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a b s t r a c t

Bilevel programming has been proposed for dealing with decision processes involving two
decision makers with a hierarchical structure. They are characterized by the existence
of two optimization problems in which the constraint region of the upper level problem
is implicitly determined by the lower level optimization problem. Focus of the paper is
on general bilevel optimization problems with multiple objectives at the upper level of
decision making. When all objective functions are linear and constraints at both levels
define polyhedra, it is proved that the set of efficient solutions is non-empty. Taking into
account the properties of the feasible region of the bilevel problem, some methods of
computing efficient solutions are given based on both weighted sum scalarization and
scalarization techniques. All the methods result in solving linear bilevel problems with a
single objective function at each level.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

General bilevel programming problems with a single objective function at each level can be formulated as:

min
x1,x2

f1(x1, x2), (1a)

s.t. (x1, x2) ∈ R (1b)

where x2 solves

min
x2

f2(x1, x2) (1c)

s.t. (x1, x2) ∈ S (1d)

where x1 ∈ Rn1 are the upper level variables, which are controlled by the leader or upper level decision maker; x2 ∈ Rn2 are
the lower level variables, which are controlled by the follower or lower level decisionmaker; f1, f2 : Rn −→ R, n = n1+n2,
are the upper level and lower level objective functions, respectively; and R, S ⊆ Rn are the sets defined by the upper level
and the lower level constraints, respectively.
These mathematical programs provide an appropriate model for hierarchical decision processes with two decision

makers, the leader and the follower, each controlling part of the variables and having his own objective function and
constraints. Bilevel problems have been increasingly addressed in the literature. Dempe [1] and Vicente and Calamai [2]
provide surveys on the subject. Bard [3], Dempe [4] and Shimizu et al. [5] are good textbooks on this topic.
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Optimization of a single objective function often oversimplifies processes involved in real systems. Most of these entail
either a decision maker trying to get several goals or several decision makers each of them with his own objective. With
regard to the last topic, Calvete and Galé [6] consider a linear bilevel problemwith one leader and multiple followers which
are assumed to be independent. In this problem all involved functions are linear and the objective function and the set of
constraints of each follower only include the leader’s variables and his own variables. They show that this problem can be
reformulated into a linear bilevel problem with a single objective function at each level.
In order to deal with multiple and conflicting objectives, when there is a single level of decision making, several

approaches have been proposed in the literature. Multiobjective programming refers to mathematical programs involving
several objectives. This has been a very productive research field in mathematical programming during recent decades.
Ehrgott [7], Ehrgott and Gandibleux [8] and Figueira et al. [9] provide a comprehensive overview of the literature.
Regarding the use of multiple objective functions in bilevel problems, Bonnel and Morgan [10] consider a semivectorial

bilevel optimization problem in which the upper level is a scalar optimization problem, the lower level is a vector
optimization problem and the constraints define Hausdorff topological spaces. They show that this bilevel problem with
multiple objectives at the lower level can be approached using an exterior penalty method.
In this paper we are concerned by bilevel problems with multiple linear objective functions at the upper level and a

linear objective function at the lower level. The constraint regions are assumed to be polyhedra. This model was motivated
by a production–distribution planning problem in a supply chain. The distribution company, at the upper level, aims to
minimize transportation cost as well as satisfy the preferences of retailers. Manufacturing plants, at the lower level, aim to
minimize their own operation costs. First we reformulate the bilevel problem as a standard multiobjective problem with
linear objective functions over a non-convex region. Next, we approach it from the multiobjective programming point of
view, aiming to analyze its efficient set. We prove that the efficient set is non-empty and give some methods based on both
weighted sum scalarization and scalarization techniques to obtain efficient points. Besides, several examples illustrate the
complexity of the problem and show that some important properties held by linear multiobjective programs with a single
level of decision making are no longer true, due to the lack of convexity. The paper is organized as follows. Section 2 states
the problem. In Section 3 the existence of non-dominated points is proved. Sections 4 and 5 provide the main results on
finding efficient and weakly efficient solutions. Finally, Section 6 concludes the paper with a summary.

