
A
CD

Surgery for Acquired Cardiovascular Disease Kçbbert et al
Transgenic model of cardiac rhabdomyosarcoma
formation
Christiane Kçbbert, PhD,a,b Christa Mçllmann,a,b Michael Sch�fers, MD,c Sven Hermann, MD,c Hideo A. Baba, MD,d

Andreas Hoffmeier, MD,e G�nter Breithardt, MD,a,b Hans H. Scheld, MD,e Gabriele Weissen–Plenz, PhD,a,b,e and
J�rgen R. Sindermann, MDa,b,e
From the Departments of Cardiology and

Angiology,a Nuclear Medicine,c and Tho-

racic and Cardiovascular Surgery,e Hospital

of the University of Münster, Münster, Ger-

many; the Leibniz Institute for Arterioscle-

rosis Research,b the University of Münster,

Münster, Germany; the Institute of Patholo-

gy,d Hospital of the University of Duisburg-

Essen, Essen, Germany.

This work has been supported in part by an

‘‘Innovative Medical Research’’ grant of

the University of Münster.

Received for publication Dec 16, 2007;

revisions received Feb 18, 2008; accepted

for publication April 20, 2008.

Address for reprints: Jürgen R. Sindermann,

MD, Department of Thoracic and Cardio-

vascular Surgery, Hospital of the University

of Münster, Albert-Schweitzer-Strasse 33,

48149 Münster, Germany (E-mail: sinderm@

uni-muenster.de).

J Thorac Cardiovasc Surg 2008;136:1178-

86

0022-5223/$34.00

Copyright � 2008 by The American Asso-

ciation for Thoracic Surgery

doi:10.1016/j.jtcvs.2008.04.022
1178 The Journal of Thoracic and Card
Objectives: Cardiac rhabdomyosarcomas are rare, and the pathogenesis of this detri-

mental disease is widely unknown. Most data are obtained from case reports or small

series, and models for systematic pathogenetic studies are lacking. We aimed to estab-

lish a transgenic mouse model of cardiac rhabdomyosarcoma formation.

Methods: Standard techniques were used to construct a minigene comprised of the 50

region of the 1.4-kb SM22a gene (expressed in embryonic cardiac muscle) and the

2.7-kb SV40 T antigen early region. This T antigen fragment includes the coding se-

quences for the binding sites of p53 and the proteins of the pRb family. Genotyping of

transgenic mice was performed by means of polymerase chain reaction, and pheno-

typic expression was evaluated by means of immunohistochemistry.

Results: Transgenic mice were studied at the age of approximately 8 to 12 weeks. Car-

diac tumors were found of variable size in the left or right sides of the heart and were

associated with T antigen expression. Histologic analysis revealed a 3.1-fold en-

hanced cell density, enlarged cell nuclei, and a 3.4-fold enhanced DNA content. Phe-

notypic characterization of cardiac tumors resulted in positive staining for desmin,

smooth muscle a-actin, troponin C, and Myo D1, which met the criteria for rhabdo-

myosarcomas.

Conclusions: To the best of our knowledge, the present study is the first description of

a mouse model of cardiac rhabdomyosarcoma formation based on genetic modula-

tion. Our model will be a valuable tool for illuminating the pathogenesis of cardiac

rhabdomyosarcomas and will allow the testing of new therapeutic approaches to fight

this dreadful disease.

C
ardiac sarcomas are rare, and the pathogenesis of this disease is only incom-

pletely understood. In the past, most data have been obtained from postmor-

tem examination of single cases or small series. Cardiac sarcomas comprise

a variety of histologic entities among which angiosarcoma, rhabdomyosarcoma, me-

sothelioma, and fibrosarcoma are most commonly found. Rhabdomyosarcomas make

up 21% of the primary neoplasms of the heart and are the second most common in

adults.1 This detrimental disease is primarily found in middle-aged patients and is

characterized by a poor prognosis with a mean survival time of a few months. Pivotal

understanding of the pathogenesis of sarcoma formation has been derived from stud-

ies on extracardiac sarcomas, which gave rise to specific testing of genetic transloca-

tions.2,3 However, pathologic specification of sarcoma is still a matter of histologic

evaluation.

