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P-Glycoprotein (P-gp, ABCB1) plays a significant role in determining the ADMET properties of drugs and
drug candidates. Substrates of P-gp are not only subject to multidrug resistance (MDR) in tumor therapy,
they are also associated with poor pharmacokinetic profiles. In contrast, inhibitors of P-gp have been
advocated as modulators of MDR. However, due to the polyspecificity of P-gp, knowledge on the molec-
ular basis of ligand–transporter interaction is still poor, which renders the prediction of whether a com-
pound is a P-gp substrate/non-substrate or an inhibitor/non-inhibitor quite challenging. In the present
investigation, we used a set of fingerprints representing the presence/absence of various functional
groups for machine learning based classification of a set of 484 substrates/non-substrates and a set of
1935 inhibitors/non-inhibitors. Best models were obtained using a combination of a wrapper subset eval-
uator (WSE) with random forest (RF), kappa nearest neighbor (kNN) and support vector machine (SVM),
showing accuracies >70%. Best P-gp substrate models were further validated with three sets of external P-
gp substrate sources, which include Drug Bank (n = 134), TP Search (n = 90) and a set compiled from lit-
erature (n = 76). Association rule analysis explores the various structural feature requirements for P-gp
substrates and inhibitors.

� 2012 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

More than 600 ABC transporters are expressed in all living
organisms, with 48 ABC genes having been reported in humans.
Among these, ABCB1 (P-glycoprotein or P-gp) has been shown to
effect the efflux of a large variety of xenobiotics out of cells using
ATP hydrolysis as energy source.1–3 P-gp is characterized by a
broad and polyspecific ligand recognition pattern, translocating
structurally diverse molecules such as amino acids, xenobiotics
(drugs/toxins), natural products (glycosides, alkaloids, etc.), lipids,
steroids, across cellular membranes.4 This seems to be a genuine
defense mechanism against toxins, which for example leads to
multi-drug resistance (MDR) in tumor therapy.5–7 Thus, inhibitors
of ABCB1 have been tested in clinical trials as potential resensitiz-
ers of drug resistant tumor cells. However, due to the inherent con-
tribution to the ADMET (absorption, distribution, metabolism,
excretion, and toxicity) properties of P-gp substrates, knowledge
about the substrate/non-substrate properties of drug candidates
is even more important.8–10 Thus, it has been urged by the FDA
(food and drug administration) that every new molecular entity
(NME) should be routinely checked whether it shows an interac-
tion with P-glycoprotein or not.11–13
x: +43 1 4277 9551.
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Thus, in the process of lead optimization, early identification of
P-gp ligands, being either substrates or inhibitors, is of utmost
importance to improve the ADMET profile of drug candidates. To
support this, a considerable number of ligand- and structure-based
computational models have been developed.14 These include QSAR
studies,15 pharmacophore modeling,16,17 machine learning ap-
proaches18–20 and docking into homology models.21 However,
due to the lack of high quality data, training and test sets are nor-
mally quite small, which limits the general applicability of the
models derived.

In the present study, we developed classification models from a
set of 484 substrates/non-substrate and a set of 1935 inhibitors/
non-inhibitors using machine learning methods and a set of
in-house generated functional-groups-based fingerprints. Subse-
quently, we have explored the possibility to trace back the impor-
tance of certain functional groups for substrate/inhibitor
properties using the FP-growth algorithm.

2. Results and discussion

2.1. Classification models for substrates and non-substrates

As described in the methods section, the data sets of substrates
and inhibitors were separated into a training and a test set using
the D-optimal onion design (DOOD). The number of compounds
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Table 1
Number of compounds in the training and test set for inhibitor and substrate models

