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Abstract

Low-rank approximation of a correlation matrix is a constrained minimization problem
that can be translated into a minimization–maximization problem by the method of Lagrange
multiplier. In this paper, we solve the inner maximization problems with a single spectral de-
composition, and the outer minimization problems with gradient-based descending methods.
An in-depth analysis is done to characterize the solutions of the inner maximization problem
for the case when they are non-unique. The well-posedness of the Lagrange multiplier problem
and the convergence of the descending methods are rigorously justified. Numerical results are
presented.
© 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

One of the major sources of low-rank approximation problem is image processing,
where for storage and transmission purpose, images or data must be compressed
in an efficient way. Mathematically, data compression can be interpreted into a low-
rank matrix approximation problem which can be achieved by singular value de-
composition (SVD). In the recent advance of financial engineering, risk managers
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often need to seek for the low-rank approximation of correlation matrices, which
is an approximation problem under constraints: the approximate matrices must be
semi-positive definite with all diagonal entries equal to 1 (We call it “one-diagonal”
condition for later reference). Due to the existence of constraints, we have to go
beyond the SVD technique for the approximation, and this is the issue of the current
paper.

The problem of approximating correlation matrices arose from the application
of the so-called market model of interest rates [2,6]. In the market model, the state
variables are the forward term rates of interest, which are assumed to follow the log-
normal stochastic processes. The model is then used to price interest-rate derivative
instruments. The forward term rates are observable variables in the market place.
With historical data we are able to extract their correlation structure. Desirably, we
want to implant the correlation structure into the stochastic processes for the forward
rates, so that the model can appropriately describe the dynamics of forward rate
evolutions, and, consequently, make the pricing more accurate. It is obvious that the
rank of the model correlation matrix does not exceed the number of random factors
the model takes. When the number of random factors is smaller than the rank of the
historical correlation matrix, which is almost always the case, the model correlation
matrix cannot be made identical to the historical one. In such circumstance, we will
instead try to achieve the best approximation to the historical correlation matrix
under, in particular, the Frobenius matrix norm. This gives rise to the problem of
optimal low-rank approximation of a correlation matrix. Recently, Rebonato [8] pro-
posed an elegant parameterization technique to ensure the one-diagonal condition,
before getting into a brute force optimization procedure for the approximate ma-
trices. The parameterization removes the constraints. The subsequent unconstraint
optimization, however, has as many unknowns as the number of elements of a given
correlation matrix, which can be very big and thus can be very time consuming
to solve. In this paper, we take the approach of Lagrange multiplier (see [5], for
example). This approach allows us to use spectral decomposition, iteratively, to
solve the approximation problem. Numerically, our approach is both robust and effi-
cient. Moreover, without any assumption, we can rigorously justify the convergence
of the Lagrange multiplier method for the low-rank approximation of correlation
matrices.

This paper is organized as follows. In Section 2, we will offer a simplified exposi-
tion of the market model for interest rate modeling, where we will describe the origin
of the approximation problem for correlation matrices. In Section 3, we will de-
scribe the Lagrange multiplier methodology for the matrix approximation problem,
impose extra regularization conditions for the case when the solutions are non-
unique, and characterize the solutions. In Section 4, we will show that solution(s)
produced by Lagrange multiplier method indeed solve the original constrained min-
imization problem, and prove the convergence of a gradient-based descending search
algorithm. In Section 5 we present computational results with both hypothetical and
practical correlation matrices. Finally in Section 6 we conclude the paper.
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Notation. For a square matrix A, we denote by diag(A) the column vector with
the diagonal entries of A. Conversely, if d is a (column) vector, we define diag(d) the
diagonal matrix with the diagonal entries as the components of d . We use ‖ · ‖F to
denote the Frobenius norm of a matrix and ‖ · ‖2 for the spectrum norm of a matrix
or the 2-norm of a vector.

2. Background of the approximation problem in finance

In the interest-rate derivative market of London Inter-Bank Offer Rates (LIBOR),
financial professionals use mathematical models to price and hedge a variety of de-
rivative products. Among these models, the market model is perhaps the most popu-
lar one. With an interest-rate model, people try to describe the probability distribution
of future interest rates. In the market model, the forward term rates of interest are
taken as the state variables, and are assumed to follow lognormal stochastic pro-
cesses. Under the log-normal forward rate processes, liquid interest-rate derivatives
like caps, floors and swaptions (see [8] for description) are priced with the famous
Black’s formula [1]. The existence of the closed-form formula facilitates efficient
determination, so-called calibration in the market place, of model parameters. We
refer readers to [1] for the pricing theory of commodity options. For a comprehensive
discussion of the market model, we refer readers to [2,6].

The market model was built upon the lognormal dynamics of forward LIBOR
rates. Let fj (t) = f (t; Tj , Tj+1) be the arbitrage-free forward lending rate seen at
time t for the period (Tj , Tj+1) in the future. The rate fj (t) is assumed to follow the
so-called lognormal process:

dfj (t) = fj (t)(γj (t))
T[σj+1(t) dt + dZ(t)], (1)

where Z(t) is the vector of nt -dimensional independent Brownian motions, γj (t) is
the vector of the instantaneous volatility coefficients for forward rate, and σj+1(t)

is the vector of instantaneous volatility coefficients of zero-coupon bond of maturity
Tj+1. We consider a collection of N forward rates, fj , j = 1, 2, . . . , N . Due to the
strong correlation amongst the forward rates, financial engineers do not use as many
random factors as the number of forward rates. Instead, the number of factors nt is
often taken to be three or four, which is typically much smaller than N , the number
of forward rates. The volatility of the forward rates and the volatility of the zero-
coupon bond are not independent. The no-arbitrage condition [2] gives rise to the
relation between the two volatilities:

σj (t) =
j−1∑
k=0

�Tkfk(t)

1 + �Tkfk(t)
γk(t), (2)

where �Tj = Tj+1 − Tj and γj (t) = 0 for t � Tj . As the convention we label the
time of today by t = T0 = 0. The stochastic evolution of the N forward rates is fully
described by the quantities of correlation defined by
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Ci
jk =

∫ Ti
Ti−1

γj (t) · γk(t) dt√∫ Ti
Ti−1

‖γj (t)‖2
2 dt ·

√∫ Ti
Ti−1

‖γk(t)‖2
2 dt

, 1 � i � N. (3)

Note that Ci
jk = 0 for either j < i or k < i since either fj or fk has been known

by the time Ti . Hence for fixed i, Ci
jk constitutes the elements of an (N − i + 1) by

(N − i + 1) non-negative symmetric matrix:

Ci =




Ci
i,i Ci

i,i+1 · · · Ci
i,N

Ci
i+1,i Ci

i+1,i+1 · · · Ci
i,N

...
...