2. Linear bilevel programs with multiple objective functions at the upper level

The linear multiobjective/linear bilevel programming (LMOLBP) problem can be formulated as:

min
x1,x2

(d1(x1, x2), . . . , dk(x1, x2)) (2a)

s.t. A11x1 + A
1
2x2 6 b

1 (2b)

x1 > 0 (2c)

where x2 solves

min
x2

c2x2 (2d)

s.t. A21x1 + A
2
2x2 6 b

2 (2e)

x2 > 0, (2f)

where di(x1, x2) = di1x1+ di2x2; di1 : 1×n1; di2 : 1×n2, i = 1, . . . , k; c2 : 1×n2; A11 : m1×n1; A
2
1 : m2×n1; A

1
2 : m1×n2;

A22 : m2 × n2; b
1
: m1 × 1; b2 : m2 × 1. We assume that the polyhedron R defined by the upper level constraints (2b)

and (2c) is non-empty and the polyhedron S defined by the lower level constraints (2e) and (2f) is non-empty and bounded.
The polyhedron defined by all constraints is called the constraint region of the (LMOLBP) problem and will be denoted by T .
We assume that T is non-empty.
For a given x̃1, the follower solves the lower level linear programming problem:

LP(x̃1) : min
x2

c2x2

s.t. A22x2 6 b
2
− A21x̃1

x2 > 0.
(3)

LetM(x̃1) be the set of optimal solutions to (3):

M(x̃1) =
{
x̃2 ∈ Rn2 : x̃2 ∈ argmin

x2
{c2x2 : A22x2 6 b

2
− A21x̃1, x2 > 0}

}
.

The feasible region of problem (2), called the inducible region, is implicitly defined as:

IR = {(x1, x2) : (x1, x2) ∈ T , x2 ∈ M(x1)} .
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Any point of IR is a bilevel feasible solution. Taking into account previous notations, the LMOLBP problem formulated
in (2) can be equivalently written as:

min
x1,x2

(d1(x1, x2), . . . , dk(x1, x2))

s.t. (x1, x2) ∈ IR.
(4)

By looking at the objective space, we denote by Y the image of IR under the objective function mapping (d1, . . . , dk):

Y = {y ∈ Rk : y = (d1(x1, x2), . . . , dk(x1, x2))t , (x1, x2) ∈ IR},

where the superscript t stands for transposition.
We are interested in finding the best of the bilevel feasible solutions according to all objective functions. However, as they

usually conflict, there is no well-defined optimal solution. The symbol ‘min’ will be understood as finding mathematically
equally good solutions, called efficient solutions, according to the following definition:

Definition 1. A bilevel feasible solution (x̃1, x̃2) ∈ IR is an efficient solution of problem (2) if there is no (x1, x2) ∈ IR such
that di1x1 + di2x2 6 di1x̃1 + di2x̃2 for i = 1, . . . , k and dj1x1 + dj2x2 < dj1x̃1 + dj2x̃2 for some j ∈ {1, . . . , k}.
A bilevel feasible solution (x̃1, x̃2) ∈ IR is a weakly efficient solution of problem (2) if there is no (x1, x2) ∈ IR such that

di1x1 + di2x2 < di1x̃1 + di2x̃2 for i = 1, . . . , k.
If (x̃1, x̃2), (x̂1, x̂2) ∈ IR and di1x̃1 + di2x̃2 6 di1x̂1 + di2x̂2 for i = 1, . . . , k and dj1x̃1 + dj2x̃2 < dj1x̂1 + dj2x̂2 for some

j ∈ {1, . . . , k}we say that (x̃1, x̃2) dominates (x̂1, x̂2).
If (x̃1, x̃2) is an efficient solution, ỹ = (d1(x̃1, x̃2), . . . , dk(x̃1, x̃2))t is a non-dominated point. Similarly, if (x̃1, x̃2) is a

weakly efficient solution, ỹ = (d1(x̃1, x̃2), . . . , dk(x̃1, x̃2))t is a weakly non-dominated point.