The pathogenesis of cardiac sarcoma formation is only incompletely understood.

Case reports have presented cytogenetic data showing a complex caryotype of cardiac

sarcoma.3-6 In some angiosarcomas mutations of p53 have been found, and this high-

lighted the pathogenetic role of this oncogene.6-9 Furthermore, mutations of K-ras

have been shown for some cardiac angiosarcomas and rhabdomyosarcomas.9 Further

evidence for the causative role of the p53 pathway during cardiac sarcoma formation
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FDG 5 18F-Fluordeoxyglucose

PET 5 positron emission tomography

TAg 5 tumor antigen

was provided by mouse studies on exposure to 1,3-butadiene,

resulting in mutations of K-ras and p53.7 However, animal

models providing insight into the pathogenesis of cardiac sar-

comas, such as angiosarcomas or rhabdomyosarcomas, are

lacking.

Tissue-targeted expression of the SV40 tumor antigen

(TAg) in transgenic mice has been used to create specific

models of proliferative disorders and malignant disease by

inducing an inactivation of cell cycle–negative regulators,

such as p5310 and the proteins of the pRb family.11-13 Based

on this, TAg as a viral oncoprotein has also been a focus of

interest in mechanistic studies on the pathogenesis of tumors.

Former studies on the cardiac expression of TAg under the

control of the atrial natriuretic factor promoter brought up

a model of atrial tumors featuring several cardiac-specific

characteristics and an adult cardiac phenotype.14,15 Further

studies were performed by expressing TAg under control

of the a or b myosin heavy chain promoter, resulting in hy-

perplasia in cardiac cells or cardiac myopathies.16,17 This

suggested an approach using the targeted expression of

TAg under control of the 50 sequence of the SM22a gene.

SM22a is a calponin-related, calcium-binding protein that

is known for its specificity for adult smooth muscle. In addi-

tion, it is also expressed, although only transiently, in embry-

onic cardiac muscle.18,19 Studies on mice have shown that

SM22a transcripts were first expressed in vascular smooth

muscle at about embryonic day 9.5 and thereafter continued

to be expressed in all smooth muscle cells into adulthood. In

addition, SM22a was expressed transiently and very early in

the heart between embryonic days 8.0 and 12.5 and in skele-

tal muscle in the myotomal compartment of the somites

between embryonic days 9.5 and 12.5.18 Our approach of

SM22a-targeted TAg expression gave rise to a new trans-

genic mouse model developing tumors featuring characteris-

tics of cardiac rhabdomyosarcomas, thereby establishing, to

the best of our knowledge, the first model of cardiac rhabdo-

myosarcoma formation based on genetic modulation.

Materials and Methods
Molecular Constructs
Standard techniques were used to construct a minigene comprised

of the 1.4-kb fragment of the SM22a promoter region, as published

recently,19 and the wild-type SV40 TAg early region. The TAg

DNA sequence was 2.7 kb long (BglI/BamHI fragment), starting

at the origin of DNA replication 80 nucleotides upstream from

the start codon and including the endogenous TAg splice site.

The exact DNA sequence and amino acid sequence of the TAg early
The Journal of Thora
region have been published.20 This TAg fragment includes the

coding sequences for the binding sites of p53 (residues 350–450

and 532–625) and the proteins of the pRb family (residues 105–

114).21,22 Orientations of fragments were confirmed by means of

restriction digestion and DNA sequencing. Transcripts originating

from the SM22a promoter will thus target expression of TAg in

the mice.

Generation of Transgenic Mice
Transgenic mice were generated in a FVB/N background by using

standard techniques for microinjecting purified insert DNA into

zygotes. The investigation conforms with the ‘‘Guide for the care

and use of laboratory animals’’ published by the US National Insti-

tutes of Health and the German Law on the Care and Use of Labora-

tory Animals and was approved by the local institutional review

board. Pups derived from the microinjected embryos were screened

for the presence of the transgene by means of polymerase chain reac-

tion amplification with primers located in the TAg gene. Internal con-

trol primers included in each reaction were sense and antisense to 2

regions of the murine connexin43 gene selected so as to amplify

a readily distinguishable DNA fragment. Reaction products were

analyzed by means of electrophoresis on a 1.5% agarose gel and de-

tected by means of ethidium bromide staining. Transgene expression

was tested in every transgenic mouse by using immunohistochemis-

try. For all analyses performed on transgenic mice, age-matched

wild-type mice of the same genetic background were used as control

animals.