. . .
...

Ci
N,i Ci

N,i+1 · · · Ci
N,N



, i = 1, 2, . . . , N. (4)

Under the lognormal forward rate processes, one can derive Black’s formula [2]
for caplets. A caplet of maturity Tj is an interest-rate contract which, for some pre-
specified interest-rate level K , delivers at time Tj+1 a cash flow in the amount
of L�Tj (fj (Tj ) − K) if the term rate fj (Tj ) is above K , or zero if otherwise.
Here L is called the notional amount of the contract. The pricing formula of the
caplet is

Clet = L�Tj [fj (t)N(d1) − KN(d2)], (5)

where N(·) is the normal accumulative function,

d1 = ln
fj (t)

K
+ 1

2ζ
2
j Tj

ζj
√
Tj

, d2 = d1 − ζj , (6)

and

ζ 2
j = 1

Tj

∫ Tj

0
‖γj (t)‖2

2 dt. (7)

Quantity ζj is called the caplet volatility. Black’s formula establishes a one-to-one
correspondence between the caplet price and the caplet volatility.

In reality, the prices of liquid instruments like caplets are determined by supply-
and-demand. Other more complex instruments, for example, Bermudian options and
cancelation swaps (see for example, [8]), are priced in a way consistent with the
prices of the liquid instruments. A major financial engineering problem in the market
place is to find γj (t) subject to a given set of caplet prices, or equivalently, a set
of caplet volatilities {ζj }, as well as the historical correlation matrices {Ci} of the
forward rates involved.

In the so-called non-parametric approach, the problem boils down to the determi-
nation of the piece-wise constant vector function of volatilities

γj (t) = γ i
j = sj

(
aij,1, a

i
j,2, . . . , a

i
j,nt

) ≡ sjaij , for Ti−1 � t � Ti, (8)
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with

sj = ∥∥γ i
j

∥∥
2 = ζj and

∥∥aij
∥∥

2 = 1. (9)

Apparently, sj is uniquely determined by the caplet volatility ζj . The forward rate
volatility components aij , meanwhile, arise from the SVD 1 of the correlation matrix

Ci . To see this, suppose the rank of Ci is less than or equal to nt . Perform SVD on Ci :

Ci = U�UT, (10)

where � is an nt by nt diagonal matrix with non-negative diagonal elements, and
define aij as the j th row of U�1/2, i.e.,

Ci =



aii
...

aiN


 (

(aii )
T, . . . , (aiN )

T
)
. (11)

Then the model correlation so obtained is

Corr(�fj (ti),�fk(ti)) = �T
∑nt

l=1 a
i
l,j a

i
l,k√

�T
∑nt

l=1(a
i
l,j )

2 ·
√
�T

∑nt
l=1(a

i
l,k)

2

=Ci
jk (12)

by property (11), where

�fj (ti) = fj (ti)sj (aij )
T[σj+1�t + �Z(t)]. (13)

For later reference, we call the columns of the matrix U�1/2 principle components
of the matrix Ci .

The complication in the determination of aij , j = i, . . . , N , is that the rank of Ci is
in general equal to N − i + 1, the number of forward rate “alive”, which is typically
much bigger than nt , the number of random factors being taken (see [7] for financial
background). In such case the above procedure for calculating aij , j = i, . . . , N ,
breaks down. Therefore, a preprocessing is in general required to reduce the ranks
of the given correlation matrices. For a given correlation matrix Ci for the period,
preprocessing is naturally formulated as the following minimization problem with
constraints:

min
Ĉi

‖Ci − Ĉi‖F,

s.t. Ĉi � 0, rank(Ĉi ) � nt , Ĉi
kk = 1, (14)

k = i, . . . , N, i = 1, . . . , N.

Here, Ĉi � 0 means the non-negative definiteness of Ĉi . In the following section,
we consider the solution of such constraint minimization problem.

1 It is called Principle Component Analysis (PCA) by financial professionals.
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3. Optimal constrained lower-rank approximation

Given a real symmetric matrix C of order N and an integer n < N , we consider
the following constrained minimization problem:

min
X

‖C − X‖F, (15)

s.t. rank(X) � n, diag(X) = diag(C).

We denote the optimal solution by C∗, and the feasible set of solutions by S:

S = {
X ∈ RN×N | rank(X) � n, diag(X) = diag(C)

}
.

For the market model introduced in the last section, the optimal solution C∗ serves
as a correlation matrix and hence must be non-negative definite. It thus appears that
the feasible set of the optimal problem should instead be S+, the subset of S that
consists of only positive semi-definite matrices. Adding explicitly such constraint
will inevitably increase the difficulty of the problem. Fortunately, as we will see
later, the solution C∗ to (15) will automatically be positive semi-definite, given C a
positive semi-definite matrix. Hence the explicit imposition of the extra constraint
becomes unnecessary.

Our approach for solving the constrained optimal approximation problem begins
with transforming it into an equivalently min–max problem by the method of Lag-
range multiplier. Let Rn be the set of N × N matrices with rank less or equal to n.
The Lagrange multiplier problem corresponding to (15) is defined as the min–max
problem

min
d

max
X∈Rn

L(X, d) (16)

with the Lagrange function

L(X, d) = −‖C − X‖2
F − 2dTdiag(C − X), (17)

where d is the vector of the multipliers. Note that L(X, d) is linear in d in the sense

L(X, td + (1 − t)d̂) = tL(X, d) + (1 − t)L(X, d̂). (18)

We will justify later that problem (16) is equivalent to the original constrained prob-
lem (15).

