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We study the classical single server queue and establish finite geometric moments and q moments 

of the cycle variables. Here q(x) = x”cp,(.x) where n is integer and ‘pO is concave. More generally, 

we consider systems with different initial conditions and prove moment and stochastic domination 

results for the delay variables. This, together with the general results of [5], yields ergodic results 

for the time and customer dependent processes. 

queue GI/G/ I * cycle and delay variables * time and customer dependent processes * regen- 

erative processes * ergodicity 

Introduction 

In [5], uniform rates of convergence are established for general regenerative 

processes under moment conditions on delay and recurrence times. These results 

can be applied to the GI/G/ 1 queuing system because of its regenerative properties. 

For the time dependent process the delay is the time of the first arrival to an idle 

system and the recurrence times are the successive busy cycle times; for the customer 

dependent process the delay is the number (in order of arrival) of the first customer 

hitting the system idle and a recurrence time is the total number of customers arriving 

during a busy cycle. It is now natural to ask under what initial conditions and under 

what conditions on the arrival and service mechanisms these delays and recurrence 

times have moments of some order. 

Our answer to this question is given in Theorem 1 and Corollary 1, and the 

resulting convergence results are stated in Theorem 2 (the time dependent process) 

and Theorem 3 (the customer dependent process). The proof of Theorem 1 is based 

on a result by Tweedie [8], an extension of the so-called Foster’s criterion. 

In Section 1 we establish notation and state results. In Section 2 and 3 we prepare 

for the proof of Theorem 1 and complete it in Section 4. In Section 5 we prove 

Theorem 2 and 3 and in Section 6 conclude with some remarks. 
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The results of the present paper are extended to the multi-server case in [6]. 

[7], similar methods are used to study the regenerative and ergodic properties 

the multi-server queue with nonstationary Poisson arrivals. 

In 

of 

1. Statement of results 

Consider a single server queuing system where customers arrive in the time-interval 

[O,U3)attimest,~t,~.‘. and line up to be served under the ‘first come, first served’ 

discipline. The epoch of the first arrival is ug== to and the inter-arrival times are 

u, = t,, - t, , , n 2 I, The arrivals are also described through the point process n( . ) 

defined by n(A) = the number of customers arriving in the time-set A. Let Q0 be 

the number of customers initiu~l~~ present in the system and ziO the residual service 

time of the customer being served at time 0. Let the ( QO- I)+ customers waiting for 

service at time 0 and the customers arriving in [0, a) have service times v,, v2,. . . . 

Assume that (v,)‘;, (u,)? are independent sequences of i.i.d. random variables and 

independent of ( Qo, vo, I+)) ; let (0, *%, P) be the underlying probability space and 

E denote expectation. 

Call the Markov process 2 = (Z,)EO,a), where Z, = (Q,, V,, U,), 

Q, = the number of customers present in the system at time t, 

V, = the residual service time of the customer being served at time t (= 0 if the 

server is idle at that time), 

U, = the time from t until the next arrival in [t, a;), 

(for convenience let t + Z, be left-continuous), the time dependent process and the 

Markov chain 2 = (&)F, where 

the customer dependent process. Observe that the customer dependent variable W, = 

the waiting time of the (n + 1)th customer arriving in [0, CO), is determined by 2”. 

Denote the transition function of Z by P, and the n-step transition probabilities of 

2 by r’,; both P, and F” are determined by the distributions of o, and u,. If A is 

the distribution of Z,, = (Q,,, vO, u”) then AP, is the distribution of Z,. Let x be the 

initial distribution of Z induced by A. 

