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We study on-line learning in the linear regression framework. Most of the
performance bounds for on-line algorithms in this framework assume a con-
stant learning rate. To achieve these bounds the learning rate must be
optimized based on a posteriori information. This information depends on the
whole sequence of examples and thus it is not available to any strictly on-line
algorithm. We introduce new techniques for adaptively tuning the learning
rate as the data sequence is progressively revealed. Our techniques allow us to
prove essentially the same bounds as if we knew the optimal learning rate in
advance. Moreover, such techniques apply to a wide class of on-line algo-
rithms, including p-norm algorithms for generalized linear regression and
Weighted Majority for linear regression with absolute loss. Our adaptive
tunings are radically different from previous techniques, such as the so-called
doubling trick. Whereas the doubling trick restarts the on-line algorithm
several times using a constant learning rate for each run, our methods save
information by changing the value of the learning rate very smoothly. In fact,
for Weighted Majority over a finite set of experts our analysis provides a
better leading constant than the doubling trick. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this paper, we study on-line learning from labeled examples. Broadly speaking,
the on-line learning task consists of the following. In each on-line trial the algo-
rithm receives an instance and is required to output a prediction about the label
associated with that instance. Then the label is revealed and the algorithm suffers a
loss, quantifying the ‘‘distance’’ between the algorithm’s prediction and the actual
label. The goodness of the algorithm is measured by comparing its performance
to the performance of the best off-line predictor in a given comparison class of
predictors.

In this paper, we focus on the family of quasi-additive algorithms (Grove et al.
[17], Kivinen and Warmuth [23]) applied to on-line linear regression problems.
The algorithms in this family are efficient and easy to implement. They work well
with various losses and, furthermore, they are very robust to noise; i.e., one can
prove that their cumulative loss on any data sequence cannot grow much faster
than the loss of the best off-line linear predictor on the same data sequence.
However, to achieve these bounds, the parameters of the algorithms have to be set
depending on features of the learning task that are typically not known a priori.
For instance, for many on-line algorithms the optimal tuning of the learning rate
does depend on information about the amount of noise in the data. In an on-line
setting this information is typically not available.

In general, tuning is certainly one of the most critical aspects of an on-line learning
algorithm and might affect its performance in a substantial way.

In this introductory section we begin by using a version of the Weighted Majority
algorithm [7, 26, 29, 32, 34] as a motivating example to illustrate the tuning
problem we are interested in. We then briefly overview the much more general class
of quasi-additive algorithms [17, 23]. Finally, we introduce our tuning techniques
and compare them to those already available.

1.1. An Illustrating Example

The Weighted Majority1 algorithm processes the examples one at a time in trials.

1 The version of the Weighted Majority algorithm we are considering here is called WMC in [29].
This will be our leading example. As a matter of fact, the main points of the following discussion apply
to many of the on-line learning algorithms which have been proposed in the literature.

In each trial t the algorithm receives a vector xt=(xt, 1, ..., xt, n) ¥ [−1,+1]n and is
asked to predict the value of an unknown label yt ¥ [−1,+1] associated with xt.
The algorithm keeps a weight vector wt=(wt, 1, ..., wt, n) representing its current
hypothesis. The vector wt is an n-dimensional probability vector. The algorithm’s
prediction at time t is the linear combination ŷt=wt ·xt ¥ [−1,+1]. After receiving
the correct label yt, the algorithm incurs a loss lt=

1
2 |yt−ŷt | ¥ [0, 1]. Finally, the

algorithm updates the weights according to the rule

wt+1, i=wt, i exp{−g 12 |yt−xt, i |}/Wt+1,
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where g is the learning rate, 12 |yt−xt, i | is the loss of the ith input component, and
Wt+1 is the normalizing factor making wt+1 a probability vector. Now, let Li, T=
;T
t=1

1
2 |yt−xt, i | be the cumulative loss of the ith input component on a sequence

of T trials. A (simplified) analysis of the Weighted Majority algorithm with fixed
g shows that, up to lower-order terms, the cumulative loss LT=;T

t=1 lt can be
upper bounded as

LT [ (1+g) L
g
T+
1+g
g

ln n, (1)

where Lg
T=min1 [ i [ n Li, T. To obtain an optimal bound (up to lower-order terms)

the learning rate g has to be chosen with respect to Lg
T. For instance, bound (1) is

optimized by g=`ln n/Lg
T which yields

LT [ L
g
T+2`L

g
T ln n+ln n.