Numerically the min–max problem (16) will be handled as a maximization prob-
lem

V (d) = max
X∈Rn

L(X, d) (19)

nested in another minimization problem

min
d

V (d). (20)
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It is a matter then to look for efficient methods separately for the maximization prob-
lem (19) and minimization problem (20). For the problem of low-rank approxima-
tion, it is crucial to observe that the Lagrange function can be written into

L(X, d) = −‖C + D − X‖2
F + ‖d‖2

2, (21)

where D is the diagonalised matrix of d: D = diag(d). Hence for fixed d , the maxi-
mizer to (19) can be obtained by the spectral decomposition of matrix C + D (which
is symmetric). Let

C + D = U�UT (22)

be the spectral decomposition with orthogonal matrix U and eigenvalue matrix

� = diag(λ1, λ2, . . . , λN),

where, for our interest, the diagonal elements are put in non-increasing order in mag-
nitude:

|λ1| � |λ2| � · · · � |λN |.
Note that both U and � depend on the multiplier vector d , so they will be denoted by
U(d) and �(d) when we need to highlight the dependence. A solution to the problem
(19), the best rank-n approximation of C + D, is given by

C(d) ≡ Cn(d) = Un�nU
T
n , (23)

where Un is the matrix consisting of the first n columns of U , and �n = diag(λ1,

. . . , λn) is the principle submatrix of � of degree n. For the objective function it
then follows that

V (d) = −
N∑

j=n+1

λ2
j + ‖d‖2

2.

Obviously, we have the solution uniqueness only for |λn| > |λn+1|. When |λn| =
|λn+1|, we need to add more constraints to narrow down a solution. The additional
constraint we adopt to (19) is

min
X∈S(d)

‖diag(C − X)‖2, (24)

where S(d) is the set of optimal solutions for multipliers d . That is, we look for the
minimizer(s) that best observe the original constraints in (15).

To figure out the structure of solutions to (19), (24), we consider, without loss of
generality, the following case:

|λα| > |λα+1, λα+1 = · · · = λβ |, |λβ | > |λβ+1|
with integers α and β such that α < n � β. The set of solutions to (19) then are
expressed as

S(d) ≡ {
Cα + λnQ1YY

TQT
1 : Y TY = In−α

}
, (25)
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where Cα is defined as Cn for n = α, and Q1 = U(:, α + 1 : β) is the submatrix
consisting of the columns α + 1, . . . , β of the unitary matrixU . Since forX ∈ S(d),

C − X = C − Cα − λnQ1YY
TQT

1 , (26)

problem (24) is in fact a minimization problem over the Stiefel manifold

V = {
Y ∈ R(β−α)×(n−α) : Y TY = In−α

}
.

One can solve such problem using Newton’s method or conjugate gradient method
[3]. Nevertheless, solutions to (19), (24) may still be non-unique. The diagonal vec-
tors x = diag(X) corresponding to the solutions X, however, can be shown to be
unique under very weak conditions. Let us define by � the set of the diagonal vectors
of matrices Q1YY

TQT
1 :

� = {z = diag(Q1YY
TQT

1 ) : Y ∈ V}.
It is trivial to verify that all the vectors in � belong to the superplane

z(1) + z(2) + · · · + z(N) = n − α.

In the case when α = n − 1 and β = n + 1, � is a segment of an ellipsoid of lower
dimension. To see that we let Y = [cos(θ), sin(θ)]T and Q1 = [u, v]. Then for any
z ∈ �, we have

z(i) = (u(i) cos(θ) + v(i) sin(θ))2 (27)

= u(i)2 + v(i)2

2
+ u(i)2 − v(i)2

2
cos(2θ) + u(i)v(i) sin(2θ). (28)

Denoting the coefficients by

p0(i) = u(i)2 + v(i)2

2
, p1(i) = u(i)2 − v(i)2

2
, p2(i) = u(i)v(i), (29)

which are independent on Y ∈ V, we can write the vector z ∈ � as

z = p0 + p1 cos(2θ) + p2 sin(2θ).

Let
[p1, p2] = G1�W

T

be the SVD of [p1, p2] with diagonal matrix � of order r = rank([p1, p2]) � 2, and
orthonormal matrices G1 ∈ RN×2 and W ∈ R2×r . We rewrite z ∈ � into

z = p0 + G1�y (30)

with y = WT[cos(2θ), sin(2θ)]T. Clearly, when r = 2, y is a 2-dimensional unit
vector and � is an ellipsoid such that
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(z − p0)
TS(z − p0) = 1

for a rank-2 positive semi-definite matrix

S = G1�
−2GT

1 .

For the case when r = 1, y is a bounded scalar variable, |y| � 1. Hence � is a line
segment, a degenerate ellipsoid.

The following theorem shows that, when λn = λn+1, the simplest case of multiple
eigenvalues, optimal solutions to (19), (24) have the same diagonal elements under
very mild conditions.

Theorem 3.1. Assume α = n − 1 and β = n + 1.Denote f = GT
1 (diag(C − Cα) −

p0). If

(1) rank([p1, p2]) = 1, or
(2) rank([p1, p2]) = 2 and f T�−2f > 1, or
(3) rank([p1, p2]) = 2, f T�−2f � 1, and f (2) /= 0,

then for any two solutions Xi (i = 1, 2) of (19) and (24), we have

diag(X1) = diag(X2).

Proof. Recalling (24), (25) and (26), we consider the minimization problem

min
{‖diag(C) − x‖2 : x ∈ DS

}
, (31)

where

DS = {
x = diag(X) : X ∈ S(d)

}
,

i.e., the set of diagonal vectors of the matrices in S(d). It is clear that if
rank([p1, p2]) = 1, DS is a line segment and the minimizer of the problem (31) is
unique.

When rank([p1, p2]) = 2, we rewrite DS as

DS = {
x = diag(Cα) + p0 + G1�y : yTy = 1

}
.

Denoting

h = diag(C − Cα) − p0,

we have that for x ∈ DS,

‖x − diag(C)‖2
2 = ‖h − G1�y‖2

2 = ∥∥GT
1h − �y

∥∥2
2 + ∥∥GT

2h
∥∥2

2, (32)

where G2 is the orthonormal matrix by itself while being orthogonal to G1. Hence
problem (31) is equivalent to minimizing the distance from f = GT

1h to the ellipse

wT�−2w = 1
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with w = �y. It can be argued easily that the minimizer is unique under the condi-
tions of the theorem, which completes the proof. �

Remark. Following the above proof, we can show that all the solutions of problem
(19), (24) have totally two different diagonal vectors in the case when rank([p1,

p2]) = 2, f (2) /= 0, and |f (1)| � ‖[p1, p2]‖2. One may construct such an example.

