycosidic bond, whereas the

other group can break down disaccharides with an a 1-6

bond [44,49]. Two independent regulatory networks,

each one dedicated to regulating one class of MalS

enzymes, emerged through duplication and diversifica-

tion of a single copy transcription factor [43��,44] (see

Figure 3). This ancestral regulator displayed broad bind-

ing site specificity and was able to bind two different

DNA motifs present in the promoters of the two substrate

classes. After duplication, one paralog evolved increased

binding specificity for one of the motifs, whereas the

other paralog acquired mutations that reduced its affinity

for specific sequences, so that it now needs multiple
Current Opinion in Biotechnology 2015, 34:180–188
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Figure 3
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Evolution of MAL gene regulatory network. (a) In case of the MAL genes, the ancestral transcription factor (TF) was regulating expression of the

ancestral hydrolytic enzyme (target gene, TG). This ancestral transcription factor was promiscuous and could be activated in presence of two

classes of disaccharides (each activity is depicted as either red or blue), while the ancestral enzyme could effectively hydrolyze only the red

disaccharides (with a 1-4 glycosidic bond), and had only minor activity for the blue disaccharides (a 1-6 glycosidic bond). (1) Duplication of the

target gene led to significant improvement of the blue hydrolytic activity and was followed by the duplication of the transcription factor gene (2).

One of the emerging transcription factor paralogs took regulatory control over the target gene with the novel activity, thus leading to emergence of

a novel regulatory network (blue). The effective disentanglement of the red and blue regulatory networks was possible because the blue regulator

lost the ability to bind to the promoter regions of the red target genes and can only bind its own blue target genes. The opposite is true for the

red regulator. The details of the mutations that lead to these changes are depicted in panels b and c. (b) The blue regulator acquired a specific

mutation in its DNA binding domain that prevents it from binding CGC motifs present in the promoters of the red target genes, but allows binding

CGG motifs from the promoters of the blue target genes. (c) The red regulator retained the ancestral ability to bind both types of motifs (CGG and

CGC) but requires multiple binding sites to activate the expression. Blue target genes have only one binding site in their promoters and thus

cannot be activated by the red regulator. For more information, see [43].
binding sites before it can bind (see also Figure 3). This

example shows in detail how duplication and subsequent

diversification of a promiscuous transcription factor

allowed avoiding fitness valleys associated with paralog

interference [43��]. In other words, the two networks were

gradually disentangled so that in the end, each MALS
gene is specifically activated by its own substrates.

Interestingly, comparative genomics revealed that the

changes in the amino acid sequence of the Mal target

proteins preceded the changes on the regulatory level.

Hence, in this case, functional divergence of the target

genes probably acted as a driving force for the gradual

disentanglement of the two regulatory networks. More-

over, the promiscuity of the ancestral, pre-duplication

transcription factor, which was able to bind multiple

binding motifs, was likely a key facilitator of the post-

duplication divergence. Indeed, a gradual increase in the
Current Opinion in Biotechnology 2015, 34:180–188 
binding specificity of a duplicated promiscuous transcrip-

tion factor may allow gradual disentanglement of the

paralog networks.

A very recent study focused on the mechanism of binding

site specificity changes in vertebrate steroid hormone

receptor evolution [50��]. One of the duplicated transcrip-

tion factors retained the ability to recognize the DNA

motif preferred by the ancestral regulator, while the other

acquired mutations and now specifically binds a different

motif. In contrast to the MAL study discussed above, the

ancestral regulator in this case was not promiscuous and

could only bind one type of motif. Interestingly, negative

protein–DNA interactions were intimately involved in

the evolution of the new DNA binding specificity: after

duplication, mutations in one copy compromised its

binding to the original motif, whereas other mutations
www.sciencedirect.com
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caused a loss of unfavorable interactions with the new

motif.

Another study of the divergence of a duplicated transcrip-

tion factor elucidated the molecular details of how a

duplicated transcription factor can acquire a set of

completely novel target genes [42��]. By studying a group

of LYS transcription factors in Candida albicans that arose

through successive duplications, they demonstrated that

these paralogs diverged through a combination of changes

in DNA binding specificities (preferences for different

DNA motifs, different spacing between motifs, prefer-

ences for direct versus inverted repeats), as well as

different cofactor binding properties. Interestingly,

LYS14 of Saccharomyces cerevisiae is a key regulator of

lysine biosynthesis, but in C. albicans none of the four

LYS14 homologs regulates the lysine pathway. Instead,

they are involved in the white-opaque switching or pro-

liferation in a mammalian host.