Thus, according to the last bound, the loss of the algorithm is asymptotically the
same as the loss of the best fixed component, if we disregard lower-order terms.
Obviously this tuning needs a priori knowledge about the optimal cumulative loss
Lg
T, which is usually not available. We will solve this tuning problem in Section 2

and in Section 3 by using an adaptive learning rate gt that varies over time,
depending on the information the algorithm gains about Lg

T during the learning
process.

1.2. Incremental Update vs the Doubling Trick

A standard method to deal with the above tuning problem is the so-called
‘‘doubling trick’’: An upper bound B on Lg

T is assumed and the learning rate is
tuned with respect to this bound. For the simple version of the Weighted Majority
algorithm we just mentioned this would be g=`ln n/B. We call ‘‘round’’ a
sequence of trials where B is constant. If during the learning process the loss of
the best component exceeds bound B, then this bound is increased, the learning
algorithm is restarted, and a new round begins. Doubling strategies for particular
on-line algorithms have been analyzed in [7, 8].

We may say that the doubling trick makes an on-line algorithm coarsely adap-
tive, as the learning rate is constant within a round and makes big jumps between
rounds. However, a major disadvantage is that the on-line algorithm is restarted
from scratch at the beginning of each round, hence losing all the information
collected during the past rounds. More disadvantages arise if the learning setting is
made more general. For instance, in generalized linear regression [23] checking the
termination condition for the current round might be computationally expensive
(this involves computing the cumulative loss of the best regressor so far). Further-
more, it is not clear how the doubling trick could be analyzed when the loss in each
trial can be arbitrarily large.

In contrast, this paper analyzes on-line learning algorithms that are ‘‘incremen-
tally adaptive,’’ as they modify their learning rates possibly in each trial, and

50 AUER, CESA-BIANCHI, AND GENTILE



typically by a small amount. Via our approach we design algorithms whose
performance bounds are in some cases better, and never significantly worse,
than those proven for the doubling trick. Moreover, some of our techniques are
efficiently applicable to general learning settings and can even handle unbounded
loss functions.

Also, it is worth emphasizing that tuning techniques based on the doubling trick
are not expected to work well in many practical situations. This is because in each
round the algorithm does actually achieve (or even violate) the postulated worst-
case bound before it is restarted from scratch. This feature seems to make doubling
strategies attractive only in worst-case settings.

As an aside, we note that algorithms with an incrementally adaptive learning rate
have also been investigated by Vovk [33] and Azoury and Warmuth [3] for the
problem of on-line linear regression with square loss. The algorithms they study are
related to the recursive least squares algorithm. The covariance matrices involved in
those algorithms can be naturally interpreted as learning rates. However, their
proof techniques are different from ours and do not seem easily extendible to
regression problems using loss function different from the square loss.

1.3. The Formal Learning Model

In this section we describe the learning model more precisely and give our basic
notation.

An example is a pair (x, y), where x ¥ Rn is called an instance, and y ¥ R is the
label associated with x. On-line learning proceeds in trials. In the tth trial the on-
line algorithm receives an instance xt and is required to give a prediction ŷt about
the unknown label yt associated with xt. Then yt is revealed and the algorithm
incurs a loss L(yt, ŷt), measuring the discrepancy between the prediction ŷt and
the label yt. We call a sequence S=((x1, y1), (x2, y2), ...) of instances and labels
processed by the algorithm in a run a trial sequence.