Let S, be the (n f 1)th t such that Z, = (0, 0, 0). When the S,‘s are finite, define 

the delay variables by 

X,,= S, = the delay (=the delay of Z), 

IV,= n[O, S,) (= the delay of 2), 

7; = v0 + I . . + vy,,_, +Nt, = the busy delay, 

lo = X0 - T,, = the idle delay, 
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and, for n 2 1, the nth cycle variables by 

X, = S, -S,_, = the nth cycle (= the nth recurrence time of Z), 

N,, = n[S,_,, S,) (= the nth recurrence time of z), 

T,, =inf{t>O: Qs,,_,+,= 0) = the nth busy period, 

I,, = X,, - T, = the nth idle period, 

The functions $ : [0, OO]+ [0, CO] considered below are measurable, bounded on 

bounded intervals and $(oo) = co. Let 3 be defined by i(x) =I,” q(y) dy. Two 

functions IJJ and 0 are of the same order if 

0(r) 
limsup”<a. and lim;tpa<m; 

,+a e(t) 

for any nonnegative random variable Y this implies: E[$( Y)] <me E[0( Y)] -=c 00. 

We call E[I,!J( Y)] the $ moment of Y and say that Y has a finite geometric moment 

if there is a p > 1 such that E[pY]<co; we use analogous terminology for distribu- 

tions. 

Throughout the paper let rp be a function of the same order as x + x”cpO(x) where 

n is a nonnegative integer and ‘pO is concave, increasing and p,(O) = 0. If we define 

(P,, recursively by (P,, = &-,, n 2 1, then 9 is also of the same order as (P” (see Lemma 

1 (b)). 
For probability measures A, p on [0, eo)k let A cD t_~ mean that A (A) 2 p(A) for 

all sets of the form A = [0, y,] X. * . x [0, yk]. Also, if Y, and Y2 are two k-dimensional 

random variables with the distributions A and p respectively then Y, sD Yz means 

A SD p. Subsequently, A and p are two initial distributions of 2. Let A0 denote the 

marginal distribution of (Qo, vo) when the distribution of (Qo, vo, uo) is A. 

Theorem 1. Let (Qo, vo, uo) be distributed according to A. The following statements 

hold when E[v,]< E[u,]: 

(a) If Qo, v. and v, havefinite cp moments (geometric moments) then so have No 

and To. 

(b) U-u,, u, have finite cp moments (geometric moments) and Qo, v. have finite 
first moments-q3 moments if lim,,, cp (t)/t = O-then IO has finite cp moment 

(geometric moment). 

(c) VQo, vo, u. and v,, u, havejnite cp moments (geometric moments) then so 

has X,,. 

(d) If A0 sD pa then No sD - N where fi is ajnite random variable with distribution 

independent of A. If v, and the one-dimensional marginals of pa have finite cp moments 

(geometric moments) then so has &J. 

(e) IfA SD~ then X0 sD X where X is a finite random variable with distribution 

independent of A. If v,, u, and the one-dimensional marginals of p have finite cp 

moments (geometric moments) then so has X. 
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Corollary 1. The following statements hold provided E[v,]< E[u,]: 

(a) If v, has jinite cp moment (geometric moment) then so have N, and T,. 

(b) If u, hasjinite cp moment (geometric moment) then so has I,. 

(c) If v, and u, have$nite cp moments (geometric moments) then so has X,. 

Proof. Put Q. = 1 and let u,) and ug be independent with the same distributions as 

v, and u, respectively. Then the delay variables have the same distribution as the 

cycle variables and the corollary follows from Theorem l(a), (b) and (c). 0 

The difference of two probability measures is a signed measure with total mass 

0. For such signed measures v the total variation norm satisfies I/ ~11 = 2 supA v(A). 

Theorem 2. Suppose E[v,]< E[u,]<cc and there is an n such that u, +. . .+u, has 

a nonsingular distribution. Then Z has an invariant distribution r and: 

(uniform ergodicity) sup IIAP, - ~11 --f 0 as t + ~0; 
h . . c ~ 

(urnform ergodicity of geometric order) if v,, u, and the one-dimensional marginals 

of t_~ have jinite geometric moments then there exists a p > I ‘such that 

p’ sup IlAP,-rli+O a.st+uc; 
A- ‘)/l 

(untform ergodicity of order cp) if v,, u, havehnite (p moments and the one-dimensional 

marginals of t_~ have jinite q moments then 

(weak ergodicity of order cp) if v,, u, and the one-dimensional marginals of A and 

p havejinite cp moments then cp(t)llhP, -@II +O as t+a3. 

