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Collective cell migration in epithelial tissues resembles fluid-like behavior in time-lapse recordings. In the last
years, hydrodynamic velocity fields in living matter have been studied intensely. The emergent properties
were remarkably similar to phenomena known from active soft matter systems. Here, we review migration ex-
periments of large cellular ensembles as well as of mesoscopic cohorts in micro-structured environments. Con-
cepts such as diffusion, velocity correlations, swirl strength and polarization are metrics to quantify the cellular
dynamics both in experiments as well as in computational simulations. We discuss challenges relating collective
migration to single cell and oligocellular behavior as well as linking the phenotypic parameters to the underlying
cytoskeleton dynamics and signaling networks. This article is part of a Special Issue entitled: Mechanobiology.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Duringmanyphysiologically relevant processes such asmorphogen-
esis, wound healing and cancer invasion, cells migrate collectively in
tightly connected groups. Epithelial cells are a prominent example of
cells preferring not to migrate on their own. Instead, they are linked to
their neighbors via various junctions, forming sheets, ducts, clusters or
strands depending on the particular biological context they reside in
[1–4]. Despite this, they still maintain the capability of remodeling
their relative positions with time.

In this respect, the malleable epithelial cell sheets resemble two-
dimensional complex fluids, which consist of interacting units that are
not permanently linked and hence can be mutually displaced. The
time scale for flow behavior in epithelial cell sheets is measured in
hours or days. However, cellular matter differs from ordinary fluids in
two important aspects. Each subunit consumes energy to propel itself
and crucially, cells proliferate. In condensed matter theory such out-
of-equilibrium systems are referred to as active matter and are known
to exhibit unusual hydrodynamic properties and dynamic collective
states such as swarming or turbulent swirling [5–10].

Collectively migrating cells indeed display intriguing features of soft
active matter systems. In recent years, many efforts have been made to
describe cellular motion in mathematical terms and to define rules that
obiology.
wig-Maximilians-Universität,
determine the apparent cellular flowbehavior. This top-down approach
is distinct from a cell‐biological view onmigration that accounts formo-
lecular determinants ofmigration such as the cytoskeleton dynamics in-
cluding actin polymerization and force generation via molecular
motors, the molecular interaction with the substrate and extracellular
matrix via the focal adhesion complex as well as extracellular stimuli
via chemical signaling [11–15]. In a mechanistic biophysical view, the
entire cell is modeled as an elastic body. Its shape is determined by
cell substrate adhesion and the elasticity of the cellular cortex. In mi-
grating epithelial monolayers, the cytoskeleton generates protrusions
and exerts traction forces onto the substrate as well as onto adjacent
cells via cadherins. Vast progress has beenmade on themechanobiology
of cells, cellular adhesion andmigration in recent years [16–18]. Despite
this, the relation of mechanical cell models to the observed motion in
tissue at large scales is still challenging and subject of intense research.
Collective migration can, to some extent, be analyzed and captured by
mathematical equations parameterizing the underlying molecular and
mechanical interactions in a coarse grained manner. The phenomeno-
logical description is obtained using image-based algorithms and the
experimental sets ofmigration parameters can then be compared to pa-
rameter estimations in computational models.

In this review, we focus on the phenomenological analysis of cellular
flow behavior, in particular in confining geometries of micro-structured
surfaces. We address theoretical concepts capable of reproducing some
of the generic properties of cellular matter and discuss the use of stan-
dardized micro-environments in cell migration experiments.

Much of this review will concentrate on experiments performed
with layers of MDCK cells, as they represent a well-studied model
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system for epithelial sheets. Collective phenomena are also observed in
other epithelial systems, such as the Drosophila wing disc, however,
going into depth about complex biological phenomena likemorphogen-
esis or tumor formation related tomigrationwould go beyond the scope
of this work.

2. A mechanical view on cell packing and growth

The outlines of epithelial cells in a sheet adhering to a surface show a
striking resemblance to an accumulation of polygons (see Fig. 1). They
appear to typically have either five or six corners and form a connected
layer without gaps. In a first approximation, the contact lines between
cells can be considered straight. In an early study, the average area of
a cell in tissue was found to scale approximately linearly with the num-
ber of sides (and thus neighbors) it has [19], a relation known as Lewis's
law. The pattern formed in experimentally observed cultured cell sheets
or epithelial cells in the surface of tissues is captured well by a so called
Voronoi construction that, starting from a set of cell center positions, di-
vides the area into polygons corresponding to the regions closest to the
cell centers [20] as illustrated in Fig. 1. Nowadays, this cell center is usu-
ally approximated from the position of the nucleus.