In other words, a bilevel feasible solution is efficient if it is not possible to move feasibly from it to decrease one objective
function without increasing at least one of the others. Obviously, a bilevel feasible solution which is not efficient should not
represent an alternative of interest to the leader.
The set of all efficient solutions is denoted by IRE and is called the efficient set. The set of all non-dominated points is

denoted by YN and is called the non-dominated set. The non-dominated points are located in the ‘lower left part’ of Y.
In fact, YN is a subset of the boundary of Y and YN = (Y + Rk=)N , where Rk= denotes the non-negative orthant of Rk,
i.e. Rk= = {y = (y1, . . . , yk)

t
∈ Rk : y = 0}, where y = 0 stands for yi > 0, i = 1, . . . , k. Similarly, IRwE and YwN denote the

sets of weakly efficient solutions and weakly non-dominated points, respectively.
In order to gain an insight into themeaning of previous definitionswe consider the following examples inwhich variables

x and y are controlled by the leader and variable z is controlled by the follower. Let S be the convexhull of pointsA = (0, 0, 0);
B = (1, 0, 0); C = (1, 1, 0); D = (0, 1, 0); E = (0, 0, 2); F = (1, 0, 3); G = (2, 0, 2); H = (2, 2, 2); I = (1, 2, 3);
J = (0, 2, 2).

Example 1.

min
x,y,z

(d1(x, y, z) = x+ 2y+ 3z, d2(x, y, z) = −x− y),where z solves

min
z

z
s.t. (x, y, z) ∈ S.

Since the lower level minimizes z,

IR = conv (A, B, C,D) ∪ conv (B, C,G,H) ∪ conv (C,D,H, J).

where conv denotes convex hull. The left part of Fig. 1 displays the polyhedron S and the inducible region IR (in grey) of
Example 1. Notice that IR is the union of faces of the polyhedron S and is non-convex. Figs. 2 and 3 show the images of S and
IR under (d1, d2), respectively. Points Ã to J̃ are, respectively, the images of points A to J . The image of IR, Y, is non-convex.
The set of non-dominated points YN is the union of segments Ã− B̃, B̃− C̃ and C̃ − H̃ . Notice that YN is connected.

Example 2.

min
x,y,z

(d1(x, y, z) = x+ 2y+ 3z, d2(x, y, z) = −x− y),where z solves

min
z
−z

s.t. (x, y, z) ∈ S.

In this case, the lower level maximizes z, thus IR = conv (F ,G,H, I) ∪ conv (E, F , I, J). The right part of Fig. 1 displays
the inducible region IR (in grey) of Example 2. Fig. 4 shows the image of IR under (d1, d2). Now the set of non-dominated
points is the union of segment Ẽ − G′, open at G′, and segment G̃− H̃ . Notice that in this example YN is non-connected.
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Fig. 1. Constraint region and inducible region of examples.

Fig. 2. Examples 1 and 2: Image of S under (d1, d2).

Fig. 3. Example 1: Image of IR under (d1, d2). The thick line refers to the non-dominated set.

Fig. 4. Example 2: Image of IR under (d1, d2). The thick line refers to the non-dominated set.

Remark 2. Before analyzing the non-dominated set in the following Sections, we draw attention to the possible relationship
between the non-dominated points of the LMOLBP problem (2) and the non-dominated points of the so-called relaxed
problem (5), in which the lower level objective function has been removed:

min
x1,x2

(d1(x1, x2), . . . , dk(x1, x2))

A11x1 + A
1
2x2 6 b

1

A21x1 + A
2
2x2 6 b

2

x1 > 0, x2 > 0.

(5)
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Fig. 5. Examples of non-dominated sets. The thick line represents the image of IR under the objective function mapping.

This is a linear multiobjective problem over the polyhedron T . The set of its efficient solutions is denoted by TE .
By looking at Example 1, the relaxed problem is:

min
x,y,z

(d1(x, y, z) = x+ 2y+ 3z, d2(x, y, z) = −x− y)

s.t. (x, y, z) ∈ S.

