Certain Sufficient Conditions for Univalency of the Class C'

HASSOON AL-AMIRI

Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403

AND

PETRU T. MOCANU

Babes-Bolyai University, Cluj, Rumania

Submitted by C. L. Dolph

1. INTRODUCTION

In a recent paper [1] the authors obtained sufficient conditions for functions of the class C' to be univalent and spirallike in the unit disc U. In this note we obtain sufficient conditions for univalency for a much larger subclasses of functions in $C'(U)$. Special cases of our results can be found in [1–5].

2. PRELIMINARIES

Let f be a complex function defined in the unit disc U. For $z = x + iy \in U$ we put

$$f(z) = u(x, y) + iv(x, y).$$

We say that f belongs to the class $C'(U)$ if the real functions $u(x, y) = \text{Re } f(z)$, $v(x, y) = \text{Im } f(z)$ of the real variables x and y have continuous first order partial derivatives in U. For $f \in C'(U)$ we let

$$Df = z \frac{\partial f}{\partial z} - \bar{z} \frac{\partial f}{\partial \bar{z}},$$

$$\mathcal{Q}f = z \frac{\partial f}{\partial z} + \bar{z} \frac{\partial f}{\partial \bar{z}}.$$
where
\[
\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).
\]

It is easy to verify the following useful formulas:
\[
\begin{align*}
Df &= \overline{D\bar{f}}, \\
D \text{Re } f &= i \text{ Im } Df, \\
D \text{Im } f &= -i \text{ Re } Df, \\
D |f| &= i |f| \text{ Im } \frac{Df}{f} , \\
D \text{arg } f &= -i \text{ Re } \frac{Df}{f}, \\
\frac{\partial f}{\partial \theta} &= i Df, \\
\frac{\partial f}{\partial r} &= \frac{1}{r} \frac{\partial f}{\partial f}, \quad \text{where } z = re^{i\theta}.
\end{align*}
\]

Hence
\[
\begin{align*}
\frac{\partial |f|}{\partial \theta} &= -|f| \text{ Im } \frac{Df}{f}, \\
\frac{\partial |f|}{\partial r} &= |f| \text{ Re } \frac{Df}{f}, \\
\frac{\partial \text{arg } f}{\partial \theta} &= \text{Re } \frac{Df}{f}, \\
\frac{\partial \text{arg } f}{\partial r} &= \frac{1}{r} \text{ Im } \frac{Df}{f},
\end{align*}
\]

The Jacobian of f is given by
\[
J_f = \left| \frac{\partial f}{\partial z} \right|^2 - \left| \frac{\partial f}{\partial \bar{z}} \right|^2.
\]

If $J_f(z) > 0$ for all $z \in U$, then f is locally homeomorphic preserving the orientation.

3. Results

For the proofs of our results we follow the approach of Rakhmanov (the geometrical families) as outlined and applied in [3, 4] for the case of analytic functions.
THEOREM 1. Let \(f \in C'(U) \) and let \(F \) be a real continuous function in the interval \((0, +\infty)\). If the following conditions are satisfied:

(i) \(f(0) = 0, f(z) \neq 0 \) for all \(z \in U \setminus \{0\} \),
(ii) \(Jf(z) > 0 \) for all \(z \in U \),
(iii) \(\text{Re} \{ |1 + iF(|f(z)|)| \frac{Df(z)}{f(z)} \} > 0 \) for all \(z \in U \setminus \{0\} \),

then \(f \) is univalent in \(U \).

Proof. Let \(\Phi : (0, +\infty) \rightarrow \mathbb{R} \) such that

\[t\Phi'(t) = -F(t). \] (3)

Consider the family of Jordan arcs \((\Gamma_\phi), \phi \in [0, 2\pi) \), where \(\Gamma_\phi \) has the parametric equation

\[\Gamma_\phi : w = w_\phi(t), \quad t \in (0, +\infty), \]

where

\[w_\phi(t) = te^{i(\Phi(t) + \phi)}. \] (4)

It is obvious that through each point \(w \in C \setminus \{0\} \) passes a Jordan arc \(\Gamma_\phi \) and only one.

For \(z = re^{i\theta}, 0 < r < 1, 0 \leq \theta < 2\pi \), the equation

\[f(z) = w_\phi(t) \] (5)

determines a unique value of \(\phi = \phi(r, \theta) \) and a unique value of \(t = t(r, \theta) \). From (4) and (5) we get

\[t = |f(z)|, \]
\[\Phi(t) + \phi = \text{arg} \ f(z). \] (7)

We therefore have

\[\phi = \text{arg} \ f(z) - \Phi(|f(z)|). \] (8)