To analyze these algorithms, we adopt a well-established mathematical model
which is a generalization of a learning model introduced by Littlestone and
Warmuth [25, 26, 29] and Angluin [1]. We are given a comparison class of predic-
tors and a loss function L. We measure the performance of A on the sequence S by
the cumulative loss LA, T(S) the algorithm A suffers on S: LA, T(S)=;T

t=1 L(yt, ŷt).
We compare this loss to the loss of the comparison class, i.e., to the loss of the best
predictor in the comparison class for the same trial sequence S.

This paper focuses on the linear regression problem with the square loss and the
absolute loss. Such problems have been widely investigated in the last years (see,
e.g., Littlestone [26, 27], Vovk [32–35], Littlestone and Warmuth [29], Littlestone
et al. [28], Cesa-Bianchi et al. [7–9], Kivinen and Warmuth [22, 23], Yamanishi
[37], Grove et al. [17], Gentile and Littlestone [14], Azoury and Warmuth [3],
and references therein).

In linear regression the learner’s hypothesis at time t is represented by a weight
vector wt ¥ Rn, and the prediction ŷt is often a function of wt ·xt. For instance, if L
is the square loss L(yt, ŷt)=

1
2 (yt−ŷt)

2 and the prediction is just ŷt=wt ·xt, then
we compare the cumulative loss LA, T(S) of the algorithm with the least cumulative
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square loss that could be incurred by predicting with a fixed weight vector u in the
comparison class. In particular, setting Lu, T(S)=;T

t=1 L(yt, u ·xt), our goal is to
bound the loss difference (this is also called the regret or relative loss)

LA, T(S)−min
u
Lu, T(S),

for an arbitrary trial sequence S.
In the absolute loss setting we have L(yt, ŷt)=

1
2 |yt−ŷt |. In this paper we only

consider the case when the labels yt have range [−1,+1]. The prediction ŷt is a
suitable function of wt ·xt, whose range is again [−1,+1]. As a consequence,
L(yt, ŷt) ¥ [0, 1]. We are still aimed at bounding the cumulative (absolute) loss of
A, but the way we measure the performance of the best off-line u might be different
(see Section 3). The case yt ¥ {−1,+1} is of special interest, since it can be inter-
preted as a binary classification problem where the algorithm is allowed to make
randomized predictions. The absolute loss 1

2 |yt−ŷt | is then the probability of a
prediction mistake, i.e., the probability that yt ] ŷt, and the cumulative loss is just
the expected number of mistakes. The Weighted Majority algorithm of Section 1.1
can be seen as an algorithm for the following restricted class of regression
problems: the loss function is the absolute loss L(yt, ŷt)=

1
2 |yt−ŷt |, the prediction

is ŷt=wt ·xt, and the comparison class is the set of the n unit vectors, i.e., the rows
of the n×n identity matrix. These are often called ‘‘experts’’ in the literature (e.g.,
[7, 24] and references therein). See also Section 3.1.

1.4. Quasi-additive Learning Algorithms

In this section we briefly overview the class of quasi-additive algorithms, i.e., the
class of on-line algorithms we are interested in.

This class of algorithms have been introduced by Grove et al. [17] in the context
of binary classification and also, independently, by Kivinen and Warmuth [23] in
the context of (generalized) linear regression. These algorithms are called quasi-
additive in [17] and general additive in [23]. This class includes a wide variety of
learning algorithms. For instance, in the binary classification setting it includes the
Perceptron algorithm [4, 30, 31] and algorithms in the Winnow family [25, 26],
such as the Weighted Majority algorithm called WM in [29]; in the regression
setting it includes the Widrow–Hoff rule [36] and algorithms in the EG family
[22].