The non-dominated set is the union of segments Ã − B̃, B̃ − C̃ and C̃ − H̃ . Hence, for this example, non-dominated sets
of problem (2) and problem (5) are equal. In contrast, if we consider Example 2, the single point in common is H̃ .
Let us consider four hypothetical LMOLBP problemswith only two variables and two objectives. For every problem, Fig. 5

displays in grey the image of the constraint region under the objective function mapping (d1, d2). The thick black line is the
image of IR under (d1, d2). In all cases, the non-dominated set of the corresponding relaxed problem is the segment B− C .
However, if we take into consideration themultiobjective bilevel problem, things are very different. In example (a) the non-
dominated set is also the segment B−C . In example (b), this set is comprised only of point B. The set of non-dominated points
of example (c) is the segment A − C ′, open at C ′, together with the point C . Finally, in example (d) this set is the segment
A′−D, open at A′, together with the point A. Hence, the non-dominated sets of both the multiobjective bilevel problem and
the relaxed problem can be equal, as in the top left corner of Fig. 5, or have nothing in common, as in the bottom right corner
of it.

Remark 3. Finally in this Section, it is worth mentioning that bilevel problems are very sensitive to the existence of upper
level constraints involving upper level and lower level variables. As a matter of fact, IR could be non-connected and even be
an empty set although T is a non-empty compact set [4,11].
If we slightly modify Example 2 to include the upper level constraint z 6 2, then IR is the union of segments G− H and

E − J and so it is non-connected. On the other hand, if we add the upper level constraints z 6 1, then IR is empty. Hence,
from now on, we assume that IR is non-empty.
Moreover, shifting the upper level constraints to the lower level optimization problem completely changes the

problem [6,4,11]. For instance, if we consider Example 2 with upper level constraint z 6 2, the non-dominated set is
the union of segment Ẽ − G′, open at G′, and segment G̃ − H̃ . But, shifting this constraint to the lower level results in
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IR = conv {E,G,H, J}. Hence the non-dominated set is the union of segments Ẽ − G̃ and G̃ − H̃ . Notice that this problem
provides efficient points which are not even bilevel feasible solutions of the original problem.

3. Existence of non-dominated points

It is well known in multiobjective programming that even for convex feasible region and continuous functions, the non-
dominated set might be empty. The properties of IR, although it is not necessarily convex, and the fact that upper level
objective functions are linear allow us to prove that YN is non-empty.

Definition 4. A point-to-set mapping Γ : Rn1 → 2Rn2 is called polyhedral if its graph grph Γ = {(x1, x2) ∈ Rn1 × Rn2 :
x2 ∈ Γ (x1)} is equal to the union of a finite number of convex polyhedra.

Theorem 5. The point-to-set mapping M defined by the set of optimal solutions of the lower level problem is polyhedral.
Proof. Similar to Theorem 2.5 in Savard [11], taking into account that IR is non-empty and bounded. �

In other words, this Theorem asserts that IR is the union of a finite number of polyhedra. Hence, it is not necessarily convex.
In fact,

IR = T ∩ {(x1, x2) : x1 ∈ S1, c2x2 = v(x1)},

where S1 is the projection of S onto Rn1 and v(x1) denotes the optimal value function of lower level problem LP(x1). Taking
into account that S is compact, v(x1) is finite, ∀x1 ∈ S1. Moreover, since LP(x1) is a linear programming problem, v(x1) is
piecewise linear.

Theorem 6. YN is non-empty.

Proof. As IR is a union of a finite number of non-empty bounded polyhedra, its image Y is also a union of non-empty
bounded polyhedra. Hence, Y is non-empty and compact. Let y0 ∈ Y.
We consider the section of Y defined by y0 as:

Y0 = (y0 − Rk=) ∩ Y = {y ∈ Y : y 5 y0}.

Since Y is compact, so is Y0. As a result, Y has a compact section and the conclusion of the Theorem follows [12]. �

Corollary 7. YwN is non-empty.

Proof. It is a consequence of YN ⊂ YwN . �

Remark 8. Notice that k efficient points can be obtained by solving the following bilevel problems, for i = 1, . . . , k:

min
x1,x2

di(x1, x2)

s.t. A11x1 + A
1
2x2 6 b

1

x1 > 0
(6a)

where x2 solves

min
x2

c2x2

s.t. A21x1 + A
2
2x2 6 b

2

x2 > 0.
(6b)

Let (xi1, x
i
2) be an optimal solution of problems (6). If it is unique, then it is an efficient solution. Otherwise, from the set

of optimal solutions to (6) it is always possible to select an efficient solution.
Let yi = di(xi1, x

i
2), i = 1, . . . , k. In multiobjective programming, the point y

I
= (y1, . . . , yk) is called the ideal point and

provides a lower bound on non-dominated points.