Models Training set Test set Sum

P+a P� b P+ a P� b

Substrate 142 140 101 101 484
Inhibitor 881 387 399 268 1935

a P+: substrate or inhibitor.
b P�: non-substrate or non-inhibitor.
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selected as training and test sets for substrate and inhibitor models
is provided in Table 1. Initially, the data set was characterized by
principal component analysis (PCA) using a set of physicochemical
properties (a list of properties used for PCA is provided in Supple-
mentary data T1). As outlined in the scores plot (Fig. 1), both data
sets are evenly distributed in the chemical space. The first two
principal components explain 75% of the variance in the data set.
Interestingly, no distinct outlier or cluster was identified in the
scores plot. Only a few compounds were slightly outside (right side
of the score plot) from the main chemical space. An inspection of
these compounds revealed that the majority of them are substrates
taken from the Szakács data set, such as bryamycin (NSC170365)
and actinomycin (NSC237671) (the chemical structure of selected
outliers is provided in Supplementary data, Fig.1). In addition,
the distribution of substrates and non-substrates in the data set
was significantly different, for example, substrates spread through-
out the score plot, whereas the majority of the non-substrates are
located in the left side of the plot, where the predicted water
solubility property (LogS) calculated with MOE22 dominates the re-
gion. This observation indicates that P-gp non-substrates are
relatively polar compared to substrates. In addition to PCA charac-
terization, logP distribution for substrates and non-substrates was
performed. The results revealed that substrates have relatively
Figure 1. Scoring plot of the first two principal components for
high logP values (>5) compared to non-substrates (a distribution
plot is provided in Supplementary data, Fig. 2).

Classification models for 484 substrates/non-substrates were
built using a set of 13 bins, which were selected from WSE (wrap-
per subset evaluator) as implemented in the WEKA data mining
software. A summary of the performance of the models is provided
in Table 2. In general, the models developed with random forest
and kappa nearest neighbor were reasonably good in predicting
the test set (accuracy 67–70%), with random forest performing
slightly better (MCC 0.41 vs 0.34 for kappa nearest neighbor; G-
mean (0.66/0.70). Using the whole data set for establishing the
model and performing a 10-fold cross validation slightly improves
the validation parameters with an overall accuracy of 75%, an MCC
of 0.49, and sensitivity and specificity of 74% and 76%, respectively.
In the present study, we used standard (default) WEKA parameters
for all methods, including the SVM method. From the SVM method,
a polykernel, that is linear kernel was used; this polykernel per-
forms better compared to the Gaussian kernel, which shows
slightly poorer results compared to the linear kernel. In particular,
prediction of inhibitors (accuracy = 47%) is lower than that of non-
inhibitors (accuracy = 76%).

Despite having a validated model for classifying compounds
into substrates and non-substrates, it would be very interesting
to trace back which functional groups are prevalent in substrates
and non-substrates. This information is of high value when it
comes to designing in (e.g., preventing compounds from entering
the brain) or designing out (anticancer agents, CNS active agents)
substrate properties in a certain lead series. Figure 2A shows a fre-
quency count of bins present in the final model. The main differ-
ence between substrates and non-substrates is observed in the
presence of hydroxyl groups (secondary alcohols, in particular)
and tertiary aliphatic amines. Based on this analysis, substrates
show a lower probability of having hydroxyl groups in the mole-
cule, than non-substrates. This observation fits well with the
substrates and non-substrates in the training and test set.



Figure 2. Frequency distribution of functional groups for substrate (A) and inhibitor (B) models. (For inhibitor frequency plot, the functional groups, which have frequency
<5% are not shown for clarity).
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current view on P-gp substrates, which are of relatively hydropho-
bic nature, so that they are able to access the hydrophobic binding
site via the membrane bilayer.23 Additionally, the data matrix was
analyzed using an association rule algorithm such as FPGrowth.
Although in total 26 rules could be identified, none of them was
significant (data not shown). Therefore, we extended the analysis
to the original fingerprints comprising 112 bins. This identified
386 rules, whereby 35% of the compounds (>35%) follow at least
one of the following associations:

Rule 1 SUB = 1, Ether (123/243) ? Aromatic compound (111/
243)
Rule 2 SUB = 1, Amine (123/243) ? Aromatic compound (115/
234)
Rule 3 SUB = 1, Heterocyclic, ether (102/243) ? Aromatic com-
pound (96/243)

To exemplify rule 1, out of 243 substrates, 123 compounds bear
an ether oxygen, with 111 compounds also having an aromatic
group. However, as already mentioned before, these associations
are by far too general to support designing in/designing out sub-
strates properties.
Table 2
Accuracies of the models for substrates and non-substrate using supervised classifiers