Theorem 3. Suppose E[v,]< E[u,]. Then 2 has an invariant distribution 6 and: 

(uniform ergodicity) supho_ 1),,11 Ilip,, - E(/ + 0 asn+cc; 

(uniform ergodicity of geometric order) tj’v, and the one-dimensional marginals oj 

~_LO have jinite geometric moments then there exists a p > I such that 

(uniform ergodicity of order cp) if v, hasjinite (p moment and the one-dimensional 

marginals of p0 havehnite cp moments then 

(weak ergodicity of order cp) if v, and the one-dimensional marginals of A0 and p” 

have,finite cp moments then q(n)l/ip,, -t.ipJ +O as n +M. 
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2. Lemmata 

Let V0 be the class of all concave nondecreasing Cc, with $(O) = 0; Go the class 

of all convex $ satisfying $(2x) s a+(x) for some a < ~0 and Cc, = e where e(O) = 0 

and e(x)Too as x+co; and A0 the class of increasing Cc, satisfying $3 2 and 

log $(x)/xJO as x + 00. 

Lemma 1. (a) Zf lim,,, cpO(x) = 03 fhen (Pi E Qpo for n 2 1. 

(b) (Pi andx+x n-5&(X), k = 0,. . . ) n, are of the same order. 

(c) Zf 4 E ?POu G+, then there is a c such that x + max{c, G(x)} is a member of A,. 

(d) If4 E A, then rL(x +Y) s (L(x)KY) for all x, YE LO, 00). 
(e) Z~I+!JE& then for each a~(O,co), +(x+a)/$(x)+ 1 as x-00. 

Proof. (a) For n 3 1, (P,, = (Pn-, where (p,_,(O) = 0 and (P+,(x)?co as x+ ~0. Further, 

observe that cpO~ W, implies (p,(2x) G 2p,(x) and the induction assumption 

cp,-,(~x)~~“(P,,_,(x) yields 

2x 

(Pn (2x)= I 
x 

R-,(Y) dy = &L,(~Y) dy s 2 I 2”s-l(y) dy 
0 0 

= 2n+‘43,(x). (2) 

(b) The cp,,‘s are nondecreasing and thus 

p,(x) s X&,(X) =s. . . s x”cpo(x) 

From (2) we obtain t.he third inequality in: 

x 

RI(x) a- 
r/2 

‘F.-,(y)dy+,-, 4 B($)“+‘x(P,_,(x)~. . ~ac,,x”(p,,(x), 
0 

for some c, > 0. This yields (b). 

(c) If Cc, E Q0 then (see e.g. [5, Reference [S]]) there exists a finite constant c such 

that x0(x)/$(x) < c, x E [0, 00); the same holds for $ E PO since then I+!J = e where 

f3 is non-increasing and thus +!J(x) 1 x0(x). Take x so large that log CL(x) 3 c. Then 

x0(x)/$(x) <log CL(x) which is equivalent to 

Hence log(max{c, I,!I(x)})/x decreases as x-, co and the limit must be 0 since 

log $(2”)/2” S log a”$( 1)/2” -+ 0 as n + co. Choose c 2 2 to obtain the desired result. 
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(d) and (e) Take x > 0 ((d) holds for x = 0 since $ z 2). Then log S(t)/ t nonin- 

creasing in t renders 

1% G,(x +y) -log G(x) 

= log rcl(x +Y) ( _ 
x+Y 

1% ‘b(x) x +log 4(x +y) y 
x > X-tY 

<log ax -tY) 

x+Y 
Y 

clog !b(Y), implying (d), 

JO as x+m, implying (e). 0 

Lemma 2. Let M, Y,, Y2, . . . be independent nonnegative random variables, Y,, Y2, 

. . . i.i.d. and M integer valued. 

(a) If M and Y, havefinite (P” moments where n 3 1 (geometric moments) then so 

has CE, Y,. 