Problems (6) are standard linear bilevel problems, that is to say, bilevel problems in which both objective functions are
linear and the constraint region is a polyhedron. Linear bilevel problems have been much studied in the literature [3,4].
Although even this ‘simple’ version of bilevel problems is (strongly) NP-hard [13], an important property of these problems
is that their solution set contains at least one extreme point of the constraint region. This important property allows us,
amongst other things, to develop enumerative algorithms to solve them. Other approaches replace the lower level problem
by its Karush–Kuhn–Tucker conditions, use penalty functions, use gradient methods, etc. [3,4]. However, most of these
algorithms are far from being efficient in terms of computational time involved when solving large problems. Calvete
et al. [14] propose a metaheuristic algorithm which combines classical enumeration techniques that search for extreme
points with genetic algorithms, which has proved to provide near-optimal solutions in reasonable computational time.
In the following Sections, we investigate to what extent the efficient points of the LMOLBP problem can be found by

solving standard linear bilevel problems.
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4. Finding efficient points by weighted sum scalarization

When linear multiobjective problems with a single level of decision making are considered, all efficient solutions can
be obtained by solving a linear programming problem whose objective function is a linear combination with positive
coefficients of the objective functions. Concerning LMOLBP problems, below we prove that optimal solutions of scalarized
problems with positive weights are always efficient. But, we will showwith an example that there can be efficient solutions
which cannot be obtained in this way.
For a fixed λ = (λ1, . . . , λk), λi ∈ R, i = 1, . . . , k, let us consider the linear bilevel problem:

WSS-LMOLBP(λ) : min
x1,x2

k∑
i=1

λi(di1x1 + di2x2)

s.t. A11x1 + A
1
2x2 6 b

1

x1 > 0

(7a)

where x2 solves

min
x2

c2x2

s.t. A21x1 + A
2
2x2 6 b

2

x2 > 0.
(7b)

This problem is called aweighted sumscalarization of the LMOLBPproblem. By looking at the objective space, problem (7)
can be formulated as:

min
y

k∑
i=1

λiyi

s.t. y ∈ Y.

(8)

Theorem 9. Let (x?1, x
?
2) be an optimal solution of the WSS-LMOLBP problem (7) for a given λ = (λ1, . . . , λk), λi > 0,

i = 1, . . . , k,
∑k
i=1 λi = 1. Then (x

?
1, x

?
2) ∈ IRwE .

Proof. By hypothesis, (x?1, x
?
2) ∈ IR and

k∑
i=1

λi(di1x?1 + di2x
?
2) 6

k∑
i=1

λi(di1x1 + di2x2), ∀ (x1, x2) ∈ IR.

Suppose (x?1, x
?
2) 6∈ IRwE . Hence, there must be (x̂1, x̂2) ∈ IR such that di1x̂1 + di2x̂2 < di1x?1 + di2x

?
2, i = 1, . . . , k.

Multiplying componentwise by non-negative weights λi and taking into account that at least one of them is different from
zero, we get

k∑
i=1

λi(di1x̂1 + di2x̂2) <
k∑
i=1

λi(di1x?1 + di2x
?
2),

which contradicts the optimality of (x?1, x
?
2). �

A similar Theorem can be proved for efficient solutions if all λi are assumed to be positive.

Theorem 10. Suppose that (x?1, x
?
2) is an optimal solution of the WSS-LMOLBP problem (7) for a given λ = (λ1, . . . , λk), λi > 0,

i = 1, . . . , k,
∑k
i=1 λi = 1. Then (x

?
1, x

?
2) ∈ IRE .

Proof. By hypothesis, (x?1, x
?
2) ∈ IR and

k∑
i=1

λi(di1x?1 + di2x
?
2) 6

k∑
i=1

λi(di1x1 + di2x2), ∀ (x1, x2) ∈ IR.