Histology, Immunohistochemistry, and Morphometry
Tissues were dehydrated through various concentrations of ethanol

and embedded in paraffin by using standard methods. Sections were

rehydrated and visualized with Verhoeff–van Gieson stain and he-

matoxylin and eosin stain, respectively. For immunohistochemistry,

tissues were blocked with phosphate-buffered saline containing bo-

vine serum albumin and treated with 2% H2O2 to inactivate endog-

enous peroxidases. Antigen retrieval was performed at 97�C for 40

minutes in citrate buffer (Dako, Carpinteria, Calif). Staining for

TAg used a monoclonal antibody (diluted 1:200) specifically react-

ing with the COOH-terminal end of TAg (Clone PAb 101; Phar-

Mingen, San Diego, Calif). a-Smooth muscle actin was stained

with a mouse monoclonal antibody diluted 1:1500 (Clone 1A4;

Sigma, St Louis, Mo). Desmin monoclonal antibody (clone D33,

Dako) and troponin polyclonal antibody C-19 (Santa Cruz Biotech-

nology, Santa Cruz, Calif) were used at a dilution of 1:50 and 1:100,

respectively. Myo D1 antibody (Clone 5.8 A, Dako) was used at

a dilution of 1:50. Proliferative cell nuclear antigen was analyzed

by using a mouse monoclonal antibody diluted 1:50 (Clone PC

10, Dako). Primary antibodies were labeled with streptavidin–

horseradish peroxidase kits (Dako), and color development was

performed with diaminobenzidine (Sigma). Sections were briefly

counterstained with hematoxylin for the visualization of all nuclei.

Negative controls were included that were treated identically but re-

ceived no primary antibody to evaluate specific immunohistochem-

ical staining.

DNA content of cells was evaluated by using Feulgen staining

with standard methods, and automated DNA cytometric measure-

ments were performed with CYDOK software (Hilgers, Königswin-

ter, Germany). Morphometric analysis was performed by measuring
cic and Cardiovascular Surgery c Volume 136, Number 5 1179
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Figure 1. Panel A shows comparative displays of the heart of an approximately 12-week-old mouse and an age-
matched control animal. The heart of the transgenic animal presents a giant tumor formation in the left ventricle,
which is associated with an overtly enlarged right and left atrium. Panel B shows a cross-section of the same trans-
genic heart (arrow) stained with hematoxylin and eosin. The heart was cut at the ventricular level below the heart
basis. The spherical tumor occupies about 55% of the cross-sectional luminal area of the left ventricle. Panel C dis-
plays tumor tissue and adjacent regular cardiac muscle of the same specimen stained with hematoxylin and eosin.
A small blood-filled area is surrounded by the tumor tissue on one side and regular cardiac muscle on the other side.
The tumor infiltrates between struts of regular cardiac muscle. Tissues were prepared as described in the Methods
section. Bars: A, 5 mm; B, 1 mm; C, 100 mm.
the circumference of the external and internal elastic lamina of 3

cross-sections of the descending thoracic aorta for each animal.

Areas were calculated from circumference measurements, assuming

a circular structure under in vivo conditions. Age-matched mice of

the same genetic background (siblings) were used as control ani-

mals. Cellular cross-sectional density was determined by counting

area-defined representative microscopic fields and relating the cell

number to the areas for transgenic animals and age-matched control

animals.