Data set Methods Confusion matrix

TP FN TN FP

10-Folda kNN 188 55 167 74
SVM 152 91 159 82
RF 179 64 182 59

Test set kNN 75 26 60 41
SVM 67 43 57 44
RF 73 28 69 32

The bold letters indicate the best performing model.
Abbreviations: kNN, kappa nearest neighbor; SVM, support vector machine; RF, random fo
Matthews correlation coefficient.

a Whole data set was used for 10-fold cross validation.
The models developed were further validated by applying them
to known P-gp substrates/non-substrates extracted from publicly
available data sources. For this, we considered three data sources:
TP search (www.tp-search.jp), Drug Bank (www.drugbank.ca) and
compounds taken from literature.18 Duplicates and overlapping
compounds were removed from the respective data sets. Unfortu-
nately, for TP search and drug bank only information on substrates
was available. The overall prediction accuracy for substrates from
TP search and Drug Bank was rather poor, with a correct classifica-
tion rate (sensitivity) of 42% and 62% in TP search and drug bank,
respectively (Table 3). For the literature compounds (n = 76) com-
piled by Zhi Wang et al.,18 the correct classification rate for sub-
strates (51%) was quite similar (Table 3). However, the specificity
of the model was slightly better (78%), leading to an overall accu-
racy of 59%. The main reason for this might be that the external
compounds do not share a lot of substructures with the training
set (Fig. 3C (substrate) and Fig. 3D (non-substrate)). This was fur-
ther confirmed with applicability domain experiments using WSE
bins with three different applicability domain methods, such as
Euclidian distance, probability density and Ranges, using the Ambit
Discovery tool (http://ambit.sourceforge.net). The results indicate
that more than 40 compounds of the external dataset are outside
Sensitivity Specificity G-mean MCC Accuracy

0.77 0.69 0.73 0.47 0.73
0.63 0.66 0.64 0.29 0.64
0.74 0.76 0.75 0.49 0.75
0.74 0.59 0.66 0.34 0.67
0.61 0.56 0.59 0.17 0.59
0.72 0.68 0.70 0.41 0.70

rest; TP, true positive; FN, false negative; TN, true negative; FP, false positive; MCC,

http://www.tp-search.jp
http://www.drugbank.ca
http://ambit.sourceforge.net


Table 3
Performance of the substrate prediction model for external test sets; A: TP search, B: Drug Bank, C: Wang et al.

Data set Compounds Sensitivity Specificity Overall accuracy

SVM KNN RF SVM KNN RF SVM KNN RF

Aa 90 13 14 42 — — — — — —
Ba 134 30 64 62 — — — — — —
C 76 28 25 51 91 91 78 47 45 59

The bold letters indicate the best performing model.
a Only substrates are available.

Figure 3. Analysis of the external test sets: (a) scoring plot of the first two principal components, (b) scoring plot of the first two principal components for the external test
sets (TP search, Drug Bank, literature compounds), (c) comparison of functional group frequency (bins) for substrates between different data source, (d) comparison of
functional group frequency (bins) for non-substrates between different data sources.
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of the applicability domain of the model, which in part explains the
poor prediction of external compounds. Furthermore, as shown by
a PCA plot generated with standard physicochemical properties
(list provided in Supplementary data T1), the chemical space of
substrates of the external sources was quite similar to that for
non-substrates of the training set ( Fig. 3A,B). A PCA plot using
the WSE bins as descriptors shows an analogous picture and is pro-
vided in Supplementary data (Fig. 3).