Suppose (x?1, x
?
2) 6∈ IRE . Hence, there must be (x̂1, x̂2) ∈ IR which dominates (x

?
1, x

?
2), i.e., di1x̂1 + di2x̂2 6 di1x

?
1 + di2x

?
2,

i = 1, . . . , k, and dj1x̂1+dj2x̂2 < dj1x?1+dj2x
?
2 for some j ∈ {1, . . . , k}. Multiplying componentwise by weights λi and taking

into account that λi > 0,∀i = 1, . . . , k, we get
k∑
i=1

λi(di1x̂1 + di2x̂2) <
k∑
i=1

λi(di1x?1 + di2x
?
2),

which contradicts the optimality of (x?1, x
?
2). �
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Remark 11. The WSS-LMOLBP problem associated with Example 2 is:

WSS-LMOLBP(λ) : min λ1(x+ 2y+ 3z)+ λ2(−x− y),where z solves
min −z
s.t. (x, y, z) ∈ S.

For instance, taking λ = (0.34, 0.66) we get that G is efficient. This example also illustrates that there are efficient
solutions that cannot be obtained by solving problem (7). Taking into account that this problem is equivalent to minimizing
a linear function over a union of polyhedra, it is not possible to get any of the efficient solutions which are points of the
segment E − J (except point E) by solving weighted sum scalarization problems. Fig. 4 shows that no non-dominated point
in the segment Ẽ−G′, open at G′, (except point Ẽ) is an optimal solution of the corresponding problem (8) for some (λ1, λ2).

Theorem 12. Let F be a face of T such that F ⊂ IR. Let (x̃1, x̃2) ∈ ri F , where ri F denotes the relative interior of F . If (x̃1, x̃2) is
an efficient solution of the relaxed problem (5), then F ⊂ IRE .

Proof. Taking into account that problem (5) is a linear multiobjective program, the fact that (x̃1, x̃2) ∈ TE implies that
F ⊂ TE . Moreover, since IR ⊂ T , then IR ∩ TE ⊂ IRE . Hence the assertion of the Theorem follows. �

Now consider the linear multiobjective problem (9) in which the upper level linear multiobjective function is minimized
over the convex hull of the inducible region:

CHLMP : min
x1,x2

(d1(x1, x2), . . . , dk(x1, x2))

s.t. (x1, x2) ∈ conv (IR).
(9)

Let conv (IR)E be its efficient set.

Theorem 13. Suppose that (x̃1, x̃2) is an extreme point of conv (IR) such that (x̃1, x̃2) ∈ conv (IR)E . Then (x̃1, x̃2) ∈ IRE .

Proof. As (x̃1, x̃2) is an extreme point of conv (IR), (x̃1, x̃2) ∈ IR.
Suppose (x̃1, x̃2) 6∈ IRE . Hence, there must be (x̂1, x̂2) ∈ IR which dominates (x̃1, x̃2), i.e., di1x̂1 + di2x̂2 ≤ di1x̃1 + di2x̃2,

i = 1, . . . , k, and dj1x̂1 + dj2x̂2 < dj1x̃1 + dj2x̃2 for some j ∈ {1, . . . , k}.
Taking into account that IR ⊂ conv (IR), (x̂1, x̂2) ∈ conv (IR). Therefore, (x̃1, x̃2) 6∈ conv (IR)E . Contradiction. �

Theorem 14. Let F be a face of conv (IR) and (x̃1, x̃2) ∈ ri F . If (x̃1, x̃2) ∈ conv (IR)E ∩ IR then F ⊂ IRE .

Proof. Since (x̃1, x̃2) ∈ IR, then F ⊂ IR. Moreover, taking into account that problem CHLMP is a linear multiobjective
program, as a result of (x̃1, x̃2) ∈ conv (IR)E , F ⊂ conv (IR)E . Hence, F ⊂ IR ∩ conv (IR)E ⊂ IRE . �

5. Finding efficient points by scalarization techniques

In multiobjective programming with a single level of decision making, several other methods have been proposed to
cope with the problem of getting efficient solutions or checking efficiency based on transforming objective functions into
constraints. They are specially addressed to multiobjective functions in which neither Y nor Y + Rk= are convex sets.
In this Section we give an idea of two of these procedures, paying special attention to the fact that, when applied to
LMOLBP problems, they result in solving standard linear bilevel problems.