Voronoi constructions can also serve as a starting point for a theoret-
ical approach to describing the packing geometry in epithelial mono-
layers. In the so-called vertex model the theory of foams, which
assumes that the forces at each vertex have to vanish in the case of sta-
ble network configurations, is adapted. The theory introduces an energy
function that needs to beminimized locally [21,22]. The energy function
consists of three components describing the cells' elastic properties:
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The contributions are an area elasticity (Kα is the elastic constant,
with Aα the area and Aα

0 the preferred area of cell α, respectively), the
line tension at junctions between individual cells (Λi,j is the line tension
per unit lengthwith lij the length of the junction between nodes i and j)
a)

Fig. 1. Polygon-like cell shapes in an epithelial cell layer. a) Cells in an MDCK monolayer hav
b) Subsection of the cell sheet with a polygonal meshwork resulting from a Voronoi constru
model of an epithelial cell layer.
and a term describing cell cortex contractility (Lα is the cell perimeter
and Γα is a contractility-describing parameter).

The vertex model satisfactorily reproduces polygon class distribu-
tion, cell area variation and packing geometry found in the Drosophila
wing disc, as well as its response to laser ablation [21]. In addition, it is
capable of explaining how cell compartment boundaries can be main-
tained despite remodeling through cell division through increased
tension along the boundaries [23].

While this mechanical cell model accounts for observed packing
states, it still remains quasi-static, describing only the equilibrium
states a system relaxes to after dynamic remodeling events such as
cell divisions or disruption of cell-cell contacts. In order to study
the perpetual remodeling of tissue as a function of time, Ranft et al.
proposed a continuum description of tissue dynamics, showing that
by inclusion of proliferation and apoptosis, cell sheets in essence be-
have like viscoelastic fluids [24]. One key point of this model is the
existence of a homeostatic tissue pressure at which cell division
and cell death are balanced. This state is reached autonomously if
the growing tissue is confined to a fixed volume. If a pressure slightly
larger or smaller than the homeostatic pressure is applied, the tissue
will completely invade the surrounding area or vanish, respectively
[24]. Experimentally, these fluid-like, out-of-equilibrium states are
observed in wound healing assays [25–27], for migration on stripes
or in channels [28,29], or for expanding patches and colonies of
cells [30,31]. When cell density in such a colony is high enough to
pose a mechanical constraint that causes following cell divisions to
reduce the cell area, this initially leads to a drop in cell motility.
Eventually, this “contact inhibition” leads to a static regime where
a sharp transition in the rate of mitosis appears and cell rearrange-
ment is completely limited to cell division [31].

In contrast to the compaction during growth in limited space, the
average area of cells can also increase over time in the case of freely
expanding cell groups. In previous work, we released small cohorts of
MDCK cells by removing confining structures [30] created via a
stencil-based technique similar to the one introduced by Poujade et al.
[32]. Initially, cells are grown to high densities within the confinement.
b)

c)
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Once the barrier is removed, the microculture of cells spontaneously
expands (see Fig. 2), with its area A(t) evolving according to

A tð Þ ¼ a0 þ Δa � 1−e−t=τ;
� �

� N0 � eλt : ð2Þ

In addition to the N0 initial cells proliferating with a growth rate λ,
the cell area relaxes exponentially from the compressed area a0 at the
time of lift-off by the difference Δa to the preferred area over a time τr
[30]. Remarkably, the time scale of area relaxation was found to be on
the order of the cell doubling time [30], in agreement with the result
of Ranft et al. stating that dynamic stress relaxation and tissue remodel-
ing should happen on the time scale of division and apoptosis [24].

3. Experimental recording of cellular flow fields

It is an intriguing notion to develop a hydrodynamic description of
expanding cell cultures and to analyze the local displacement patterns
in terms of flow fields. In recent years, flow vector fields weremeasured
in migrating cell sheets using particle image velocimetry (PIV) [28,
32–37]. PIV was originally developed to assess flow fields in fluids and
gases. In the classical setup, tracer particles are seeded in the fluid.
Displacement fields are then calculated from auto-correlation of lattices
of small interrogation windows in successive recorded frames [38].