All these algorithms have the same basic structure. In the generic trial t the algo-
rithm stores the weight vector wt, lying in a suitable weight space. Combined with
the current instance xt, the vector wt determines the algorithm’s prediction ŷt,
which is a function of wt ·xt. Then, based on the label yt, the algorithm performs
the weight update step wt Q wt+1. At the core of the weight update lies the rule

wt+1=f−1(f(wt)+gt g(yt, ŷt) xt), (2)

where f is a smooth bijective mapping from the adopted weight space to Rn, f−1 is
the inverse of f, and g is a suitable function of yt and ŷt. For instance, in linear
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regression with square loss we have g(yt, ŷt)=yt−ŷt and the vector g(yt, ŷt) xt is
just the gradient of the square loss 12 (yt−w ·xt)2 w.r.t. vector w. The Widrow–Hoff
rule is then obtained when f is the identity mapping, while the EGU algorithm [22]
is given by the componentwise logarithm f(wt)=(ln wt, 1, ..., ln wt, n). The version of
the Weighted Majority algorithm we mentioned in Section 1.1 can be seen as a
member of the quasi-additive family once we set g(yt, ŷt)=1 and interpret the
n-component vector xt as the vector of losses of the n predictors in the comparison
class [24]. The bijective mapping f giving rise to the Weighted Majority algorithm
is [23, Example 3] f=(f1, ..., fn−1):W ı Rn−1Q Rn−1, where W={w1, ...wn−1 |
;n−1
i=1 wi [ 1} and

fi(w)=ln
wi

1−;n−1
i=1 wi

. (3)

The standard way to analyze these algorithms (e.g., [2, 3, 6–8, 13, 14, 17, 18, 22, 25,
26, 29]) is to define a measure of progress related to the mapping f. The measure of
progress we use here is the so-called Bregman divergence [5, 10] associated with f.
We denote the divergence by df(u, w), where u and w are weight vectors. We can
define df(u, w) as follows. Assume f is the gradient of some convex function Pf on a
convex weight space. Then df(u, w) is the difference between Pf(u) and the first-
order Taylor expansion of Pf around w, i.e.,

df(u, w)=Pf(u)−Pf(w)−(u−w) · f(w). (4)

The convexity of Pf ensures df(u, w) \ 0. Also, if Pf is strictly convex then
df(u, w)=0 if and only if u=w. For example, if f is the identity then
df(u, w)=

1
2 ||u−w||22, whereas if f is the mapping (3) then it is not hard to show that

setting wn=1−;n−1
i=1 wi and un=1−;n−1

i=1 ui leads to the relative entropy
divergence df(u, w)=;n

i=1 ui ln(ui/wi).
A further example of Bregman divergence is provided in Section 3.1, when

dealing with the sub-family of p-norm algorithms [14, 17]. A good reference to
learn about Bregman divergences is [11]. Azoury and Warmuth [3] give a valuable
summary of the main properties of Bregman divergences in the context of on-line
learning with the exponential family of distributions.

1.5. Two Approaches to Incrementally Adaptive Learning Rates

In this section we distinguish two ways how we will tune the learning rates of the
algorithms. The most obvious way is to set the learning rate gt with respect to the
loss of the comparison class observed so far. For the Weighted Majority algorithm
of Section 1.1 this would be gt=`ln n/Lg

t , where

Lg
t= min

1 [ i [ n
C
t

y=1

1
2 |yy−xy, i |.

It should be clear that a tuning based on the true current loss of the comparison
class can be applied in general only when the comparison class is finite. When
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moving to harder regression frameworks (such as those considered in Section 3) the
evaluation of the current loss of the comparison class might be computationally
intensive: storing all past examples and resorting to numerical methods might be
necessary for loss functions more difficult than the square loss. Observe that
different loss functions give rise to different computational problems.

An alternative way for tuning the learning rate gt is to use the loss of the learning
algorithm to calculate gt. For the Weighted Majority algorithm of Section 1.1 this
would roughly be gt 4 `ln n/Lt , where

Lt=C
t

y=1

1
2 |yy−ŷy |.