5.1. The ε-constraint method

This consists in optimizing one of the original objectives, setting the remaining objectives as constraints [15]. Bearing in
mind the LMOLBP problem, the associated jth objective ε-constraint problem is the linear bilevel problem:

Pj(ε) : min
x1,x2

dj1x1 + dj2x2
s.t. di1x1 + di2x2 6 εi, i = 1, . . . , k, i 6= j

A11x1 + A
1
2x2 6 b

1

x1 > 0

(10a)

where x2 solves

min
x2

c2x2

s.t. A21x1 + A
2
2x2 6 b

2

x2 > 0,
(10b)

where ε = (ε1, . . . , εj−1, εj+1, . . . , εk)t ∈ Rk−1. Notice that every feasible solution (x1, x2) of problem (10) is a point of IR.
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Theorem 15. Let (x?1, x
?
2) be an optimal solution of problem Pj(ε) for some j. Then (x

?
1, x

?
2) ∈ IRwE .

Proof. By hypothesis, (x?1, x
?
2) ∈ IR and di1x

?
1 + di2x

?
2 6 εi, i = 1, . . . , k, i 6= j.

Suppose (x?1, x
?
2) 6∈ IRwE . Hence, there must be (x̂1, x̂2) ∈ IR such that di1x̂1 + di2x̂2 < di1x

?
1 + di2x

?
2 6 εi, i = 1, . . . , k.

Therefore, (x̂1, x̂2) is a feasible solution of problem (10). Moreover, dj1x̂1 + dj2x̂2 < dj1x?1 + dj2x
?
2, which contradicts the

optimality of (x?1, x
?
2). �

Theorem 16. If (x?1, x
?
2) is the unique optimal solution of problem Pj(ε) for some j, then (x

?
1, x

?
2) ∈ IRE .

Proof. If (x?1, x
?
2) 6∈ IRE , then there must be (x̂1, x̂2) ∈ IR which dominates (x

?
1, x

?
2), i.e., di1x̂1 + di2x̂2 6 di1x

?
1 + di2x

?
2,

i = 1, . . . , k, and dh1x̂1+dh2x̂2 < dh1x?1+dh2x
?
2 for some h ∈ {1, . . . , k}. Hence, (x̂1, x̂2) is a feasible solution of problem (10).

Besides, dj1x̂1 + dj2x̂2 6 dj1x?1 + dj2x
?
2. Therefore, dj1x̂1 + dj2x̂2 = dj1x

?
1 + dj2x

?
2 and (x̂1, x̂2) is also an optimal solution of (10),

which contradicts the uniqueness of (x?1, x
?
2). �

Theorem 17. A bilevel feasible solution (x?1, x
?
2) is efficient if and only if there exists ε

?
∈ Rk such that (x?1, x

?
2) solves

problem Pj(ε?) for every j = 1, . . . , k.

Proof. Necessity: By taking ε? = (d11x?1 + d12x
?
2, . . . , dk1x

?
1 + dk2x

?
2)
t , (x?1, x

?
2) is a feasible solution of every problem Pj(ε

?),
j = 1, . . . , k. Suppose that there is some h ∈ {1, . . . , k} such that (x?1, x

?
2) is not an optimal solution of Ph(ε

?). Then, there
exists (x̂1, x̂2) feasible solution of problem Ph(ε?) such that dh1x̂1+dh2x̂2 < dh1x?1+dh2x

?
2 and di1x̂1+di2x̂2 6 εi = di1x

?
1+di2x

?
2,

i = 1, . . . , k, i 6= h. Therefore, (x̂1, x̂2) dominates (x?1, x
?
2). Contradiction.