Inmigrating cell layers, in contrast to classical PIV, no tracer particles
are necessary due to inherent structure of the cell sheets imaged in
phase contrast microscopy [33]. Using PIV, the cellular flow of cells
confined to stripes or channels has recently been studied [28,29].
Fig. 3 shows the velocity maps of cells invading channel-shaped micro-
structures. The vector fields show a net flow towards the cell free area,
but at the same time contain considerable spatio-temporal noise. None-
theless, a well-defined plug-flow type profile emerges over most of the
channel width when the instantaneous flow fields are averaged in time
and space. The average flow velocity increases from back to front of the
channel, but does not depend on channel width for widths down to
about 30 μm. On the other hand, noise patterns exhibits an interesting
dependence on the geometric constraints. As noted by Vedula et al.
the occurrence of transient swirls increases with channel width and in
narrow channels with width below around 100 μm no swirls but a con-
traction–elongation type of motion are observed [28]. We will come
back to the analysis of the spatio-temporal noise in cell sheets in the
next section. The vector fields indeed open up several avenues of inves-
tigation, such as the possibility of extracting velocity correlationswithin
ba)
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Fig. 2. Proliferation and expansion of a small cell patch. a) Cells are initially seeded into a circul
finement (t=0 h), cells collectivelymove outwards. The patch remodels due to cell division and
time. Time courses of individual patches are shown in gray, the average is fitted by Eq. (2) (red
the cell sheet [32–34]. Directionality in cell motionwas found to be cor-
related overmany cell body-lengths and over several hours in time. The
dependence of the correlation functions on cell density was studied by
Angelini et al. and the intriguing analogy to dynamics found in glassy
materials was highlighted. In particular, the frequency of swirls de-
creases with increasing cell density [29,34].

Similar to the way the flow field can be obtained via PIV analysis
from displacements in the cell sheet, the distribution of forces an ep-
ithelial layer exerts on a substrate can be obtained via traction force
microscopy from displacements of fluorescent beads embedded in a
polyacrylamide gel substrate [39]. Tambe et al. used this technique in
an approach termed monolayer stress microscopy to map out the
traction forces exerted throughout a sheet of MDCK cells in a spatial-
ly resolved manner [40]. In the process of this, they found that in the
stress landscape local cellular migrations follow local orientations of
maximal principal stress. This phenomenon was named plithotaxis.
During monolayer expansion, traction forces appear in waves [41].
PIV analysis and traction force microcopy can also be used to obtain
simultaneous velocity and force maps [42,43]

An alternative approach to assess migration patterns within cell
sheets is analyzing motion of individual cells. Isolated cells are known
to undergo random walk like motion in the 2D culture dish plane. The
single cell motility is mostly analyzed in terms of a persistent random
walk [44–46]. Tracking cell positions within the cell sheet from phase
contrast images is possible ([37,47]), but not easy, especially when au-
tomation is desired. In contrast, stained nuclei can be used as a proxy
for the cell center position and tracked by automated image analysis
software. Hence, the mean-squared displacement and the speed distri-
bution of single cells is readily analyzed [29,48]. In addition, nuclear
staining allows for direct determination of cell densities by automated
cell counting [29]. Fig. 4 shows, for instance, the average density profile
of a cell sheet invading a microchannel, which will be discussed in the
next section. In principle, the entirety of individual tracks represents
the full data set of center of mass motions in collective migration.

These last examples shows that, in addition to advanced image anal-
ysis, the design of artificial boundaries for cell migration experiments is
a powerful method for the study of cellular migration behavior.
Micropatterning has emerged as an important tool, allowing experi-
ments to be tailored for reproducibility and well defined initial condi-
tions. Various different techniques, such as microcontact printing,
micromolding in capillaries, UV chemistry and plasma-induced pattern-
ing can be used to structure a substrate with adhesive and cell-repelling
areas [49]. In this way, cells have been confined to various geometries,
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such as stripes or channels of different widths [28,29], as well as
squares, circles or rings [50–52], but also more complex structures,
such as hourglasses [53]. If the passivating agents used to confine cells
to distinct geometries are bound via a photocleavable group it is even
possible to create defined initial conditions and later switch the
adhesiveness [54].