Table 4
Accuracies of the models for inhibitor/non-inhibitor using supervised classifiers

Models Methods Confusion matrix Sensitivity Specificity G-mean MCC Accuracy

TP FN TN FP

10-Folda kNN 1153 127 378 277 0.90 0.58 0.72 0.51 0.79
SVM 1153 127 307 348 0.90 0.47 0.65 0.42 0.75
RF 1148 132 426 229 0.90 0.65 0.76 0.57 0.81

Test set kNN 345 54 142 126 0.86 0.53 0.68 0.42 0.73
SVM 345 54 129 139 0.86 0.48 0.65 0.38 0.71
RF 334 65 168 100 0.84 0.63 0.72 0.48 0.75

The bold letters indicate the best performing model.
Abbreviations: kNN, kappa nearest neighbor; SVM, support vector machine; RF, random forest; TP, true positive; FN, false negative; TN, true negative; FP, false positive; MCC,
Matthews correlation coefficient.

a Whole data set was used for 10-fold cross validation.
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2.2. Classification models for inhibitors and non-inhibitors

As described in the methods section, classification models for P-
gp inhibitors and non-inhibitors were developed utilizing a set of
1935 compounds using 26 WSE bins (Table 4). In general, all ob-
tained models were able to correctly predict more than 80% of
the inhibitors with an overall prediction accuracy of >70% for the
test set. However, the models generally suffer from high false-po-
sitive rates, which leads to poor performance with respect to cor-
rect prediction of inactive compounds. Among the three
classification methods used, RF works significantly better than
the other methods. The RF model correctly classified 334/399
inhibitors (sensitivity: 84%) and 168/268 non-inhibitors (specific-
ity: 63%) from the test set, giving an overall accuracy and G-mean
of 0.75 and 0.72, respectively. As shown in Figure 2B, there was a
significant difference in the fingerprints of inhibitors and non-
inhibitors. Phenols (18%), primary amines (11%) and carboxylic
acids (14%) were quite prevalent in non-inhibitors compared to
inhibitors. Moreover, tertiary aliphatic amine and alkylaryl ether
groups were significantly more present in inhibitors (59% and
51%) compared to non-inhibitors (31% and 28%).

In addition to the classification models, association rule learn-
ing was performed with the WSE derived fingerprints and with
the full-length fingerprints (provided as Supplementary data).
Using WSE-based bins (n = 26), ten rules were found, whereby
three were found to be non redundant (i.e., tertiary amine and sec-
ondary amine in the same rule was considered as redundant).

Rule 4 INH = 1, Tertiary amine (749/1280) ? Aromatic com-
pound (745/1280)
Rule 5 INH = 1, Alkylaryl ether (659/1280) ? Aromatic com-
pound (659/1280)
Rule 6 INH = 1, Amine, Heterocyclic (810/1280) ? Aromatic
compound (806/1280)

From rule 4 it can be deduced that the majority of inhibitors
(66%) contain a tertiary amine group together with an aromatic
moiety. The confidence of this rule is 0.99, which means that, when
an aromatic moiety is present, in 99% of the cases the compound
also contains a tertiary amine and is annotated as inhibitor. When
association rule learning was used for the whole fingerprints, in to-
tal 317 rules were found (provided as Supplementary data). To re-
duce the number of rules before analyzing them, we only
considered those rules, which cover more than 55% of the data
set. This resulted in a set of 37 rules, with three being significant.

Rule 7 INH = 1, Ether (770/1280) ? aromatic compound (759/
1280)
Rule 8 INH = 1, Heterocyclic compound (1045/1280) ? aro-
matic compound
(1017/1280)
Rule 9 INH = 1, Tertiary aliphatic amine, Tertiary amine (748/
1302), Amine (749/1280) ? Aromatic compounds (745/1280)

These rules quite nicely match our current knowledge on the
basic pharmacophoric features for P-gp inhibitors, demonstrating
that the majority of inhibitors contain aromatic moieties, heterocy-
cles, alkylaryl ethers, tertiary amines and tertiary aliphatic amines
(Fig. 4). These observations further strengthen the current notion of
P-gp inhibitors of being hydrophobic (at least one aromatic ring),
cationic, basic nitrogen atoms, tertiary amine, with at least two
hydrogen bond acceptors.24