In order to generalize Theorem 3.1 to the case k ≡ n − α � 1 and m ≡ β − α >

2, we need to characterize the structure of set �.

Lemma 3.1. Let Q ∈ RN×m be an orthonormal matrix and k � m. Then there
exist integer r � (m2 + m)/2 − 1, constant vector p0 ∈ RN, constant matrix P ∈
RN×r , and unit column vector φ(Y ) ∈ Rr with r independent functional components
defined over the Stiefel manifold

V = {
Y ∈ Rm×k : Y TY = Ik

}
,

such that for each Y ∈ V,

diag(QYY TQT) = p0 + Pφ(Y ).

Proof. Let us first consider the case when k = 1. Define

H = H(Y) ≡ mYY T − Im

and denote h = vect(H) as the column vector consisting of the entries of H , i.e.,

h(Y ) = vect(H) = [
h11, . . . , hm1, h12, . . . , hm2, . . . , h1m, . . . , hmm

]T
.

Clearly, h(Y ) has a constant norm for any Y ,

‖h(Y )‖2
2 = ‖H‖2

F = tr(H 2) = m2 − m.

Substituting YY T = (Im + H)/m into z(Y ) = diag(QYY TQT) yields

z(Y ) = 1

m
diag(QQT) + 1

m
diag(QHQT) = p0 + P̂ h(Y ),

where p0 = diag(QQT)/m and P̂ with the rows

P̂ (i, :) = 1

m

[
Q(i, 1)Q(i, :), . . . ,Q(i, n)Q(i, :)].

Here X(i, :) denotes the ith row vector of matrix X. (We will also use X(:, j) later to
denote the j th column vector of X.) Obviously, the sequence of m2 functions hij (Y )
are not linearly independent for Y ∈ V because hij (Y ) ≡ hji(Y ) and
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h11(Y ) + h22(Y ) + · · · + hmm(Y ) = tr(H(Y )) ≡ 0.

Let r be the number of independent component functions of h(Y ) (so there must be
r � (m2 + m)/2 − 1). We can write h(Y ) as

h(Y ) = F φ̂(Y ),

where F is a constant matrix, and φ̂(Y ) is a r-dimension column vector consisting
of independent component functions. We can further assume that F is orthonormal.
(Otherwise we can take SVD for F , F = Û ŜV̂ T and replace F and φ̂ by Û and
ŜV̂ Tφ̂, respectively.) Clearly we also have ‖φ̂(Y )‖2 = √

m2 − m. Define

P =
√
m2 − m P̂F, φ(Y ) = φ̂(Y )/

√
m2 − m,

we then have

z(Y ) = p0 + Pφ(Y )

with unit vector φ(Y ).
Next we consider the case k > 1, i.e., Y has multiple columns. From the proof

above we have that for each column Y (:, j) of Y ∈ V,

diag
(
QY(:, j)Y (:, j)TQT) = p0 + Pφ(Y (:, j)),

which renders

diag(QYY TQT) = kp0 + P

k∑
j=1

φ(Y (:, j)) = kp0 + P φ̃(Y )

with φ̃(Y ) = ∑k
j=1 φ(Y (:, j)). Next we want to prove that the r component func-

tions of φ̃(Y ) are also linearly independent and the norm of φ̃(Y ) is a constant for
Y ∈ V, so that it can be normalized without affecting the linear independence of the
component functions.

To show the linear independence, let a be a constant vector such that aTφ̃(Y ) ≡ 0
for Y ∈ V and let b = Fa. Note that for i = 1, . . . , r ,

a(i) = F(:, i)Tb = tr
(
vect−1(b)Tvect−1(F (:, i))).

(Here vect−1(x) denoted the unique matrix X of order m satisfying vect(X) = x

for an m2-dimensional vector x.) Then a = 0 and the linear independence follows
immediately if we prove that: (1) the m-by-m matrix B = vect−1(b) is skew-sym-
metric, and (2) for each i = 1, . . . , r , the matrix vect−1(F (:, i)) is symmetric. The
key of proof is the formula

h(y) =
√
m2 − mFφ(y) (33)

for unit vector y.
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To show that B is skew-symmetric, we first use (33) with y = Y (:, j) to obtain
that

0 =
√
m2 − m aTφ̃(Y ) = bT

k∑
j=1

h(Y (:, j)) = m tr
(
B(YY T − Im)

)
,

i.e., there must be tr(B(YY T − Im)) = 0. For any orthonormal matrixG ∈ Rm×(m−k),
one can write GGT = YY T − Im for a Y ∈ V, so we have

tr(GTBG) = 0

for any orthonormal matrix G ∈ Rm×(m−k), which implies that B has zero diagonal
entries. Based on these properties we have that for any orthogonal matrix [Y G]
with Y of k columns and G of (m − k) columns,

tr(Y TBY) = 0 and tr(GTBG) = 0. (34)

Take the spectral decomposition of the symmetric matrix

B + BT = Q̃D̃Q̃T = Q̃1D̃1Q̃
T
1 + Q̃2D̃2Q̃

T
2

for a orthogonal matrix Q̃ = [Q̃1, Q̃2] and a diagonal matrix D̃ = diag(D̃1, D̃2)

with decreasing diagonals. We then apply (34) with Y = Q̃1 andG = Q̃2, and obtain
tr(D̃i) = 0 for i = 1, 2. It then follows that B is skew-symmetric: BT = −B.

To show that vect−1(F (:, i)) is symmetric, we let y1, . . . , yr be r unit vectors
such that the matrix � = [φ(y1), . . . , φ(yr)] is nonsingular. Furthermore, we let η =
[η(1), . . . , η(r)]T be the ith column of �−1 (the index i is omitted for simplicity),
i.e.,

∑r
j=1 η(j)φ(yj ) = ei , the ith column of identity matrix Ir , i = 1, . . . , r . Again

we use (33) with y = yj , j = 1, . . . , r , and obtain

F(:, i) = F

r∑
j=1

η(j)φ(yj ) = 1√
m2 − m

F

r∑
j=1

η(j)h(yj )

= 1√
m2 − m

vect


 r∑
j=1

η(j)
(
myjy

T
j − Im

)

 .