Positron Emission Tomography
Positron emission tomography (PET) was performed by using the

32-module quadHIDAC scanner (Oxford Positron Systems,

Weston-on-the-Green, United Kingdom) dedicated to small-animal

imaging to evaluate the detection of cardiac tumors and its signal in-

tensity in relation to the cardiac walls. The scanner has an effective

resolution of 0.7 mm full width at half maximum (FWHM) in the

transaxial and axial directions when using an iterative resolution re-

covery reconstruction algorithm.23 Animals were anesthetized with

isoflurane (1.5%) and placed on a heating pad to maintain a body

temperature within the normal range. 18F-Fluordeoxyglucose

(FDG; 10 MBq) in 100 mL of 0.9% saline was injected intravenously

1 hour before each scan. PET list mode data were acquired for 15

minutes and subsequently reconstructed into a single-image volume

with a voxel size of 0.4 3 0.4 3 0.4 mm3. From the 3-dimensional

volume data, transverse slices through the whole body and reor-

iented slices through the heart in the short axis, horizontal long

axis, and vertical long axis were generated.

Statistical Analysis
Data are presented as means 6 standard deviation. Statistical signif-

icance was assessed by using the Student’s t test for independent

samples.
1180 The Journal of Thoracic and Cardiovascular Surgery c No
Results
General Phenotypic Characteristics of Transgenic
Mice
Microinjection of purified insert DNA into zygotes resulted

in the generation of 3 independent founders (male and fe-

male). One founder lacked phenotypic transgene expression,

one founder failed to generate a mouse line because of em-

bryonic or newborn death of offspring, and one male founder

gave rise to a transgenic mouse line featuring transgene ex-

pression. Offspring mice of this latter line were included in

this study at the age of approximately 8 to 12 weeks. Trans-

gene expression was found in both male and female mice and

was found in smooth muscle tissue of the vessels, the gastro-

intestinal tract, and the genitourinary tract. Ten mice were

screened for cardiac tumor formation, which was found in

8 hearts, as explained below. Age matched wild-type siblings

were used as control animals. Transgenic mice were indistin-

guishable from control animals in terms of size and body

weight.

Cardiac Phenotype
Cardiac tumors were found in 8 transgenic mice. These tu-

mors were of variable size in the left or right side of the heart.

In contrast, wild-type control siblings lacked tumor forma-

tion. Figure 1 depicts the heart of an approximately 12-

week-old mouse showing a large tumor in the left ventricle,

which, because of hemodynamic compromise, might have

caused an enlargement of both atria (Figure 1, A). Figure 1,

B, displays a cross-section of the same heart showing the

large tumor of the left ventricle (Figure 1, C, reveals a higher
vember 2008
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Figure 2. High-resolution positron emission to-
mographic (PET) scan 1 hour after injection of
10 MBq of 2-[18F]fluoro-2-deoxy-D-glucose (FDG)
of the transgenic mouse displayed in Figure 1
and an age-matched control animal. Left panel,
Whole-body slice through the heart; right panel,
short axis (SA), horizontal long axis (HLA), and
vertical long axis (VLA) of the heart. Images dis-
play enhanced myocardial glucose uptake in the
enlarged atria and the right ventricle of the trans-
genic mouse compared with normal glucose up-
take in the control mouse. The left ventricular
tumor (arrows) displays a positive FDG-PET
signal. However, this signal is relatively low com-
pared with the strong FDG uptake in the myocar-
dium of mice.
magnification). This giant spherical tumor occupied about

55% of the cross-sectional luminal area of the left ventricle.

The finding of hemodynamic compromise was further evi-

denced by means of molecular imaging with high-resolution

(FWHM ,1 mm) PET scanning with FDG from the same

transgenic mouse, featuring an enlargement of both atria
The Journal of Thora
and of the right ventricle. In the same mouse the tumor was