3. Conclusions

In the present study, kappa nearest neighbor (kNN), random
forest (RF) and support vector machine (SVM) were applied to a
set of 484 P-gp substrates/non-substrates and a set of 1935 P-gp
inhibitors/non-inhibitors using functional groups based finger-
prints. Models that were built for substrate/non-substrate and
inhibitor/non-inhibitor classification based on the random forest
method perform better than those derived using kappa nearest
neighbor or support vector machines. The random forest model
correctly predicts 70% of substrates/non-substrates and 75% of
inhibitors/non-inhibitors in the test set. In addition to the classifi-
cation models, frequency of functional group based bins present in
substrate and inhibitor models were counted, and the results indi-
cate that the majority of non-substrates contain hydroxyl groups
when compared to substrates. This indicates that molecules that
are more hydrophobic are likely to act as substrates. This has been
further verified from by a frequent pattern (FP) growth algorithm,
which derived a set of rules for substrates. The majority of sub-
strates (>40%) consist of an aromatic system, an ether moiety,
and amine groups.

Similar rules have been derived for inhibitors, that is com-
pounds that contain alkylaryl ethers, aromatic amines, and tertiary
aliphatic amine groups are likely to be P-gp inhibitors. These fea-
tures are in agreement with various previously reported QSAR
models of P-gp substrates and inhibitors. Models and rules derived
from this study could assist in identifying whether a compound
might show an interaction with P-glycoprotein or not in an early
phase of the drug development process. Furthermore, the approach
of association rule analysis will also aid in a deeper understanding
of the molecular basis of compound/transporter interaction.

4. Computational materials and methods

4.1. Preparation of substrate and inhibitor data sets

A set of 257 P-gp substrates and non-substrates was compiled
from various literature sources. In addition, a set of 227 com-
pounds was extracted from a data set published by Szakács



Figure 4. Selected P-glycoprotein inhibitors; atoms are marked according to association rules for inhibitors. ether: arrow, tertiary amine: dotted circle.
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et al.25 In brief, Szakács et al. correlated the mRNA levels of a given
ABC transporter in the 60 cancer cell lines of the NCI60 screen with
the toxicity of a given compound in these 60 cell lines. A negative
correlation of these two parameters over the whole panel of tumor
cells (i.e., the higher the expression rate of the transporter, the
lower the toxicity of the compound) indicates that this compound
is a substrate of the respective transporter. Detailed analysis of the
individual compounds suggested a Pearson correlation coefficient
(PCC) of �0.3 as a valuable threshold. Compounds with PCC values
between�0.02 and +0.02 are considered to be ABCB1 non-substrates.
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These two data sets (n = 484) were merged in order to broaden the
chemical space of the models.

For P-gp inhibitors, a data set of 1935 compounds was compiled
from Chen et al. and Broccatelli et al.26,27 In brief, Broccatelli et al.
created a data set of 1275 compounds from more than 60 literature
references, as well as from the ChEMBL and WOMBAT databases.
The thresholds’ values for inhibitors and non-inhibitors were as-
signed based on the IC50 values and the percentage of inhibition
as corroborate by Rautio et al.28 While compounds with an
IC50 � 15 lM, and >25–30% of inhibition were considered as inhib-
itors, compounds possessing an IC50 values of �100 lM and <10–
12% of inhibition were considered as non-inhibitors. The data set
of Chen et al. was created from various literature sources using
MDRR (multi-drug-resistance ratio) values measured in adriamy-
cin-resistant P388 murine leukemia cells. Compounds were classi-
fied as inhibitors and non-inhibitors depending on their MDRR
value, whereby values higher than 0.5 were assigned to inhibitors,
compounds with values lower or equal to 0.4 were annotated as
non-inhibitors.

For fingerprints calculation, the substrate data set of 484
compounds and the inhibitor data set of 1935 compounds were
preprocessed. First, CORINA29 was used to convert 2D structures into
3D structures. Subsequently, molecules were imported into the MOE
modeling software (Chemical Computing Group, version 2010.10)30

for energy minimization using the MMFF94x force field. Both data
sets are available as sdf-files in Supplementary data and via our
homepage (pharminfo.univie.ac.at).