Sufficiency: By hypothesis, (x?1, x
?
2) ∈ IR. If (x

?
1, x

?
2) 6∈ IRE , there exists (x̂1, x̂2) ∈ IR which dominates it, i.e., di1x̂1+di2x̂2 6

di1x?1 + di2x
?
2, i = 1, . . . , k, and dh1x̂1 + dh2x̂2 < dh1x

?
1 + dh2x

?
2 for some h ∈ {1, . . . , k}. Hence, (x̂1, x̂2) is a feasible solution

of problem Ph(ε?) and provides a better value of the objective function than (x?1, x
?
2). Contradiction. �

5.2. Benson’s method

This method allows us to check the efficiency of a feasible solution or, in case of a negative answer, to construct an
efficient point [16]. Bearing in mind the LMOLBP problem, for a given (x̃1, x̃2) ∈ IR, it consists in solving the linear bilevel
problem:

max
x1,x2,z

k∑
i=1

zi

s.t. di1x1 + di2x2 + zi = di1x̃1 + di2x̃2, i = 1, . . . , k
A11x1 + A

1
2x2 6 b

1

x1 > 0, z > 0

(11a)

where x2 solves

min
x2

c2x2

s.t. A21x1 + A
2
2x2 6 b

2

x2 > 0,
(11b)

where z = (z1, . . . , zk)t ∈ Rk. Note that for every feasible solution (x1, x2, z) of problem (11), (x1, x2) is a point of IR.

Theorem 18. The bilevel feasible solution (x̃1, x̃2) is efficient if and only if the optimal objective value of problem (11) is equal to
zero.

Proof. Necessity: If (x̃1, x̃2) ∈ IRE then there is no bilevel feasible solution which dominates it. Hence, the feasible region of
problem (11) only includes points (x1, x2, z) such that (x1, x2) ∈ IR and z = 0, and so the optimal objective value is zero.
Sufficiency: Let (x1, x2) ∈ IR such that di1x1 + di2x2 6 di1x̃1 + di2x̃2, i = 1, . . . , k. As the optimal value of problem (11) is

zero, di1x1 + di2x2 = di1x̃1 + di2x̃2, i = 1, . . . , k. Hence there is no a bilevel feasible solution which dominates (x̃1, x̃2) ∈ IR,
i.e. (x̃1, x̃2) ∈ IRE . �

Theorem 19. Let (x?1, x
?
2, z

?) be an optimal solution of problem (11). Then (x?1, x
?
2) ∈ IRE .

Proof. By hypothesis, (x?1, x
?
2) ∈ IR. If (x

?
1, x

?
2) 6∈ IRE there exists (x̂1, x̂2) ∈ IR which dominates it, i.e., di1x̂1 + di2x̂2 6

di1x?1 + di2x
?
2, i = 1, . . . , k, and dj1x̂1 + dj2x̂2 < dj1x

?
1 + dj2x

?
2 for some j ∈ {1, . . . , k}.

Let ẑi = di1x?1 + di2x
?
2 − di1x̂1 + di2x̂2 > 0, i = 1, . . . , k. Then (x̂1, x̂2, ẑ) is a feasible solution of problem (11). Taking into

account the selection of ẑi,
∑k
i=1 ẑi >

∑k
i=1 z

?
i , which contradicts the optimality of (x

?
1, x

?
2, z

?). �
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6. Conclusions

In this paper we have analyzed general bilevel problems with multiple objectives at the upper level, when all objective
functions are linear and constraints at both levels define polyhedra. This problem can be reformulated as a multiobjective
problem with linear objective functions over a feasible region which is implicitly defined by a linear optimization problem
and, in general, is non-convex. Assuming that the inducible region is non-empty and taking into account its compactness,
we have proved that the non-dominated set is non-empty. In order to obtain efficient solutions we use weighted sum
scalarization methods and scalarization methods, together with the fact that the feasible region is a union of polyhedra.
One of the main characteristics of these methods is that they result in solving linear bilevel problems, that is to say bilevel
problems in which both objective functions are linear and the constraint region is a polyhedron. Furthermore, several
examples are displayed. They enable us to show the relationship of the efficient set of the LMOLBP problemwith the efficient
set of the linear multiobjective problem which results in removing the lower level objective function. The examples also
show that it is not possible to obtain all the efficient points based on weighted sum scalarization methods.
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