(b) If cp0(x)=$(8(x)) where I& OE ?PO and E[$(M)]<a, E[B(Y,)]<a then 

E[%(C,M=, Yt)l<- 

Proof. (a) It is no restriction to consider cp( x) = x”cp,( x) instead of (P,,, due to Lemma 

l(b). Suppose M and Y, have finite cp moments. Then E[ Yy] and E[ YBcp,( Y,)]G 

some finite a for all (Y = 0, . . . , n and Minkowski’s inequality gives E[(Cr=, Y)“]s 

ak”. This together with formula (4.3) in [l] yields, for a large enough, 

EM.;, 41 
~k”acpO(ak)+nak”~‘aka~cp(k)(a2+na3/cp,,(1)). 

Hence 

~(a”+na’/cp,(l))E[cp(M)]~oo. 

Let pO, p, > 1 and suppose E[py] <CD, E[~?]<co. Put e(x) = p; and take p, 

sufficiently close to 1 for I?[$( Y,)]s p0 to hold. Then 

and thus 
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(b) Suppose E[$(iVf)]<c~ and E[0(Y,)]<co. If $, 0~ P0 then 

Replacing k by M and taking expectations yields the desired result. q 

Lemma 3. Let Y0 and Y, be nonnegative random variables. Zf t) E 9, u Qi, and Y,, 

Y, havejnite $ moments (geometric moments) then so has YO+ Y,. 

Proof. Suppose YO, Y, have finite $ moments. If $ E !P, then E[$( YO+ Y,)]s 

E[rj( YO)] + E[$( Y,)] < 00. If 4 E Q0 then the Orlicz norm 

(an extension of the La-norm, see the appendix of [3]) is finite if and only if 

E[$( YO)] < 00. Thus E[$( Y0 + Y,)] < 00 because 

IIYo+Y~II,~IIY,lI,+llY~ll,~~. 

For the geometric moment result, apply Holder’s inequality to get 

E[& yo+yI]G JE[p ‘“]JE[p yI]. 17 

3. Random walk on (-a, 00) with negative drift 

Let (R,): be a Markov chain on a state space (E, %‘). Let E, denote expectation 

when R0 = x. For A E 8 define ra by 

Let g be a nonnegative measurable function on E. In [8, Section 31, we find the 

following powerful result (the (a)-part is the so called Foster’s criterion in the more 

general setting). 

Theorem 4. (a) If; for some E > 0, 

Exk(R,)I~ g(x) - E, x E A’, 

then 

EJT,JG~(x)/E, XEA=. 

(b) If g(x) 2 1 for x E A and, for some E > 0, 

ExMR,)I~ Cl- E)g(x), x E A”, 
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then 

(c) Ler I/I,: [0, W) + [0, 0~) be increasing. Jf 

then 

E.Jg(R,)I~ g(x) - E[IC1(rAl, x~ A’> 

E,[$(~+,)]~g(x), XE A’. 

Now let (R,):’ be a random walk on (-CO, ~0) with negative drift, i.e. R, = Cy=,, Y, 

where Y,, Yz, . are i.i.d. random variables, independent of Y, and E[ Y:] < E[ YJ. 

The following lemma slightly improves Proposition 1 in [8] by removing the condition 

that E[ Yi] < 0~. 

Lemma 4. Suppose $E&,, E[Y:$(Y;)l<~ and 

3c<co: E,[~(T,_,~,,,]~c~(x) forxlarge. 

Then (3) holds with 9 replaced by 4. 

(3) 

Proof. By Lemma l(e), we can for each a, F > 0 take b sufficiently large for 

$(~+a)~(1 +a)$(~), 4(x-a)a(l-E)+(X), xsb. 

Since I+IJ is increasing we have 

~(x+y)~lJ(x)+$(x+y)y, XSQ,pZ-a. 