This is done under the assumption that Lt % L
g
t , i.e., that the current cumulative

loss of the algorithm closely matches the current cumulative loss of the comparison
class. We call such algorithms self-confident, as they somehow ‘‘trust themselves’’ in
tuning gt.

The self-confident tuning might be viewed as a computationally efficient approx-
imation to the tuning based on the loss of the comparison class. The self-confident
tuning allows us to circumvent the computational problems deriving from hard loss
functions and, furthermore, its analysis seems to be much simpler in most cases.
In fact, we have been able to analyze the tuning based on the current loss of the
comparison class only for the relatively simple Weighted Majority algorithm
(Section 2). Self-confident learning algorithms will be analyzed in Section 3.

1.6. Overview of Proof Techniques

The analysis of quasi-additive algorithms with constant learning rate g often
centers on inequalities of the form

(1−a) lt−lu, t [
1
a
(df(u, wt)−df(u, wt+1)), (5)

where lt is the loss of the algorithm in trial t, lu, t is the loss of the generic off-line
predictor u in trial t, and a ¥ (0, 1) is a constant proportional to g. The difference
df(u, wt)−df(u, wt+1) might be considered as the one-trial progress of the algo-
rithm’s weight vector wt towards the best off-line vector u within the comparison
class. Therefore inequalities such as (5) connect the one-trial relative loss lt−lu, t to
the algorithm’s progress in that trial. Set for brevity Lt=; t

y=1 ly and Lu, t=
; t
y=1 lu, y. A cumulative loss bound of the form2

2 Observe that, as far as the dependence on the learning rate is concerned, this bound is qualitatively
analogous to bound (1).

LT [
1
1−a

Lu, T+
1

a(1−a)
df(u, w1)
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For t=1, 2, ..., T:

• Calculate the weights as

wt, i=a−Li, t−1/Wt, i=1, ..., n,

et=min ˛1
4
,=2 ln n

Lg
t−1

ˇ ,

at=
1
1− et

,

Wt=C
n

i=1
a−Li, t−1t ;

• Get instance xt ¥ [−1,+1]n;

• Predict with ŷt=wt ·xt;

• Get label yt ¥ [−1,+1];

Incur loss 12 |yt−ŷt |.

FIG. 1. The incrementally adaptive Weighted Majority algorithm IAMW.

is immediately obtained by summing (5) over all trials t, solving for LT, and
dropping the last (non-negative) divergence term df(u, wT+1).

Our adaptive learning rate analysis is based on more sophisticated versions of (5),
where we let a depend on time. Denote the time-dependent a by at. In Section 2 we
will deal with a version of the Weighted Majority algorithm tuned via the loss of
the comparison class so far. The Bregman divergence associated with this algorithm
is the relative entropy df(u, wt)=;n

i=1 ui ln(ui/wt, i). Since the comparison class is
the set of the n unit vectors, the relative entropy reduces to df(u, wt)=−ln wt, i,
where wt=(wt, 1, ...wt, n) and u is the ith unit vector. We will bound a progress of
the form

− ln wt, igt
at

−
− ln wt+1, igt+1
at+1

, (6)

where igt is the component i with the minimal cumulative loss Lg
t up to that trial

and at roughly equals`ln n/Lg
t .

In Section 3 we will deal with the more general family of quasi-additive algo-
rithms tuned via the loss of the algorithm so far (self-confident tuning). We will
bound a progress of the form

df(u, wt)
at

−
df(u, wt+1)
at+1

, (7)
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where df is the Bregman divergence associated with the algorithm under considera-
tion3 and at is roughly proportional to 1/`Lt.

3 Our self-confident analysis requires the divergence df(u, wt) be bounded for any t. In the case of
p-norm algorithms (Section 3.1) this is achieved by both assuming the comparison vectors u are bounded
and keeping the weight vectors wt produced by rule (2) bounded through Bregman divergence projection.
The case of algorithms in the Winnow/EG family is a bit more troublesome. See the discussion in
Section 3.2.