Interestingly, mutations that do not perturb the actual

protein–DNA binding site can also affect binding affinity

and specificity of transcriptional regulators. An elegant

study on the transcriptional activator CAP demonstrated

that mutations far away from the binding site altering

protein internal dynamics can have a very strong effect

on binding affinity [51]. Hence, many different types of

mutations can lead to transcriptional regulator divergence.

Importance of promiscuity for overcoming the
negative effects of pleiotropy
Initially considered to be mostly unwanted side-activities,

recent studies are now highlighting the importance of

promiscuity as crucial factor for driving evolution. The

evolution of the Mal network is a good example (see

above). Promiscuity seems to be a feature inherent to

most proteins and enzymes: a large fraction of them have

been reported to possess multiple activities [52,53]. Many

transcription factors also show variation in DNA binding

abilities: they can recognize both a (preferred) motif as

well as an additional motif(s) [54,55,56�].

Recent studies demonstrate the ability of duplicated

transcription factors to diversify and bind a number of

different DNA motifs [55,56�]. A new study focuses on

the family of fungal C2H2 Zn-finger transcription factors

[56�]. These proteins can be divided into several ‘speci-

ficity’ groups, each group encompassing proteins with

identical canonical DNA-recognition amino acid resi-

dues. Since these residues are the same for all proteins

of the same group, these regulators are expected to bind

the same DNA sequences. However, other non-canonical

binding sites specific for each protein are also present.

This way, each transcription factor recognizes not only a

motif common to all members of the group but also its

own preferred motif, which is not bound by other reg-

ulators from the same group. Such modularity of DNA
www.sciencedirect.com 
binding specificity enables a protein to bind different

sites while not affecting binding to the core DNA motif.

This allows the transcription factor to overcome negative

effects of pleiotropy. Moreover, this modularity is con-

served since the divergence of C. albicans and S. cerevisiae
and thus may be functionally important.

Another beautiful example of the importance of promis-

cuity as a promoter of evolvability of transcription factors

is the LEAFY plant regulatory protein [25��], and see also

recent discussion in [67,68]. LEAFY is a major regulator

of flower development and cell division in land plants. It

binds different types of DNA motifs in different plant

species, and this specificity is determined by only a

handful crucial residues. The radical shifts in DNA

binding specificity of this regulator observed in the

evolution from algae to land plants were enabled by

passing through an intermediate, highly promiscuous

form that was able to bind all three types of motifs present

in modern-day plant species. Interestingly, this promis-

cuous state is still preserved in hornwort, which is taxo-

nomically situated somewhere between algae and higher

land plants. Together, these results illustrate how a

promiscuous intermediate can also provide an evolution-

ary route to new functions without passing through a

fitness valley.

Small-scale versus whole-genome
duplication: effect of origin of duplication on
regulatory network evolution
While gene duplicates clearly contribute significantly to

regulatory divergence, their exact contribution has been

suggested to depend on their origin. In small-scale dupli-

cations, where only one or a few genes are duplicated,

transcription factors and their target genes are usually not

duplicated together, resulting in immediate expression

divergence [57]. After whole-genome duplications, para-

logs (might) take longer to diversify, and studies have

shown that their contribution to regulatory divergence is

more pronounced and more prolonged [32�,48]. The

ancestor of the yeast S. cerevisiae underwent at least

one whole-genome duplication; and several studies have

shown that this event could have driven the evolution of

novel regulatory patterns through divergence of paralog

promoters. Key examples include the evolution of the

GAL regulatory network and the emergence of fast anaer-

obic growth [10,58]. Examples of the effect of trans
mutations also exist. The regulation of ribosomal gene

expression offers a key example of how whole-genome

duplication created two paralogs of an ancestral transcrip-

tion factor that subsequently diverged into an activator

and a repressor of ribosomal genes, respectively [34].

Conclusions
Rewiring and expansion of regulatory networks is crucial

throughout evolution since these events generate new

expression patterns and allow proper regulation of novel
Current Opinion in Biotechnology 2015, 34:180–188
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gene functions. Increasing evidence points to transpos-

able elements as an important source of DNA-binding

domains that can be recruited as transcription factors

and contribute to regulatory network evolution [59,60].

Additionally, transposable elements can provide new

regulatory sequences, thus introducing new regulatory

interactions [61–65].

Apart from this, the examples discussed in this review

clearly show that transcription factor duplication and

subsequent divergence can generate new patterns of gene

expression while avoiding negative pleiotropic effects

inevitably associated with changes in regulatory proteins

[43��,45��]. However, studies have shown that duplication

is not a prerequisite for a regulator to acquire a novel

function [25��,66]. Promiscuity (or bifunctionality) of the

transcription factor seems to play a major role in regula-

tory network evolution; with or without gene duplication.
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