Clearly,

vect−1(F (:, i)) = 1√
m2 − m

r∑
j=1

η(j)
(
myjy

T
j − Im

)

is symmetric.
Finally, to normalize φ̃(Y ), we again use (33) with y = Y (:, j), j = 1, . . . , k, and

have for i /= j ,

(m2 − m)φ(Y (:, i))Tφ(Y (:, j)) = h(Y (:, i))Th(Y (:, j))
= tr

(
H(Y(:, i))H(Y (:, j))) = −m.
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It follows that

‖φ̃(Y )‖2
2 = k − k2 − k

m − 1
= k(m − k)

m − 1
.

Redefine

p0 := kp0, P := √
k(m − k)/(m − 1)P, and

φ(Y ) := √
(m − 1)/(k(m − k))φ̃(Y ),

we again end up with

z = p0 + Pφ(Y ).

This completes the proof. �

Lemma 3.1 shows that � is an ellipsoid of lower dimension for the general cases
k = n − α � 1 and m = β − α > 2. Following similar arguments, we can extend
Theorem 3.1 to this general case. The proof for the next theorem is omitted due to
similarity.

Theorem 3.2. Let P = G1�W be the SVD of P. Denote f = GT
1 (diag(C − Cα) −

p0). If P is full rank in column and f T�−2f > 1, then all solutions to problems (19)
and (24) have same diagonal vectors.

Although (19), (24) may not have unique solution, the resulted objective function
V (d) is unique and is given by

V (d) = −
N∑

j=n+1

λ2
j (d) + ‖d‖2

2. (35)

Since {λj }’s depend continuously on d , so does V (d). Yet in the case of multiple
eigenvalues, the eigenvalues and V (d) are generally not differentiable with respect
to d . Moreover, in the case of multiple eigenvalues, matrix C(d) may be non-contin-
uous. Given below is an example with positive definite matrix C.

Example
Construct matrix C of order N = 3 as

C =

7 2 2

2 4 2
2 2 7


 .

For n = 2, the minimizer d∗ and the optimal solution C(d∗) are, respectively,

d∗ =

1

4
1


 and C(d∗) =


7 4 1

4 4 4
1 4 7


 .
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Let us define d(t) = (1, 4 + 2t, 1)T. One can verify that the eigenvalues of C +
diag(d(t)) are given by

λ1(t) = 9 + t +
√
(t − 1)2 + 8, λ2(t) = 6,

λ3(t) = 9 + t −
√
(t − 1)2 + 8.

Note that at t = 0 we have a double eigenvalue λ2(0) = λ3(0) = 6. For t /= 0, we
have the corresponding (non-normalized) eigenvectors as

u1(t) =

1 − t + √

(t − 1)2 + 8
4

1 − t + √
(t − 1)2 + 8


 , u2(t) =


1

1
1


 ,

u3(t) =

1 − t − √

(t − 1)2 + 8
4

1 − t − √
(t − 1)2 + 8


 .

If t > 0, then λ1(t) > λ3(t) > λ2(t) and

C(d(t)) = λ1(t)
u1(t)u1(t)

T

‖u1(t)‖2
2

+ λ3(t)
u3(t)u3(t)

T

‖u3(t)‖2
2

−→

5 2 5

2 8 2
5 2 5




as t → 0, while for t < 0, C(d(t)) → C(d∗). The one-sided derivatives of V (d(t))
are quite different:

d

dt
V (d(t))

∣∣∣∣
t=+0

= 16,
d

dt
V (d(t))

∣∣∣∣
t=−0

= 0.

The example shows that C(d(t)) is discontinuous and V (d(t)) is not differentiable
at t = 0.

4. Analysis for the equivalence

In this section, we will give a justification to the equivalence between the con-
strained low-rank approximation problem (15) and the min–max problem (16). Such
equivalence would have been easy to show, should there be certain degree of an-
alyticity for the solution(s), which is however not the case here: we do not have
the differentiability for the objective function V (d), the uniqueness and even the
continuity of C(d).

First of all, we prove the existence of solution(s) of the min–max problem (16)
or the minimization problem (20). Our analysis will make extensive use of the linear
convexity property of V (d).
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Theorem 4.1. There exists at least one solution to (20), and any local minimum of
V (d) is also a global minimum.

Proof. To prove existence we use the method of contradiction. Suppose there is no
solution to (16), then there exist a sequence of multiplier vectors d(j) → ∞ such
that V (d(j)) decreases. Write D(j) = D

(j)

1 + D
(j)

2 as a direct sum of two diagonal

matrices with rank(D(j)

1 ) � n and ‖D(j)

1 ‖∞ = ‖D(j)‖∞ −→ +∞. Since

V (d(j)) = max
X∈Rn

L(X, d(j)) � L
(
D

(j)

1 , d(j)
)
,

we have, using (21),

V (d(j)) � −∥∥C + D
(j)

2

∥∥2
F + ‖D(j)‖2

F

= −‖C‖2
F − 2 tr

(
CD

(j)

2

) + ∥∥D(j)

1

∥∥2
F

� −‖C‖2
F + (‖D(j)‖∞ − 2 tr(|C|))‖D(j)‖∞ −→ +∞. (36)

This however contradicts to the assumption that V (d(j)) decreases. Here we use |C|
to denote the matrix with entries of C in absolute values. The existence of solution(s)
is hence obtained.

The property that any local minimum must be at the same time a global mini-
mum stems from the convexity of V (d). Consider any two vectors d and d̂ . For any
t ∈ (0, 1), the linear-convexity property of L(d) yields

V (td + (1 − t)d̂) = max
X∈Rn

(
tL(X, d) + (1 − t)L(X, d̂)

)

� t max
X∈Rn

L(X, d) + (1 − t) max
X∈Rn

L(X, d̂)

= tV (d) + (1 − t)V (d̂)

� max(V (d), V (d̂)). (37)

Inequality (37) implies that all local minimums have the same values, so any local
minimum must at the same time be a global minimum. �

We remark that if C can be permuted to a block-diagonal matrix, say,

P TCP =
(
C1

C2

)
,

where P is a permutation matrix, then the optimal solution C∗ to the problem (15) is
given by

C∗ = P

(
C∗

1
C∗

2

)
P T,
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with C∗
i (i = 1, 2) being an optimal rank-ni approximation to Ci (in the sense of

(15) for certain splitting n = n1 + n2. We are now ready to show the uniqueness of
the minimizer d∗.