clearly visible, although the FDG uptake was relatively low

compared with the strong signal usually observed in mice

(Figure 2). Histology of cardiac tumors showed a consider-

ably enhanced cell density (Figure 3) and enlarged cell nu-

clei. The average increase in cell density of cardiac tumors
Figure 3. Histologic displays of a left
ventricular tumor. The tumor of an ap-
proximately 9-week-old transgenic
mouse is based at the transition be-
tween the wall and the interventricular
septum. Panels A through C depict he-
matoxylin and eosin staining in various
magnifications to illustrate the micro-
scopic characteristics of the tumor.
Panel D displays immunohistochemical
staining for TAg (brown nuclei), which
is expressed in the tumor but not in
the adjacent regular cardiac muscle
(TAg antibody Clone PAb 101; Phar-
Mingen, San Diego, Calif; color
development was performed with dia-
minobenzidine and hematoxylin coun-
terstain). Bars: A, 600 mm; B, 120 mm;
C and D, 30 mm.
cic and Cardiovascular Surgery c Volume 136, Number 5 1181
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Figure 4. Immunohistochemical stain-
ing of a left ventricular tumor of an ap-
proximately 9-week old transgenic
mouse. Staining was performed as ex-
plained in the Methods section. The tu-
mor revealed positive staining for
smooth muscle a-actin (A), desmin (B),
and troponin C (C) and positive staining
of single nuclei for Myo D1 (D). In addi-
tion, panel E displays immunohisto-
chemical staining for proliferative cell
nuclear antigen. Panel F shows a nega-
tive control receiving a secondary
antibody but no primary antibody. Color
development was performed with dia-
minobenzidine and hematoxylin coun-
terstaining. Bar : 50 mm.
was 3.1-fold compared with the regular heart muscle of con-

trol animals (n 5 8, P , .01). Immunohistochemistry re-

vealed the presence of TAg in the cardiac tumors but not

in the adjacent regular cardiac muscle, as shown in Figure 3,

D. Further immunohistochemical analyses of cardiac tumors

resulted in positive staining for desmin, smooth muscle a

actin, troponin C, and Myo D1 (Figure 4), which met the

criteria for rhabdomyosarcomas. The tumors were character-

ized by a high proliferative activity, as judged by staining for

proliferative cell nuclear antigen (Figure 4, E). In addition,

we analyzed the DNA content of 5 representative cardiac tu-

mors (n 5 5 mice) and found that cardiac tumors showed

a mean 3.4-fold increased DNA content compared with the

regular cardiac muscle of the same transgenic mice. This in-

crease was significant (P , .01), whereas the DNA content

of regular cardiac muscle of transgenic mice was indistin-

guishable from that of wild-type control animals (data not

shown).
1182 The Journal of Thoracic and Cardiovascular Surgery c No
Noncardiac Transgene Expression
In addition to cardiac expression, the transgenic mice (ap-

proximately 8–12 weeks of age) also featured transgene ex-

pression in smooth muscle tissues, such as arterial vessels,

gastrointestinal organs, and genitourinary organs. An over-

view of smooth muscle expression is shown in Figure 5. In

contrast, no transgene expression was found in skeletal mus-

cle. As shown in Figure 5, A, arterial vessels featured patchy

transgene expression, resulting in areas of enhanced cell den-

sity rather than solid tumor formation, as shown above for

cardiac tumors. However, despite localized TAg expression

in arterial vessel walls featuring localized enhanced cell den-

sity and localized proliferative cell nuclear antigen expres-

sion, there was no obstruction or stenosis of the vessels.

There was no significant increase in mean aortic wall area,

but there was a trend toward an increase in aortic luminal

area. The values of the mean cross-sectional wall area of

the thoracic aorta were 7.74 3 104 6 1.98 3 104 mm2 versus
vember 2008
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Figure 5. Immunohistochemical stain-
ing for TAg in various smooth muscle–
containing tissues of transgenic mice
at the age of approximately 9 to 11
weeks. Panel A displays positive TAg
staining and increased cellular density,
especially in the inner lamellar unit of
the thoracic aorta. TAg expression is
also shown for the common carotid ar-
tery (B). In addition, TAg expression is
also displayed for the smooth muscle
of the colon (C), urinary bladder (D),
and uterus (E). Panel F shows a negative
control (urinary bladder) specimen that
received a secondary antibody but no
primary antibody. Color development
was performed with diaminobenzidine
and hematoxylin counterstaining. Bar :
50 mm.
6.55 3 104 6 0.89 3 104 mm2 for control animals (n 5 8).