Thus, with Y0 = x 3 b b a and Y = max{ Y,, -a}, we obtain 

~(R;)~~(x+Y)s~(x)++(x+Y)Y 

~d(x)+cL(x+Y,)Y,l(.,,.)+~(x+a)Y,1(”=,,,., 

+t(x-a)Y,1{+,,,<.“) 

~ccl(x)+ccl(x)~(Y,)Y,li.,;~,,+Icl(x)(l +e)Y!1{0S.,G,) 

+44x)(1 -e)YIl{-..~ v,~-o~ (4) 

where 1 n(y) = 1 or 0 according as y E A or y E A. Take S > 0 and let 8 and F be 

close enough to 0 and a sufficiently large for 

E[(l+F)Y,l~“<v,~..~+(l-F)Y,1~..,,v,_0,]~-2s, 

E[Y:$( Y:)l~.,,,+ 6, 

to hold. Then take expectations in (4) and apply (3) to obtain 

EJ$(R:)I~ q(x) -W(x) c q(x) -f E,[+(r~-&l, x 2 b, 
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for b large enough. An application of Theorem 4(c) now yields the second step in 

EJ~&o,o~H = K+d~(~~(-rn,~+)l~; i(x +b), x 3 0, 

the first being obvious. That (3) holds with Cc, replaced by (L follows from this and 

cc;(x + b) = 6(b) + 
I 

X 

44~ +b) dy G 6(b) ++(b)&(x) 
0 

~(1 +$(b))&(x), xsbb, 

where the second step is due to Lemma l(d). 0 

Theorem 5. Zf Yt and Y: havejnite cp moments (geometric moments) then so has 

q -00.0). 

Proof. It is no restriction to take (D = (Pi. Since _E?,[c~,(~~_,,~,)] is increasing in x we 

obtain the rp moment result if we can establish that (3) holds with CF, = cp,. We prove 

this by induction. 

Take a, E > 0 such that E[ Y] = --F where Y = max{ Y,, -a}. Then 

E,[R:]cE[x+Y]=x-&, xaa, 

and Theorem 4(a) yields the inequality in 

(5) 

An application of Jensen’s inequality yields 

and thus (3) holds with $ = cpo. 

Now suppose E[cp,( Y:)]<co where n 2 1. Then E[ Y:(P~( Y;)]< CO for k = 

0 . . > n - 1, due to Lemma l(b). Thus, by Lemma 4 and Lemma l(a) and (c), (3) 

holds with $ = PO,+, . if it holds for $ = (Pk, and the induction is completed. 

In order to prove the geometric moment result, take p > 1 close enough to 1 for 

E[ Y:p “;I < co, take b E (0, log p] and put Y = max{ Y,, -a} where a is large enough 

for E[ Y] < 0. Since limblo Y ebY = Y and Y ebY < Y:py:, we can by dominated 

convergence take b sufficiently close to 0 for E[ Y ebY] = -e/b where E > 0. Hence, 

for x 2 a, 

Ex[ebR;]c E[eb(x+Y)]s ebx( 1 + bE[ Y ebY]) = eb”( 1 - F) 

and Theorem 4(b) yields the existence of a po> 1 and a c < ~0 such that 

E,[p,‘c--.o)] = E,+,[p,‘c-m.o)] < c e b(x+a) = c eba ebx, x > 0. 

Taking b sufficiently close to 0 for E[ebs]<w completes the proof. 0 
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4. Proof of Theorem 1 

Proposition 1. There exists a D/G/ 1 system (i.e. a single server queuing system with 

deterministic arrival times t^, = nd; denote the service times 6, and the number of 

customers initially present 6,J with busy delay ‘?O such that T,, s fO. Further, suppose 

E[v,]< E[u,]. Then E[u^,]< d and &, Co, 6, have cp moments (geometric moments) 

provided Qo, u,,, v, have such moments. 

Proof. We use the following domination technique: Let (tl,): be increasing, n'( ) 

the associated counting process and Th the busy delay obtained by replacing (t,): 

by (tbl ; if n'( . ) dominates n( . ), i.e. n’[O, t]z n[O, t] for all t 2 0, then it is easily 

seen that T,,c T& 

For a measure p on [O,co) put 0+((A) = t_~( t +A), AE B[O, E). Fix a d >O. 