Theorem 4.2. If C cannot be permuted into a block diagonal matrix, then the min-
imizer d∗ of the optimal problem (19) is unique.

Proof. Assume to the contrary that there exists d∗∗ /= d∗ such that V (d∗∗) = V (d∗).
Denote d(t) = d∗ + t (d∗∗ − d∗) for t ∈ [0, 1], then we have

V (d(t)) =L(C(d(t)), d(t))

= (1 − t)L(C(d(t)), d∗) + tL(C(d(t)), d∗∗)
� (1 − t)V (d∗) + tV (d∗∗) = V (d∗), (38)

by the linear convexity property (18). This means that V (d(t)) = V (d∗) for all t ∈
[0, 1]. Thus all d(t), t ∈ [0, 1], are minimizers as well. From the above equalities we
also get that for each X ∈ S(d(t)), L(X, d∗) = V (d∗), which means that X is also
an optimal rank-n approximation to matrix C + D∗, so we conclude that

S(d(t)) = S(d∗).

We can write, therefore,

C + D∗ = X + E, C + D(t) = X + F(t),

for fixed X ∈ B(d∗), and E and F(t) are orthogonal to X. Subtracting the above two
equalities we end up with

t (D∗∗ − D∗) = D(t) − D∗ = F(t) − E.

This implies that for t ∈ (0, 1],

(D∗∗ − D∗)X = 0

because of the orthogonality between X and E or F(t). Without loss of generality
we can write

D∗∗ − D∗ =
(

0∗
D2

)

with non-singular diagonal matrix D2. It follows that

X =
(
X1

0

)
, E =

(
0

E2

)
,
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which gives, for the partition D∗ = diag(D∗
1 , D

∗
2) that

C = X + E − D∗ =
(
X1 − D∗

1
E2 − D∗

2

)
.

A contradiction thus arises: C is block-diagonal. �

To prove the equivalence between the constrained minimization problem (15) and
the mini–max problem (19), (20), we need to establish some properties of V (d) to
substitute the differentiability. The following inequality, although simple, places a
crucial role in the subsequent analysis.

Theorem 4.3. For any two vectors d, d̂, and any X ∈ S(d),

V (d̂) − V (d) � 2(d − d̂)Tdiag(C − X).

Proof. By definition,

V (d̂) � L(X, d̂) = −‖C − X‖2
F − 2d̂Tdiag(C − X). (39)

Note that

V (d) = −‖C − X‖2
F − 2dTdiag(C − X).

The inequality of the theorem follows immediately. �

An immediate consequence of the above theorem is that a vector d∗ satisfying
diag(C(d∗)) = diag(C) must be the minimizer of V (d). We will show next that it is
true vice-versa provided the nth eigenvalue of C + diag(d∗) is simple.

Theorem 4.4. Let d∗ be a minimizer of V (d). If λn(d∗) is simple, then

diag(C(d∗)) = diag(C),

and C(d∗) also solves the constrained problem (15).

Proof. Let d∗ be a minimizer of V (d) and X = C(d∗) the unique matrix in S(d∗).
Applying Theorem 4.3 for d̂ = d∗, d = d(t) ≡ d∗ + t · diag(C − X), and Y (t) ∈
S(d(t)) with positive t , we obtain

0 � V (d∗) − V (d(t)) � t · diag(C − X)Tdiag(C − Y (t)).

It follows that for all positive t ,

diag(C − X)Tdiag(C − Y (t)) � 0.

Because all the eigenvalues of a matrix are continuously dependent on the entries
of the matrix, we can conclude that for sufficiently small t , the nth eigenvalue of
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C + diag(d(t)) is also simple and then Y (t) tends to X as t → 0. Therefore let t →
0, we obtain that

diag(C − X)Tdiag(C − X) � 0,

which implies that diag(X) = diag(C).
The property that diag(C(d∗)) = diag(C) results in simple form of V (d∗):

V (d∗) = −‖C − C(d∗)‖2
F.

For any X ∈ S, we have

‖C − X‖2
F = −L(X, d∗) � −V (d∗) = ‖C − C(d∗)‖2

F.

Therefore C(d∗) is an optimal solution of the constrained problem (15). �

As was shown in Section 2, in the application of market model calibration we
must have positive semi-definite lower-rank approximations to the given correlation
matrices. This constraint has not been imposed in our solution procedure. Yet, as we
will show next, the positive semi-definiteness of the optimal approximations holds
automatically.

Theorem 4.5. Assume matrix C is positive semi-definite. If the nth eigenvalue of
matrix C + diag(d∗) is simple for the optimal multiplier d∗, then (1) d∗ is nonnega-
tive, and (2) the solution C∗ = C(d∗) is also positive semi-definite.

Proof. The positive semi-definiteness of C∗ follows directly from d∗ � 0, since
C + diag(d∗) is positive semi-definite. We prove the non-negativeness of d∗ using
the method of contradiction. Without loss of generalities, we can assume that C has
no zero rows/columns. (Otherwise we can apply the theorem to a smaller problem
for C1 to show the non-negativeness of the corresponding minimizer d∗

1 when C is
permuted as

C = P

(
C1

0

)
P T,

where C1 has no zero rows/columns. Then the minimizer d∗ = P [(d∗
1 )

T, 0]T.)

Assume on the contrary that d∗ has a negative component. Write C + D∗ =
C(d∗) + E with E orthogonal to C(d∗). Furthermore, without loss of generality,
we assume that the diagonal entries of D∗ are nondecreasing so that the first diago-
nal entry d∗(1) of D∗ = diag(d∗) is the smallest one. By Theorem 4.4, diag(C) =
diag(C(d∗)). So we have d∗ = diag(E) and the matrix E must have at least one
negative eigenvalue. Let µ be the smallest eigenvalue of E and x be the corre-
sponding eigenvector with unit 2-norm. It is easy to verify by the orthogonality that
C(d∗)x = 0 because µ /= 0. Hence we have that

d∗(1) � xTD∗x = µ − xTCx � µ.
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On the other hand, recalling that the diagonals of a symmetric matrix are bounded
by its 2-norm [4], we have that µ � d∗(1). Therefore

d∗(1) = µ

and the first few of diagonals of E − µI must be zeros. Note that E − µI is a posi-
tive semi-definite matrix. Thus the first few rows and columns of E − µI should be
zero, too, i.e., E is a block diagonal matrix,

E =
(
µI

E0

)
.