4.2. Fingerprints calculation

Functional groups based fingerprints were calculated for both
sets of compounds (i.e., substrates and inhibitors) using the soft-
ware package checkmol,31 which extracts >200 functional groups
(a list of functional groups used in the study can be found at the
checkmol/matchmol homepage, (http://merian.pch.univie.ac.at/
~nhaider/cheminf/cmmm.html) and creates a binary fingerprint
for all compounds. Zero variance bins were removed before the
classification, as they do not contain any relevant information for
model building.
Figure 5. Schematic representation of the principle of t
4.3. Selection of training and test sets

The data sets of substrates and inhibitors were separated into a
training and a test set using D-optimal onion design (DOOD).
DOOD is a multivariate method, used for selecting training and test
sets of reasonable size, which are representative for the chemical
property space defined by the molecular structures.32,33 SIMCA-P
10.5 and MODDE 7.034 were used for PCA and DOOD, respectively.

4.4. Machine learning methods

In the present study, we used support vector machine (SVM),
random forest (RF) and kappa nearest neighbor (kNN) as classifiers.
The WEKA (v3.6.5) data mining software35 was used for classifica-
tion. These methods have been commonly used for classification of
compounds with respect to their ADMET properties. Theory and
applications of these methods can be found elsewhere.36 In addi-
tion to these classification methods, we have also explored associ-
ation rule learning to extract the relations between the variables
and to identify frequent pattern rules. This idea was introduced
by Agarwal et al. in 1993,37 and since then many derivatives of
the algorithm have been developed, for example, Apriori, Eclat,
and FPGrowth. In the present study, we used the FPGrowth (Fre-
quent Pattern Growth) algorithm as implemented in the WEKA
(version 3.6.5) software.35 A classical example for an association
rule is the customers shopping in a supermarket.

½X� ! ½Y� ð1Þ

where X and Y refers to item sets or variables. An association rule
consists of transactions and item sets:

[potatoes, onions] ? [milk]
If the customer buys potatoes and onions, he/she likely also

buys milk. These rules can be assessed using various statistical
terms, for example, support (fraction of transactions that contains
both X and Y) and confidence (measures how often items in Y ap-
pear in transactions that contain X). The FPGrowth algorithm tries
to find frequent item sets based on the principle frequent pattern
tree (FP-Tree) or ‘divide and conquer’ approach. FPGrowth works
in two steps; (1) It constructs the FP tree from the data set (e.g.,
he frequent pattern growth algorithm (FPGrowth).

http://pharminfo.univie.ac.at
http://merian.pch.univie.ac.at/~nhaider/cheminf/cmmm.html
http://merian.pch.univie.ac.at/~nhaider/cheminf/cmmm.html
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compounds and their fingerprints, as shown in Fig. 5), (2) It
extracts the frequent item sets from the FP-tree.

4.5. Attribute selection and model evaluation

Best attributes for the models were selected based on a super-
vised attribute selection method called wrapper subset evaluator
(WSE). This evaluator initially selects a subset of attributes, subse-
quently induces the machine-learning algorithm (e.g., random for-
est) to the selected subset and evaluates the resulting models
(based on the overall accuracy or kappa statistic. This process is
continued until the subset has high accuracy. All classification
models were evaluated on basis of Matthews correlation coeffi-
cient (MCC, Eq. 2), G-mean (Eq. 3) and overall accuracy (Eq. 4) of
the test set and n-fold cross validation of the whole data set.
MCC is a measure for the quality of a model, and it returns a value
between �1 and +1. MCC value 0 means average or random predic-
tion, �1 is worst prediction, and +1 is perfect prediction. An MCC
value above 0.4 is considered to be predictive in binary classifica-
tion.38 Accuracy is the proportion of correctly predicted positive
and negative classes (Eq. 4). G-mean is the geometric mean of sen-
sitivity and specificity. G-mean provides a measure for the overall
performance of a model and is used to check balanced prediction of
each of two classes (Eq. 3).

MCC ¼ ðTP� TNÞ � ðFP� FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ð2Þ

G�Mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSensitivity� SpecificityÞ

q
ð3Þ

Accuracy ¼ ðTPþ TNÞ
TPþ FPþ FNþ TN

ð4Þ

where, TP: true positive, TN: true negative, FP: false positive, FN:
false negative, sensitivity: (TP/TP+FN), specificity: (TN/TN+FP).

All classification models were further validated by 10-fold cross
validation. Attributes selection and n-fold cross validation were
carried out as implemented in the WEKA software.35
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