Dominate n( . ) by the zero-delayed process n,( .) = ~9,~,n(. ) and then dominate no(. ) 

by clumping together the arrivals in [0, d) to one arrival epoch, 0. Then we have a 

group of M, = n(,[O, d) customers arriving at time 0 while the arrivals in [d, a:) are 

described by n,,([d, ~0) n. 1. Dominate n,,([d, ~0) n .) by the d-delayed process n,( . ) = 
0 ,,V,,.,,nO([d, a) n .) and observe that Bdn,(. ) is independent of M,, and has the same 

distribution as no( . ). Dominate n,( . ) by clumping together the arrivals in [d, 2d) 

to one arrival epoch, d. Then we have groups of M, and M, = B,,n,[O, d ) customers 

arriving at 0 and d, respectively, while the arrivals in [2d, ~0) are described by 

n,([2d, CC) n .). Dominate n,([2d, CC) n .) by the 2d-delayed process n,( .) = 

e lZf(,. 14, _2dnl([2d, m) n ) etc. Proceed in this way to obtain an arrival process with 

groups containing M,, M,, Mz, . customers arriving at 0, d, 2d, 

The M,‘s are i.i.d. with the same distribution as B,,,n[O, d). This arrival process 

dominates n( ) and thus T,s T;,. 

Define the D/G/ 1 system as follows: put QO= I, &,=C~~,’ v, and regard the 

group arriving at nd as one individual with service time 

_ 
&,I 

= ?’ 
vQ,,-, +I%,,,& -.+M,, , to n 20. 

,= I 

This does not affect the busy delay, i.e. f,, = T;, and thus T,,s f”. 

Suppose E[v,]< E[u,]. Then the elementary renewal theorem allows us to take 

d large enough for (l/d)E[B,,,n[O,d]]< l/E[v,] to hold. Hence E[v^,]= 

E[v,]E[M,]< d. Also, M,,= 8,(,n[O, d) has finite geometric moment (and thus cp 

moment) and an application of Lemma 2(a) renders the moment results for 5,. 

Finally, I$ has the desired moment properties, since C?!l’ v, has these properties, 

due to Lemma 2 (when applying Lemma 2(b) put IF, = cpO and 0(x) = x, and observe 

that E[v,]< E[u,] implies E[v,]<co), and since Go= u,~+C~J~’ v, (apply Lemma 

3). 0 

Proof of Theorem 1. Let vi, vi, . . be i.i.d., distributed as v, and independent of 

(Qo, uo, uo ), (v,) ;‘, (u,,)T. For convenience, we let the Q0 customers initially present 
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have the service times uO, u{, . . . , v&, and those arriving in [0, co) the service times 

u,, v2, . . ; this does not affect the distribution of the delay variables. We only prove 

the cp moment results since those for the geometric moments are established in the 

same way. Take cp = (P,,. 

(a) Apply the results of the preceding section. Put 

Yk = 
uo+u; +. . . + ?&lo-, - uo, k = 0, 

vk - uk, kz 1, 

and observe that E[Y,]=E[v,]-E[u,]<O, E[cp(Y:)]~E[cp(v,)]<co, E[cp( Y,‘)]G 

E[cp(v,+u{ +* . . +uo,-,)]<a (see the end of the proof of Proposition 1) and 

No = T( -c0,0). Thus Theorem 5 gives E[cp(N,)]<~, and Proposition I yields 

E[rp( T,)] < CO if we can prove that this holds when r, = nd, n 2 0. But then T, s X0 = 

dNo, and (a) is established. 

(b) Clearly lot uo+suplGirNo u, and (b) is established if we can prove 

Ercp(suP,MN,, ui)]<co (apply Lemma 3). When cp = (o. we have 

= ~o(E[u,lE~~o~ Yol) s cpo 
) 

; 

the first inequality is due to Jensen, the first equality follows from the independence 

of Ui and (Yo, l{N+; ,), and the final inequality is due to (5). Take expectations to 

obtain E[cp,( lo)] < ~0. When cp = (Pi, where n 2 1, we have 

= If E[dui)lP(J’J 03 i> = E[cp(u,)lE[~ol<? 
i=l 

where E[N,]<co due to (a) and the condition that Qo, zlo have finite first moments. 