By the orthogonality between C(d∗) and E, we have also

C(d∗) =
(

0
C0

)
.

Hence the first row/column of matrix C = C(d∗) + E − diag(d∗) must be zero,
which contradicts the initial assumption. �

Finally, we remark that due to the convexity of V (d), its minimization can be
easily subdued by gradient-based minimization approaches. As an example, we show
that minV (d) can be solved with the method of descending, whose details are given
in the following algorithm.

Algorithm. Take d(0) to be an initial guess for d∗, and repeat the following steps:

1. Compute the SVD of C + D(k) for C(d(k)), solve the additional problem (24) if
necessary.

2. If ‖diag(C − C(d(k)))‖2 � tol, terminate iteration.
3. Define d(t) = d(k) + t · diag(C − C(d(k))), and solve the one-dimensional sub-

problem mint�0 V (d(t)) to get the optimal t = t (k). 2

4. Set d(k+1) = d(k) + t (k) · diag(C − C(d(k))), and go back to step 1.

For the convergence of the above algorithm we have

Proposition 1. The sequence {d(k)} has the following properties:

(1) The sequence {d(k)} is bounded.
(2) For any accumulation point d∗ of {d(k)}, if the nth singular value ofC + diag(d∗)

is single, then d∗ must be a global minimizer.
(3) Furthermore, if C cannot be permuted to be a block diagonal matrix, {d(k)i } con-

verges to the unique global minimizer d∗.

2 By Theorem 4.3, V (d(t)) � V (d(k)) for t < 0.
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Proof. As was shown in the proof of Theorem 4.1, V (d(k)) will be unbounded from
above if {d(k)} are unbounded. The monotonic decreasing of the function V (d(k))

guarantees the boundedness of the sequence {d(k)}. For bounded {d(k)}, there must
be at least one accumulation point.

Let d∗ be an accumulation point. If d∗ is not a minimizer, we must have, by The-
orem 4.4, diag(C − C(d∗)) /= 0. Consider V (d(t)) with d(t) = d∗ + t · diag(C −
C(d∗)). Applying Theorem 4.3 with d = d(t), d̂ = d∗, and X = C(d(t)) we have
that

V (d∗) − V (d(t)) � t · diag(C − C(d∗))Tdiag(C − C(d(t))).

Note that C(d(t)) → C(d∗) as t → 0. We have that for some sufficiently small
t > 0, diag(C − C(d∗))Tdiag(C − C(d(t))) > 0 which gives V (d∗) − V (d(t)) >

0. Therefore we have

V (d(t∗)) = min
t>0

V (d(t)) < V (d∗).

Denote d∗∗ = d(t∗). For any subsequence {d(nk)} of {d(k)}, which converges to the
accumulation point d∗, we have d(nk) + t∗diag(C − C(d(nk))) → d∗∗ by definition.
Hence we have that for sufficiently large nk ,

|V (d(nk) + t∗diag(C − C(d(nk)))) − V (d∗∗)| < 1
2 (V (d

∗) − V (d∗∗)).
It follows that

V (d(nk) + t∗diag(C − C(d(nk)))) < V (d∗∗) + 1
2 (V (d

∗) − V (d∗∗)) < V (d∗).

Minimizing V (d(nk) + t · diag(C − C(d(nk)))) for the variable t with fixed nk leads
to

V (d(nk+1)) < V (d∗),
which contradicts to the property of monotonic decreasing of V (d(k)). �

We conclude this section with a remark. The above method can be easily extended
to the Frobenius norms with “weights”. In some applications, the correlation between
some forward rates are more relevant to the problem than the rest of the correla-
tions. So we want to ensure in the calibration process that the relevance is properly
emphasized. To this purpose we consider the Frobenius norm with “weights”:

‖A‖2
W,F = ∥∥√

WA
√
W

∥∥2
F (40)

with

W = diag(w1, w2, . . . , wn) (41)

a diagonal matrix with positive entries. If we think the correlation of the first i0
forward rates are more important than the correlations between other rates, we can
take wi = 1, i = 1, . . . , i0, while keeping wi < 1, i > i0. In the computations with
the weighted norm we simply replace

√
WC

√
W for C.
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5. Numerical results

The first example is taken from [8]. We consider a collection of twelve 12-month
forward rates with hypothetical historical (market) correlation matrix C given by

cmarket
ij = LongCorr + (1 − LongCorr) exp[β|ti − tj |],
β = d1 − d2 max(ti , tj ),

where LongCorr = 0.3, d1 = −0.12, d2 = 0.005. In our computation we take ti =
i × ( 1

2

)
. We will compare the correlation surfaces (or matrices) and curves (or matrix

columns) between the models and the market. Also, we will display the principle
components of the market and model correlation matrices. Due to the obvious supe-
riority of our method to Rebonato’s [8] we will not compare the performance of the
two methods. Instead, we attach the method of Rebonato in Appendix A for readers’
reference.

Without loss of generality we consider three-factor approximation. The results
are given in Table 1 and Figs. 1 and 2. Fig. 1 shows the market correlation surface
(on the left) and the model correlation surface (on the right). Apparently, the latter
is smooth and in good agreement with the market correlation, except the extent of
convexity near the diagonal. Table 1 and Fig. 2 display (the difference of) principle
components. It can be seen that, while the first principle component of the model
is very close to that of the market, there exist visible difference in the second and
the third principle components of the market and model correlation matrices, respec-
tively. This is actually a desirable property because the first component describes
the proportional parallel shift of the rates, and it is the most important component
that characterizes the correlation between the different rates. The market and model
correlation between (a) the first, (b) third, (c) the sixth, and (d) the tenth forward rate
and the rest of the forward rates are displayed in Fig. 3. The overall error of model
correlation is very small.