4. Phenomenological models of collective cell migration

There is a long-standing history of mathematical modeling of collec-
tive cell migration in wound healing, but also other scenarios such as
angiogenesis [55–59]. The concepts of these models are borrowed
from fluid mechanics and prove useful in explaining the observed cell
kinetics at large scales. The main contributions are a) proliferation,
b) diffusive migration and c) directional migration. As shown in Fig. 5,
proliferation accounts for cells as a replicative system. Diffusive migra-
tion denotes the fact that in the presence of density gradients a net
cellular flow arises which tends to balance cell density. In this analogy,
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100 μm). b) Cell number density along the channel determinedby automated cell counting (bin
invading cell sheet. Inset: Drift corrected time trace of a single cell (from tracks such as the col
the permanent cell activity plays the role of temperature in ordinary dif-
fusion. Finally, directionalmigration describes active cellmovement in a
preferred direction due to planar polarization of cells. This polarization
can couple between neighbors. If symmetry in the system is broken
due to geometrical constraints, a preferential polarization direction
can be introduced as opposed to all orientations being equal. These con-
cepts provide some coarse-grained understanding of collective behavior
at length scales beyond the single cell length. They are not linked in an
obvious way to the biological models of cell growth, cell migration and
cell–cell coupling. They do however provide measurable parameters
that are distinct for various different cells lines and hence contribute
to phenotypic characterization. The aforementioned techniques of anal-
ysis and experimental design allow a quantitative description of how
cells migrate collectively.

A widely establishedmethod for studying collective cell migration is
thewoundhealing assay (see Fig. 6). Originally, a confluent layer of cells
was injured, either chemically or by scratching ([27,60]) and the closing
of thewound observed over time.Micropatterning techniques nowadays
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Fig. 5. Schematic cartoon of the phenomenological contributions to collective cell migration. a) Diffusive migration describing cell migration in response to a cell density gradient. Green
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allow producing stencils in cell sheets which can be removed without
damaging surrounding cells [32]. Likewise circular patches can be pre-
pared and the expansion studied as mentioned earlier. In both cases
the manner of migration into the wound [61–63] or expansion from a
patch [64] is reproduced by a continuummodel that takes cell prolifera-
tion and an effective diffusive dynamics into account. The corresponding
differential expression is known as the Fisher–Kolmogorov equation
(Eq. (3)).

∂c
∂t

¼ Dc∇2cþ λc 1−
c
k

� �
ð3Þ

In this reaction–diffusion type equation, Ficks 2nd law of diffusion
with collective diffusion coefficient Dc is combined with logistic growth
defined by growth rate λ and carrying capacity k (i.e. the maximum
density k possible in the cell layer) to describe the time evolution of
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propagates at a constant velocity v ¼
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p
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In a previous publication, we studied the evolution of the density
profile of cells invading 100–300 μmwide channels, which corresponds
to a laterally confinedwound-healing assay.We found that the addition
of a constant drift term to the Fisher–Kolmogorov equation was re-
quired for a self-consistent description of the cell density profile. This
drift term points to cell guidance by the straight geometric boundaries,
whichwill be discussed later on. Angelini et al. studied the collective dy-
namics in confluent layers of MDCK cells as a function of cell density
[35]. Using PIV and spectral analysis of the spontaneous density fluctu-
ations they obtained similar values for diffusion at low cell densities as
obtained by wound healing assays. The diffusive cell dynamics, how-
ever, decrease strongly at higher cell density and at a certain level, a
glass-like transition occurs. Above this, relaxation processes within the
epithelial layers take significantly longer and the spatial correlations de-
crease [35]. At the same time, forcemapping revealed that with increas-
ing density force cooperativity extended to greater distances [40]. The
presence of glassy dynamics substantiates the importance of cell density
as a critical parameter for determining the cooperative motion in cell
migration. In agreement with this, Doxzen et al. found that at the
lower limit, there is a critical density necessary for cells to migrate in a
coordinated fashion [51].