The values for the luminal area were 30.19 3 104 6 12.59

3 104 mm2 versus 20.88 3 104 6 3.24 3 104 mm2, respec-

tively (n 5 8, P 5 .08). In one case of an approximately

12-week-old mouse, we found beginning neointima forma-

tion in the thoracic aorta (data not shown). Transgene expres-

sion was also found in the gastrointestinal tract and the

genitourinary tract (urinary bladder and uterus), as shown

in Figure 5, C through E. It appeared that impairment of

bowel function caused by enhanced smooth muscle prolifer-

ation was a relevant cause of death in these animals. By eval-

uating the cell density in areas of transgene expression, we

found significant increases in cellular density of TAg-ex-

pressing tissue sections compared with levels in wild-type

control animals (Figure 6). However, the increases in cell

density for the aorta, colon, and bladder were not as pro-

nounced as those found for the cardiac tumors. In conjunction

with these findings, the fraction of TAg-expressing cells in
The Journal of Thora
vascular, gastrointestinal, and genitourinary tissues was sig-

nificantly lower than that found for heart tumors, which aver-

aged a fraction of 51.46% 6 11.90% (P , .05), as shown in

Figure 7.

Discussion
Tumors of the heart are relatively rare. Although first patho-

anatomic descriptions date back to Columbus and Zollicoffe-

rus in 1559 and 1685 and in vivo diagnosis of primary tumors

of the heart was first described in 1934, relatively little is

known about the pathogenetic background of this detrimental

disease. Most data are based on case reports or small retro-

spective series.24-29 However, reports on the pathogenesis

of cardiac rhabdomyosarcoma formation have been rather

descriptive, and systematic pathogenetic studies are lacking.

To illuminate the pathophysiology of the most frequent ma-

lignant tumors of the heart, the sarcomas, we aimed to establish
cic and Cardiovascular Surgery c Volume 136, Number 5 1183
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a transgenic mouse model of cardiac rhabdomyosarcoma

formation. The availability of such an animal model will be

of utmost relevance because it will allow serial testing of path-

ophysiologic and therapeutic approaches and offers the oppor-

tunity to transfer experience from single cases to standardized

conditions. This would change the basis of research on cardiac

rhabdomyosarcomas from single case reports or small obser-

vational series to a systematic approach using an animal model

to study, for example, cytogenetics or new therapeutic ap-

proaches comprising adjuvant chemotherapy or immunother-

apy. To the best of our knowledge, this is the first model of

cardiac sarcoma based on genetic modulation. The lack of

such a model and the overall rarity of this disease in human

subjects make our model a valuable tool for investigations in

this field. Other studies have used a toxicologic approach by

performing chronic exposure to 1,3-butadiene as a multisite

carcinogen to induce cardiac hemangiosarcoma in mice.7

Very early studies included a case report of a cardiac rhabdo-

myosarcoma in a 95-week-old CD1 strain mouse, which is

most likely to be interpreted as a combined age and strain ef-

fect.30 The present model was designed to inactivate tumor

suppressors in the heart, such as p53 and proteins of the pRb

family,10-13 which are targeted through the SM22a promoter,

known to be activated in the embryonic murine heart.18 The

approach of modulating tumor suppressors, such as p53, is

in conjunction with case reports indicating a causative role

Figure 6. Quantitative analysis of the cellular density of the heart,
colon, urinary bladder, and thoracic aorta of transgenic mice and
control animals. Cell nuclei of cross-sections were visualized
with hematoxylin. Cellular cross-sectional density was deter-
mined by counting area-defined representative microscopic fields
and relating the cell number to the areas for transgenic animals (n
5 8; bladder, n 5 7) and age-matched control animals (n 5 8). Cel-
lular density was most pronounced in the cardiac tumors and was
significantly higher than in the regular heart tissue of the same
transgenic mice (nontumor cardiac tissue) and significantly
higher than the cellular density of the hearts of control animals.
Data are presented as means 6 standard deviation.
1184 The Journal of Thoracic and Cardiovascular Surgery c N
of this protein in sarcoma formation.6,8,9 Targeted expression

of TAg in the heart has already been used in earlier studies with

other promoters.14-17 Transgenic mice expressing atrial natri-

uretic factor–TAg fusion genes had right atrial tumors com-

posed of differentiated dividing cardiomyocytes.14 However,

studies using other promoters (atrial natriuretic factor and my-

osin heavy chain) did not result in the development of cardiac

rhabdomyosarcomas (personal communication with Loren J.