(c) By (a) we have that E[cp(T,)]<oo and by (b) that E[cp(l,)]<oo. Hence (c) 

follows from X0 = To + Z, and Lemma 3. 

(d) Let (0, 0) be governed by p”. Since A’ <” p” implies A’([O, xl’) 2 p’([O, xl’) 

we obtain max{ Qo, uo} sD max{Q, 17) = r (say). Thus we may assume that 

max{Qo, uo} and Y are defined on the same probability space in such a way that 

max{ Qo, u,,} G Y, cf. [4, Satz 1.2.11. Further, Construction 1.1 in [5] allows us to 

assume that Qo, vo, u. and r are defined on the same probability space in such a 

way that Qos y and Y,G c Finally, we may take ( Qo, uo, uo, p) independent of 

(G?, (%I);“, (U”)$. 
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Now replace ( QO, uO, uO) by ([Y], Y, 0) and let N be the new N,. Since N = ?c-r,O, = 

inf{ n Z= 0: I?, < 0}, where l?, = Y + vi +. . . + vi v,_, +I :=, Y,, and since l?, 2 R,, we 

get N = ?( -r,?.oj 2 T, -W,oj = No. The distribution of N is determined by ~_LO and the 

distributions of u,, U, and thus does not depend on A. If 0, V have finite cp moments 

then E[cp( Y)]s E[cp(Q)]+E[cp(fi)]<~~ and (a) yields E[cp(N)]<m provided 

-qcp(h)l<cQ 
(e) Let (0, 6, U) be governed by CL. Proceed as in the proof of (d) but now put 

Y = max{ 0, 6, U} and use A <I’ p to obtain uO< Y in addition to Q,,s Y and uoc Y. 

Put X= -7‘+f where 

and 

- - 
Then X,, = T, + I,] s ? + 7 = X. The distribution of ( T, I), and thus that of X, does 

not depend on A. If 0, 6, U have finite 9 moments then E[cp( Y)]G 

E[cp(Q)]+E[cp(fi)]+E[cp(ii)]<~. Thus (a) implies that E[cp(T)]<m (provided 

E[cp(v,)] <co) and computations similar to those in the proof of(b) yield E[cp( f)]< 

00 (provided E[q(u,)]<co). An application of Lemma 3 completes the proof. q 

5. Proof of Theorem 2 and 3 

Proof of Theorem 3. The condition E[u,] < E[u,] implies P( N, = 1) = P( U, > v,) > 0; 

thus the recurrence distribution of .? is aperiodic. Combining Theorem 1 (d), Corol- 

lary l(a) and [5, Corollary 1.2(a’), (b’) and (c’)] yields the results on uniform 

ergodicity, and combining Theorem l(a), Corollary l(a), and [5, Theorem 1.4(c)] 

yields the result on weak ergodicity. 0 

Proposition 2. Consider the zero-delayed system (i.e. Q. = ug = u0 = 0) and suppose 

there is an n such that t, = u, +. . . + u, has a nonsingular distribution. Then so has 

X, provided P(u,<v,)>O and P(u,>v,)>O. IfP(ul<v,)=O then X,+...+X, 

has a nonsingular distribution. When P(u, > v,) = 0 we have P(X, = cc) = 1. 

Proof. Suppose P( u, < v,) > 0 and P( u, > v,) > 0. Then there exist x0, x,, y,,, y, 

satisfying x0 < yo, x, > y, and such that the sub-probability measures p,,, p,, v,), V, 
defined by 

~,(B)=P(u,tB,x,~u,sx,+F) and 

v,(B)=P(v,EB,y,~v,~y,+F), i=O, l,BE%[O,co), 

have a strictly positive mass for each E > 0. Let p be defined by 

~(B)=P(r,~B,x~t,~x+e), BES[O,~), 
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where x is chosen so that p has a nontrivial absolutely 

F > 0. Take an integer m such that 

mx,+x<myo 

and let k be the smallest integer satisfying 

mx,+x+kx, > mJl,+(n +k)y,. 