The diffusive mechanism that balances out density gradients can be
imagined as random bursts of correlated migration of cells. The bursts
have a dimension on the order of the correlation length, lc and duration
of order of correlation time, tc. Hence, the collective diffusion coefficient
is well approximated by D = lc

2/4tc [29]. MDCK cells, for instance, have
been found to have a correlation length between around 100 μm to
200 μm [29,32,33,35] and a correlation time of about 1 h [29]. In this
context it is worth mentioning that the self-diffusion coefficient obtain-
ed from the mean-squared displacement is smaller by a factor of 50
compared to the collective diffusion. Again in analogy to glassy systems,
the freedomofmotion of a single unit is restricted and cells can be taken
as caged in by their neighbors. As a quintessence, the capability of tissue
to equilibrate density gradients at long distances is intimately related to



3148 M.L. Zorn et al. / Biochimica et Biophysica Acta 1853 (2015) 3143–3152
correlated motion and hence cell–cell coupling rather than individually
migrating single cells.

The reaction–diffusion model so far works well for describing the
spreading front and the evolution of the average density profile. Howev-
er, the analysis offlowpatternwithin resting cell sheets also reveals that
transient swirls of collective rotation reminiscent of turbulent fluids
form in the cell sheet. PIV analysis has been used to find that these vor-
tices are on the order of 10 cells large [28,34] and have lifetimes of ap-
proximately 15 min [29]. Increasing cell density has been shown to
both increase the swirl correlation length [34] and reduce their overall
frequency [29]. Vortices appear frequently in migration experiments
[28,34] which is consistent with findings that this phenomena generi-
cally emerges from simple models [6,10,65]. Notably, the appearance
of swirls is reduced in migrating cell sheets compared to cell sheet of
comparable density that are resting, i.e. in the absence of density gradi-
ents and open surface [29]. A migrating cell polarizes in plane with re-
spect to its actin cytoskeleton and hence breeds a front and a rear end
within the cell contour. Without external stimulus by cytokines or
neighboring cells, a single cell has no preferential direction of polariza-
tion. If the polarization of connected cells is coupled via cell–cell con-
tacts, however, long-ranged coordination of polarization emerges.
Vortices are one manifestation likely resulting from such coordinated
polarization. On circular geometries, collective rotation is observed
even without an existing density gradient [51,52]. Planar polarization
along the symmetry breaking circular boundary is likely the cause of
the rotation in clockwise or counterclockwise direction. Boundary con-
ditions have further been shown to play a crucial role by Vedula et al.,
who showed in the case of narrow stripes vortices disappear and collec-
tivemigration behavior changes to a contraction–elongationmode [28].

Another source of local anisotropy is cell division. When one cell
divides into two, a division axis can be defined, which for a single un-
bound cell has no preferred orientation. A cell embedded in connected
tissue shows alignment of the cell division axis with the surrounding
cellular flow [66].

Although phenomenological models such as the ones presented in
this section are well suited to describe certain large scale characteristics
of cell layers, it remains unclear how these phenomena emerge from the
properties of the individual constituent cells. In order to approach this
question, a variety of agent based simulations and cellular automata
models have been developed over the last years. In suchmodels, a single
cell is implemented as an individual agent whose actions and interac-
tions with other agents are determined by a specific set of predefined
rules [47,67–71]. Therefore, in analogy to nature, the tissue scale prop-
erties emerge from the properties of the individual cells in such an ap-
proach. Accordingly, in order to achieve a high accuracy of such
models, it is essential to assess these single cell properties and the
rules of cell–cell interaction by highly specialized, tailored experiments.
5. From single cell to oligocellular systems

As described in the last section, an intriguing prospect for agent
based theoretical modeling is to predict collective cell behavior
from single cell properties. Such properties can be addressed and
studied very specifically by techniques like micopatterning, which
allow for direct control of the geometry and chemistry of the cell envi-
ronment on amicroscopic scale. Hence, in recent years, a large variety of
micropatterns have been devised to study and even manipulate intrin-
sic cell properties at the single cell level.

Théry et al. showed, that the confinement of cells to specified geom-
etries has influence on the orientation of the cell division axis [72] as
well as the cells' internal polarization axis [73]. Pattern geometry is
also known to guide the extension direction of cellular protrusions
[74]. Furthermore, the shapes cells exhibit when spanned on arrays of
small adhesion sites provided significant insight into the mechanic
properties which guide cell shape formation [75].
Dynamic properties have likewise been studied on single cell level
using micropatterning approaches. For instance, the migration of cells
on parallel lanes was analyzed for a vast number of cell types by Maiuri
et al.. They found a persistent random walk like migration pattern and
parameters like cell speed and persistence were extracted [76]. In a
slightly modified setup, cells migrating on lanes with diverging pattern
walls or connected-triangle ratchetswere found tomigrate preferentially
in one direction, showing that the symmetry of the random cell walk can
be broken by predetermined geometry of the cells' environment [77,78].