Let \(U_r = \{ z : |z| < r \} \) and \(C_r = f(\partial U_r) \). In order to show that \(f \) is univalent in \(U \), it is sufficient to prove that \(C_r \) are nonintersecting Jordan curves, \(r \in (0, 1) \). We first show that \(C_r \) are Jordan curves for \(r \in (0, 1) \) by showing that \(\frac{\partial \phi}{\partial \theta} > 0 \) and \(\text{Var}_{0 < \theta < 2\pi} \phi(r, \theta) = 2\pi \), where \(\text{Var} \) stands for total variation.
Differentiating (8) and using (1) and (2) we obtain

\[
\frac{\partial \phi}{\partial \theta} = \frac{\partial}{\partial \theta} \arg f(z) - \frac{\partial}{\partial \theta} \Phi(|f(z)|) = \text{Re} \left(\frac{Df(z)}{f(z)} + |f(z)| \Phi'(|f(z)|) \text{Im} \frac{Df(z)}{f(z)} \right) = \text{Re} \left\{ |1 + iF(|f(z)|)| \frac{Df(z)}{f(z)} \right\} > 0.
\]

Also by (i) the curves \(C_r \) are homotopic in \(\mathbb{C} \setminus \{0\} \). Therefore, \(C_r \) have the same index with respect to the origin. By (ii) the function \(f \) is univalent in a neighborhood of the origin. Hence there exists \(r_0 \in (0, 1) \) such that \(\text{ind}_0 C_r = 1 \) for \(r < r_0 \); thus \(\text{ind}_0 C_r = 1 \) for all \(r \in (0, 1) \). That is, the \(\text{Var}_{0 < \theta < 2\pi} \arg f(z) \) along \(C_r \) is \(2\pi \). Consequently (8) yields

\[
\text{Var}_{0 < \theta < 2\pi} \phi(r, \theta) = \text{Var}_{0 < \theta < 2\pi} f(re^{i\theta}) = 2\pi.
\]

With this, we have verified that \(C_r \) is a Jordan curve for each \(r \in (0, 1) \).

Now we show that \(C_r \cap C_{r'} = \emptyset \) for \(r \neq r' \), \(r, r' \in (0, 1) \). Fix a value \(\phi \in [0, 2\pi) \). The system

\[
f(z) = w_\phi(t), \quad |z| = r, \quad 0 < r < 1
\]

yields a unique point \(z = re^{i\theta}, \theta = \phi(r) \), and a unique \(t = t(r) \). We need only show

\[
\frac{dt}{dr} > 0 \quad \text{for} \quad r \in (0, 1).
\] (9)

From (6) and (7) and using (1) and (2) we get

\[
\frac{dt}{dr} = \frac{\partial}{\partial r} |f(z)| + \frac{\partial}{\partial \theta} |f(z)| \frac{d\theta}{dr} = |f(z)| \left(\frac{1}{r} \text{Re} \frac{Df(z)}{f(z)} - \frac{d\theta}{dr} \text{Im} \frac{Df(z)}{f(z)} \right),
\]

and

\[
\Phi'(|f(z)|) \frac{dt}{dr} = \frac{\partial}{\partial r} \arg f(z) + \frac{\partial}{\partial \theta} \arg f(z) \cdot \frac{d\theta}{dr} - \frac{1}{r} \text{Im} \frac{Df(z)}{f(z)} + \frac{d\theta}{dr} \text{Re} \frac{Df(z)}{f(z)}.
\]
By eliminating \(d\theta/dr\) we deduce

\[
\frac{dt}{dr} \Re \left\{ \left[1 + iF(|f(z)|) \right] \frac{Df(z)}{f(z)} \right\} = \frac{|f'(\tau)|}{r} \Re \frac{Df(\tau)}{f(\tau)} \frac{\partial f(\tau)}{\partial \tau} = \frac{r}{|f(z)|} Jf(z).
\]

Finally, (ii), (iii) and the above yield (9). This completes the proof of our main theorem.

The same method yields this result:

Theorem 2. Let \(f \in C'(U)\) and let \(F\) be a real continuous function in the interval \((0, +\infty)\). If the following conditions are satisfied:

(i) \(f(0) = 0\) and \(f(z) \neq 0\) for all \(z \in U \setminus \{0\}\),

(ii) \(Jf(z) > 0\) for all \(z \in U\),

(iii) \(\Re \{|F(|f(z)|) + i|Df(z)/f(z)|\} > 0\) for all \(z \in U \setminus \{0\}\),

then \(f\) is univalent in \(U\).

4. Special Cases

Several applications can be made of Theorems 1 and 2 through making different choices of \(F\). We shall mention the following cases:

(a) If \(F \equiv 0\), then Theorem 1 reduces to the case of starlike functions \([1, \text{Corollary 1; 2}].\)

(b) If \(F \equiv \tan \gamma, |\gamma| < \pi/2\), then Theorem 1 reduces to the case of spirallike functions \([1, \text{Theorem 1}].\)

(c) If \(F = -t\), then Theorem 1 reduces to \([1, \text{Theorem 2, 1}].\)

(d) If \(F = t\), then Theorem 2 reduces to \([1, \text{Theorem 3, 1}].\)

It is also noteworthy that when \(f\) is analytic in the unit disc, then cases (a), (b), (c) and (d) above will correspond to the well-known cases of starlike functions, the logarithmic spirallike of type \(\gamma\) due to Spaček \([5]\), the Archimedean spirallike \([3]\) and the hyperbolic spirallike \([4]\), respectively.

Acknowledgments

The first author acknowledges support received from the National Academy of Sciences through its exchange program with the Academy of Socialist Republic of Rumania.
REFERENCES