Then choosing E sufficiently close to 0 we have 

x, = nl +’ ’ ’ +%,+,+k = &,z+n+k 

on 

97 

continuous part for each 

Hence, for each BE LB[O, CO), 

P(X, E B) z P({X, E B} n A) 

=(~o[Y",Yo+~l)m(~l[Y,,Y, +m+"(Pux" + P * PLTk)(% 

so P(X, E * ) has an absolutely continuous component because CL has such. 

WhenP(u,<u,)=OwehaveX,+~~~+X,=u,+~~~+u,on{ui>ui;i=l,...,n} 

and the desired result follows easily. The final statement is obvious. 0 

Proof of Theorem 2. The condition E[u,] < E[u,] implies P( U, > u,) > 0 and combin- 

ing Proposition 2 (when P( U, < v,) = 0 consider (S,,,)~==, instead of (Sk):), Theorem 

I(e), Corollary l(c), and [5, Corollary l.l(a’), (b’) and (c’)] yields the results on 

uniform ergodicity while combining Proposition 2, Theorem l(c), Corollary I(c), 

and [5, Theorem 1.3(c)] yields the result on weak ergodicity. 0 

6. Remarks 

Remark 1 (Random measures). Theorems 2 and 3 are not the only consequences 

of Theorem 1. For example, let n be the point process defined by 77 (A) = the number 

of customers leaving the system in the time-set A, see [5, Example 1.31. Then [5, 

Section I.61 yields 

P,(t) sup II 1 
&[ql-- 

A=sil)@ E[u,] z L,,uI,+o /I as t+co 
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and 

provided U, +. - . + u, has a nonsingular distribution for some n, E[v,] < E[u,] < ~0, 

U, and u, have finite (P~+~ moments (geometric moments) and the one-dimensional 

marginals of p have finite (P,,+, moments (geometric moments). Here Eh[n] is the 

intensity measure of 7 when ( Qo, uo, q,) is governed by A, I= Lebesgue measure 

and II . ll~,,~, = total variation norm for signed measures on [t, a). For uniform 

convergence of means (such as E[Q,]), see [5, Remark 1.61. 

Remark 2 (Weak ergodicity). Suppose P( S, < 00) = 1 or, equivalently, P( IV,, < m) = 

1, for n ~0. Then 

and, provided there exists an n such that u, +. . + u, has a nonsingular distribution, 

IlAP,-I*P,ll+O, ~-,~, 

see [5, Remark 1.41. The condition P(S, < ~0) = P( N, <a) = 1 is satisfied if and 

only if I’:=, (I/ n)P( R, < 0) = co, see [2, X11.7, Theorem 21. Sufficient conditions 

are E[v,]< E[u,], or E[v,]= E[u,]<co, see [2, X11.2, Theorem 21. When E[v,]= 

E[u,]=co it is easily seen that ur <I’ u, is sufficient. 

Remark 3 (On $ E .I,,). Tweedie conjectures in [S] at the end of Section 5 that 

E[$( Y:)]< a3 implies E,[$(T~-x_.,,,)]<~ for t/j E 11,. This does not hold, however. 

To see this, suppose it were true. Put Y0 = x = 0 and let E[$( Y;)]<co. Observe 

that (CR,): is a random walk with increments cY,,, n 2 1, and that T(_~,,J,) = 

inf{n 20: CR, CO} for all CE (0, cc). Thus E[&(l/c(cY:))]= E[&( Y:)]<m implies 

E[&(( I/c)T,_ “,)I < CD for all c t (0,~). Now suppose P( Y, > -a) = I for some 

LIE (O,co).Then Y:< UT,_ x,o,implying E[$(cY:)]<coforall CE (O,c~).Thiscannot 

be true in general since 1,t0 contains functions of the same order as x --, exB where 

p E (0, I). Our conjecture is: If $ E n,, and E[$( Y;)] < ~0 then there exists an E > 0 

such that E[IJJ( ET, _K,,o,)] <c a. 

I would like to thank S&en Asmussen for useful comments. 
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