Such setups can also be extended to an oligocellular level, meaning
that the system is designed to study the interaction of only a small num-
ber of cells. Such oligocellular systems are mesoscopic in the sense that
they represent an intermediate length scale between single cell and
tissue-level phenomena. Cellular systems consisting of just a small
number are surprisingly complex and exhibit rich scenarios of collective
behavior arising from interaction of the individual cells. Despite this,
such systems are simple enough that they readily provide access to
the underlying single cell properties. Fig. 7a shows a time-lapse series
of initially two cells on amicropatterned square. Cells are seen to divide
and rearrange. The final geometric arrangement of four cells forming a
T-junction in the square appears to be quasi-stable over an extended
period of time.

Extending the concept of usingmicropatterns for studying static cell
properties to oligocellular arrays, Tseng et al. used micropatterns to
study static cell–cell arrangements in artificial geometries. Fibronectin
micropatterns were used to constrain the location of cell–ECM adhe-
sion. The observed spatial organization of intercellular junctions was
found to alignwith the imposed geometry of the adhesion sites. The po-
sition of cell junctions is in accordance with predictions from vertex
model described in Section 2, assuming that the overall cortical tension
is minimized [53]. Complementing this, oligocellular assays more read-
ily provide access to parameters such as the relation of cell contractility
to cell–cell adhesion strength that dictate cell–cell interaction and are
therefore key parameters for this kind of model (see Fig. 7a). The geom-
etry of the spatial constraints of localized ECM–cell interaction leads to a
quasi-static arrangement of cells which gives insight into relative
strength of the competing forces in the system. Similar setups were
also used to show that cell–cell adhesions can trigger cell polarization
and orchestrate the direction of the cells' polarization axis [79].

In addition to static properties, oligocellular assays can also be used
to study the dynamics of cells. In analogy to single cell experiments,
Desai et al. used the straight lane setup to study cell–cell encounters
and found that polarized collective cell motion can emerge from contact
inhibition of locomotion of colliding cells [80]. Another prominent
example for oligocellular migration was given by Ingber et al. [81],
who described Yin-Yang type rotation of pairs of cells confined to circu-
lar adhesion islands. In this case, transiently rotating states with either
left-handed or right-handed constant angular velocity emerged. Circu-
lar confinement also induces an elevated propensity for persistent rota-
tion in larger cell groups [51]. Rotating cells are found tomovemuch like
a solid block in circles smaller than (or around the size of) the cells'
velocity correlation length. In this case, the angular velocity of rotation
depends on cell density as well as system size. The occurrence of rota-
tion in such systems appears to be stochastic [82]. In a recent study,
Segerer et al. carried this investigation further and studied the life
time of the rotational state as a function of cell number. With density
kept constant by varying the available area, the persistence of collective
rotational states was found to increase with cell number but display a
sharp discontinuity between 4 and 5 cells, where the geometric cell ar-
rangement changes from a conformation without a cell in the system
center to one including a centered cell. These findings indicate the crit-
ical role of local cell geometry and arrangement of neighboring cells on
the internal planar polarization of cells and hence the stability of collec-
tive vortex states [52]. Fig. 7b exemplarily shows a rotating oligocellular
state and illustrates that the dynamics of the systems are largely cap-
tured by the angular tracks of each individual cell.
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From such observations on single or oligocellular scale, specific sin-
gle cell properties of individual cell types can be accessed systematically
and in large, parallelized arrays. Consequently, highly specialized setups
as discussed in this section are not only very suitable to asses, for in-
stance, the effect of specific drugs on different cell properties, but also
to extract the parameters essential for agent based modeling ap-
proaches as discussed in the last section. In this way, they provide im-
portant insights into the emergence of tissue scale phenomena from
basic features of the constituent single cells.