Table 1
Principle components of the rank-one correction

U1 U2 U3 Ua,1 Ua,2 Ua,3

0.86 −0.39 0.22 0.87 −0.42 0.27
0.89 −0.38 0.17 0.90 −0.40 0.20
0.92 −0.34 0.08 0.92 −0.37 0.11
0.93 −0.27 −0.04 0.95 −0.31 −0.04
0.95 −0.18 −0.15 0.96 −0.20 −0.20
0.95 −0.07 −0.22 0.96 −0.07 −0.26
0.95 0.05 −0.23 0.96 0.06 −0.27
0.95 0.17 −0.17 0.96 0.19 −0.22
0.93 0.27 −0.07 0.95 0.31 −0.08
0.91 0.35 0.06 0.92 0.38 0.10
0.88 0.40 0.18 0.89 0.41 0.21
0.85 0.41 0.24 0.85 0.43 0.29
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Fig. 1. Market correlation surface (left) and correlation surface of rank-one correction method (right).

Fig. 2. The first three principle components of the market and model correlation matrixes.

The second is a practical example taken from [2]. In this example, the historical
correlation matrix of Sterling pound is listed in Table 2, where the first column and
row are the maturities of the forward rates. The correlation matrix is visualized by
the surface plot in Fig. 4. For this matrix, we calculate its rank one, two, three and
six approximations and plot the results in Fig. 5. The computation time for all ap-
proximations is in the magnitude of seconds. The trend of convergence with respect
to the rank increase is given in Fig. 6.
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Fig. 3. The market and model correlations between (a) the first, (b) the third, (c) the sixth and (d) the
tenth forward rates and the rest of the forward rates obtained using three-factor iterative model.

Table 2
Historical correlation matrix for the GBP rates

0.25 0.5 1 1.5 2 2.5 3 4 5 7 9

0.25 1.0000 0.8415 0.6246 0.6231 0.5330 0.4287 0.3274 0.4463 0.2439 0.3326 0.2625
0.5 0.8415 1.0000 0.7903 0.7844 0.7320 0.6346 0.4521 0.5812 0.3439 0.4533 0.3661
1 0.6246 0.7903 1.0000 0.9967 0.8108 0.7239 0.5429 0.6121 0.4426 0.5189 0.4251
1.5 0.6231 0.7844 0.9967 1.0000 0.8149 0.7286 0.5384 0.6169 0.4464 0.5233 0.4299
2 0.5330 0.7320 0.8108 0.8149 1.0000 0.9756 0.5676 0.6860 0.4969 0.5734 0.4771
2.5 0.4287 0.6346 0.7239 0.7286 0.9756 1.0000 0.5457 0.6583 0.4921 0.5510 0.4581
3 0.3274 0.4521 0.5429 0.5384 0.5676 0.5457 1.0000 0.5942 0.6078 0.6751 0.6017
4 0.4463 0.5812 0.6121 0.6169 0.6860 0.6583 0.5942 1.0000 0.4845 0.6452 0.5673
5 0.2439 0.3439 0.4426 0.4464 0.4969 0.4921 0.6078 0.4845 1.0000 0.6015 0.5200
7 0.3326 0.4533 0.5189 0.5233 0.5734 0.5510 0.6751 0.6452 0.6015 1.0000 0.9889
9 0.2625 0.3661 0.4251 0.4299 0.4771 0.4581 0.6017 0.5673 0.5200 0.9889 1.0000

6. Conclusion

In this paper we have developed a very efficient method to find the low-rank
approximating of correlation matrices. With the method of Lagrange multiplier we to
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Fig. 4. Market correlation surface.

turn the constrained minimization into an min–max problem without constraint. The
inner maximization problem is solved with a single spectral decomposition, while
the outer minimization problem is solve iteratively with gradient-based methods.
The convergence of the iteration (for the outer minimization problem) is guaranteed
due to the convexity of the objective function. This technique has a direct application
in calibrating the market model in financial engineering. The method developed in
this paper extends naturally to the matrix approximation problem with other kinds of
constraints.
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Appendix A. Method of Rebonato

To solve for (15), Rebonato [8] considers solution of the form

X = BBT, (A.1)
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Fig. 6. Trend of convergence with increasing rank.

where B is an N by nt matrix whose elements are of the parametric form

bjk = cos(θjk)
k−1∏
l=1

sin(θjl), k = 1, . . . , nt − 1,

bjnt =
nt−1∏
l=1

sin(θjl). (A.2)

Note that representation (A.1) guarantees the rank of X to be less or equal to nt ,
while the parameterization (A.2) ensures the “one-diagonal” condition as we have

nt∑
k=1

b2
jk = 1, j = 1, 2, . . . , N, (A.3)

for any angles {θjk}. Given the representation and parameterization which effectively
remove the constraint, Rebonato proceeds to solve the unconstraint problem

min{θjk}
∥∥C − B({θjk})BT({θjk})

∥∥
F (A.4)

with standard unconstraint minimization methodologies. This is a nonlinear optimi-
zation problem with N × nt unknowns. In financial applications, this number can go
as high as 80 × 4 = 320, which then poses a horrendous challenge to any existing
methodologies.



Z. Zhang, L. Wu / Linear Algebra and its Applications 364 (2003) 161–187 187

References

[1] F. Black, The pricing of commodity contract, J. Financial Econom. 3 (1976) 167–179.
[2] A. Brace, D. Gatarek, M. Musiela, The Market model of interest rate dynamics, Math. Finance 7 (2)

(1997) 127–155.
[3] A. Edelman, T.A. Arias, S.T. Smith, The geometry of algorithm with orthogonality constraints, SIAM

J. Matrix Anal. Appl. 20 (1998) 303–353.
[4] G. Golub, C. von Loan, Matrix Computations, 3rd ed., Johns Hokkins University Press, Baltimore,

MD, 1996.
[5] D.G. Luenberger, Optimization by Vector Spaces Methods, John Wiley, 1969.
[6] F. Jamshidian, LIBOR and swap market models and measures, Finance Stoch. 1 (1997) 293–330.
[7] K. Miltersen, K. Sandmann, D. Sondermann, Closed-form solutions for term structure derivatives

with lognormal interest rates, J. Finance (1997) 409–430.
[8] R. Rebonato, Calibrating the BGM model, RISK March (1999) 74–79.