Field),17 indicating that the promoter-specific and time

frame–dependent transgene expression might be critical for

the development of sarcomas.

The established role of TAg is the inactivation of tumor

suppressors, such as p53 and proteins of the pRb family.10-13

This suggests that such a mechanism might play a causative

role in the development of cardiac rhabdomyosarcomas in

our model. However, the development of solid tumor forma-

tion might, at least in part, be dependent on a certain (embry-

onic) time frame of promoter-targeted inactivation of tumor

suppressors, taking into account that studies have shown

the earliest expression of SM22a transcripts in cardiac mus-

cle.18 This hypothesis is supported by the finding that TAg-

targeted proteins, such as p53 and p107, are both expressed

at relatively high levels in embryonic cardiomyocytes.31 It

might be discussed for the present model that this setting

Figure 7. Quantitative analysis of the fraction of TAg-positive
cells in the heart tumors (n 5 8), colon (n 5 8), urinary bladder
(n 5 7), uterus (n 5 7), and thoracic aorta (n 5 8) of transgenic
mice. TAg was detected by means of immunohistochemistry
with antibody Clone PAb 101 (PharMingen, San Diego, Calif), as
described in the Methods section. Color development was per-
formed with diaminobenzidine. Hematoxylin counterstaining
was used for the visualization of all cell nuclei. Fractions of
TAg-positive cells were determined by counting area-defined rep-
resentative microscopic fields. Data are presented as means 6
standard deviation. The fraction of TAg-positive cells in the heart
tumors was significantly higher than the fraction of TAg-positive
cells in other tissues studied (P < .05).
ovember 2008
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favored the development of a malignant cardiac cell clone the

uncontrolled growth of which was perpetuated into adult-

hood independently of the later promoter function. In con-

trast, expression of TAg in smooth muscle did not result in

obstructing tumor formation at the age studied but rather

caused the development of enhanced smooth muscle cell den-

sity respecting the anatomic borders, such as arterial lamellar

units or the bowel walls. The latter (bowel) finding is essen-

tially comparable with our earlier studies in which TAg was

expressed under the control of a smooth muscle myosin

heavy chain promoter.32,33

The present model of SM22a-targeted TAg expression fea-

tured the most intense transgene expression in cardiac tumors,

as evidenced by the fraction of TAg-positive cell nuclei. In

conjunction, the cardiac tumors presented the highest cell den-

sity. Immunohistochemistry revealed the cardiac tumors to

stain positive for smooth muscle a-actin, troponin C, desmin,

and, in a fraction of cells, Myo D1, which met the criteria for

cardiac rhabdomyosarcoma.1,24,34,35 In the present model the

integrity of the expressed transgene was confirmed by means

of immunohistochemical staining from an antibody recogniz-

ing the COOH-terminal end of TAg. In addition, transgene

expression was found to be in line with the promoter func-

tion.18 These circumstances actually strengthen the conclusion

that our findings were attributable to the transgene rather than

any secondary factors, such as the disruption of a naturally

existing gene or other integration site-specific effects.

Our model will give rise to further studies on the patho-

genesis of cardiac rhabdomyosarcoma formation and will

pave the way for studying diagnostic and therapeutic options.

As an example, recent studies on rhabdomyosarcoma have

opened the in vivo use of dasatinib, an inhibitor of src kinase

activity, and the blocking of leukemia inhibitory factor.36,37

Our model will be an important tool for testing such sub-

stances as upcoming therapies for the treatment of cardiac

rhabdomyosarcomas. To the best of our knowledge, the pres-

ent study is the first description of a transgenic mouse model

of cardiac rhabdomyosarcoma formation and thus will allow

new insights into the pathogenesis and therapeutic targets of

this detrimental disease.
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