6. Leader cells and roughening of the epithelial border

In the previous sections, the border of the cell layer was ignored, or
in the case of the Fisher–Kolmogorov equation, assumed to be straight.
Given the line tension between neighboring cells, it makes sense to ex-
pect such a relatively smooth interface. In reality, however, observed
expanding epithelial sheets, such as MDCK cells or IAR2 rat liver cells,
display the formation of finger-like protrusions that proceed the rim
[32,84,85]. Within these fingers, migration seems to be highly correlat-
ed and very directional, and closer examination reveals a characteristic,
multicellular actin belt running along its periphery [32,33]. Notably,
each of these protrusions is distinguished by having a single leader
cell at its tip that displays a very distinct and changed morphology.
These leader cells, in addition to being significantly larger than the
other cells within the sheet, exhibit highly developed lamellipodia
(See Fig. 8). Leader cells are highly polarized and directional, never
seem to divide while they are in the leading position and form many
focal adhesions [32,86–88]. Typically, leader cells appear one hour
after the surrounding surface becomes available for migration, remain
in the guiding position for several hours but are transient and return
to normal once they reach, for instance, the opposite monolayer in the
wound-healing case [32,89,90].

Effectively, cells that become leader cells undergo a partial
epithelial-to-mesenchymal transition [91], though the selectionmecha-
nism is still unclear. Both chemical signaling via growth factors [92,93]
as well as a dynamic instability model which does not require any addi-
tional signaling [87] have been suggested. The former is known to play a
role in the formation of branched ducts in Drosophila tracheal morpho-
genesis. Here, an initially not predetermined cell turns into a tip cell by
local growth factor (FGF) signaling and then inhibits cytoskeletal activ-
ity in neighboring cells [94,95]. On the other hand, a purely physical
model is supported by the fact that Rolli et al. found a dependence of
the frequency with which leader cells appear on the curvature of the
cell cluster's boundary [54]. While not applicable to monolayers
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Fig. 8. Leader cells (indicated by white arrows) with distinct morphology and clearly visible lamellipodia in different scenarios of epithelial cell sheet expansion. a) MDCK cells sheet
expanding predominantly in one direction formpronounced fingers of cells following behind leader cells. b) In small patches of MDCK cells, several leader cells appear, pulling in different
directions. Scale bars correspond to 75 μm.
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consisting of only a single cell type, collective invasion of epithelial can-
cer cells can occur via heterocellular-assistance, where the leading cells
are from an entirely distinct cell lineage than the followers [96]. In the
case of homogeneous epithelial sheets, leading cell function might sim-
ply be induced by the asymmetry the foremost cells experience, being
connected via cell–cell junctions to neighbors in the rear, but not at
their front ([97,98]), a state Khalil et al. term ‘Intrinsic Polarity’ [91].
Cell–cell contact is known to negatively affect migration as well as the
formation of actin-driven protrusions [99], two of the apparent differ-
ences between leaders and followers. In addition, this intrinsic polarity
is augmented by the fact that cells remodel the underlying substrate by
depositing their own ECM proteins, meaning the following cells do not
encounter the virginal surface the leader cells migrated over [100]. In
this context it is noteworthy, however, that cells even hundreds of
microns from the edge have in fact been found to extend cryptic
lamellipodia beneath the cells in front of them [101]. Poujade et al., ob-
serve that leader cells in sheets of MDCK cells often arise from the sec-
ond or third row and migrate to the leading edge without any
apparentmorphological changes, before undergoing the clear transition
to a different phenotype [32]. While this seems to reinforce the notion
that the position at the actual edge of the cell sheet is relevant for the
transition, it also shows that cells need not originate there to become
leaders. Thus, for the time being, the selection mechanism remains
under debate.

Although the process that determines the cells ‘differentiation’ fate is
still unclear, what role leader cells play has been elucidated to a certain
degree. While it was originally suspected that leader cells might speed
up wound closure [102] and that they are responsible for dragging the
cell sheet behind them by excreting traction forces on the substrate
([32,85,102–104]), Trepat et al. mapped these forces throughout the
cell sheet and showed that the leader cells' contribution to the overall
force balance is small. Instead, traction forces of similar magnitude can
arise throughout the cell sheet. Still, as the local average of the forces
is about four times as high at the front as it is in the bulk of the sheet,
they do not rule out this might be sufficient to direct the rows farther
back [39]. The mechanical signaling between a leader cells and its fol-
lowers is discussed to be supported by the observed peripheral, subcor-
tical actin belt [32]. Recently, Reffay et al. showed that this contractile
cable prevents the initiation of further leader cells in the finger. They
proposed that both mechanical and biochemical cues determine new
leader cells, with the role of both RhoA and Rac seemingly playing a
role for collective migration [105,106]. Despite the biological
complexity of leader cells, the phenomenon of finger formation and
the accompanying flow pattern can be understood and reproduced in
computational modeling [107]. These models need to arbitrarily invoke
individual model “leader” cells, but the resulting digitated shape of the
interface and the finger flow fields behind the seeded leader cells then
emerge as a consequence of the cellular hydrodynamics of migrating
cells described earlier.

7. Discussion

Collective cell migration is analyzable in terms of cellular velocity
fields using PIV analysis, traction forcemicroscopy and single cell track-
ing. At a coarse-grained level, migration phenomena, such as the behav-
ior in a wound healing assay, are described by a phenomenological
reaction diffusion typemodel. At an intermediate length scale, however,
vortices, pulsation and waves expose a correlated motility of mutually
interacting cells. Similar patterns of correlated motion are found in
early phases of morphogenesis. These mesoscale properties are attrac-
tive to study as they reveal much about the intercellular coupling. Dur-
ing development, a collective of cells form defined shapes at larger
scales, while at the individual cell level considerable stochastic behavior
seems to counteract any ordering. While in earlier days it was generally
believed that chemical signaling andmorphogenetic fields are the dom-
inant mechanism of pattern formation, it has become increasingly ac-
cepted over the last 10 years that mechanical forces play an important
role. The central question is to understand how mechanical forces are
transmitted to adjacent cells enforcing cooperative long-range cell mo-
tion. As shown here, long-range correlations account for the effective
diffusive balancing of density gradients. Still more importantly, cooper-
ative cell migration is the base of the formation of shape, functional or-
gans and finally full organisms. In recent years, computational models
with minimal requirements have elucidated and reproduced some key
features of collective migration, such as sheet migration and swirl
formation [51,82]. For the future development of the field it will be
important to find ways to quantitatively and systematically compare
experiments to computer simulations.

As shown in this review, confined geometries allow cell guidance
and lead to novel cellular flow patterns. A multitude of data can be gen-
erated by variation of the guiding micropattern and flow fields, force
fields and the localization of fluorescently labeled key protein compo-
nents can be mapped out and compared to mathematical migration
models. In the near future, the challenge will be to find models and
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parameter settings that describe an increasingly large set of data in a
self-consistent manner. In this context, an intriguing task will be to
define standard migration assays and appropriate measurable quanti-
ties for the calibration as well as comparison of models. The wound
healing assay is just one bench mark test. Other scenarios such as cellu-
lar rotation in circular confinement or directed migration in channels
might deliver complementary information. The implementation of
small system size assays will deliver easily reproducible experimental
data with statistical measurements that will be corner points for calibrat-
ing experiments. A prominent example are quasi-static cell arrangements
found in geometric ECMpattern, which are suitable to scrutinize cell–cell
adhesion and cell–substrate interaction [53,108–110].

For a more intuitive understanding of how cell cooperativity mani-
fests itself in a tissue, the introduction of “phenomenological rules”
that describe collective behavior is valuable. Examples are the concept
of glassy dynamics in collective migration [35] as well as the migration
motives Plithotaxis and Kenotaxis introduced by the Trepat group [42,
111]. The migration motive Plithotaxis describes the tendency for each
individual cell within amonolayer tomigrate along the local orientation
of the maximal normal stress, or equivalently, minimal shear stress
[111]. Kenotaxis denotes the finding that a cellular collective generates
local tractions pulling systematically and cooperatively towards unfilled
space [42]. Direct examination of these rules in cell monolayer requires
analysis of average flow tendencies in a large ensemble with large de-
gree of variability of cell constellations. Here, specialized oligocellular
assays combined with computational modeling might be a promising
approach to scrutinize flow motives in defined cell arrangements. Fur-
ther advancement of cell adhesion and migration microassays to auto-
mated high throughput compatible platforms will allow screening of
cell phenotypes and hence help to identify genes and proteins that
play a role in themechano-sensitive response of cells. The challenge re-
mains to feed this molecular information back into future multiscale
modeling. A mathematical framework of collective migration however,
will be at the heart of a computational systems biology view in disci-
plines related to the dynamics of tissue, such as angiogenesis, cancer
research or developmental biology.
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