Both progress (6) and progress (7) will be suitably related to their corresponding
one-trial relative losses.

2. AN INCREMENTALLY ADAPTIVE WEIGHTED MAJORITY

In this section we present an incrementally adaptive version of the Weighted
Majority algorithm described in Section 1.1. We call the algorithm IAWM. Recall
the notation of Section 1. The structure of algorithm IAWM, see Fig. 1, is quite
straightforward from the Weighted Majority algorithm of Section 1.1. Essentially,
the only modification necessary is the introduction of a varying learning rate. (In
this section we found it more convenient to set gt=ln at and focus on the tuning of
at.) There is a subtle point here, though, since the learning rate is changed also
retrospectively: In the first step of the algorithm the weight wt, i is set proportionally
to a−Li, t−1t , whereas one might expect that it is set to wt−1, ia

−|yt −xt, i |
t . Setting the

weight to a−Li, t−1t actually means that the new learning rate parameter at is applied
to all past trials. This is quite essential for the analysis. Notice that in Fig. 1 it is
understood that Li, 0=L

g
0=0. Thus w1, i=1/n and e1=1/4. For this algorithm we

have the following result.

Theorem 2.1. Let S=((x1, y1), (x2, y2), ...), where each (xt, yt) belongs to the
set [−1,+1]n×[−1,+1]. Then the incrementally adaptive Weighted Majority
algorithm IAWM of Fig. 1, run on a prefix of S of arbitrary length T, achieves the
following cumulative absolute loss bound,

LT [ L
g
T+2`2L

g
T ln n+4(ln n)(ln(1+Lg

T))+10 ln n+ 3
10 ,

where

Lg
T= min

1 [ i [ n
C
T

t=1

1
2 |yt−xt, i |

and n \ 2.

Proof. We will bound

ln wt+1, igt+1
et+1

−
ln wt, igt
et
,
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where igt=arg maxi wt, i is the component with the minimal cumulative loss up to
the beginning of trial t (i.e., before receiving the tth label yt). Observe that with this
notation we have Ligt+1, t=L

g
t , which is the loss of the component with the minimal

cumulative loss up to the end of trial t (i.e., after receiving the tth label yt).
Set W −

t=;n
i=1 a

−Li, t
t so that w −t, i=a

−Li, t
t /W −

t would be the weights for the next
trial if the learning rate were not changed. We get

ln wt+1, igt+1
et+1

−
ln wt, igt
et

=ln wt+1, igt+1
1 1
et+1
−
1
et
2+ln wt+1, igt+1 − ln w −t, igt+1

et
+

ln w −t, igt+1 − ln wt, igt
et

\ − ln n 1 1
et+1
−
1
et
2+1
et

ln
a−L

g
t

t+1W
−

t

a−L
g
t

t Wt+1
+
1
et

ln
a−L

g
t

t

a−L
g
t−1

t

+
1
et

ln
Wt
W −

t

, (8)

where in the inequality we have used wt+1, igt+1 \ 1/n and et+1 [ et.
We denote the last three logarithmic factors in the right-most side of (8) as

B1, t=ln
a
−Lgt
t+1W

−

t

a−L
g
t

t Wt+1
, B2, t=ln

a−L
g
t

t

a−L
g
t−1

t

, B3, t=ln
Wt
W −

t

.

We proceed by lower bounding B1, t, B2, t, and B3, t. To bound B1, t we use the
following technical lemma whose proof is given in the Appendix.

Lemma 2.1. For 1 < a [ b and any a1, ..., an \ 0 such that ;n
i=1 a

−ai \ 1 it holds
that

ln 1;
n
i=1 b

−ai

;n
i=1 a

−ai
2 \ −(b−a) ln n

ln a
.

Since 1 < at+1 [ at and

a
−Lgt
t+1W

−

t

a−L
g
t

t Wt+1
=

;n
i=1 a

−Li, t+L
g
t

t

;n
i=1 a

−Li, t+L
g
t

t+1

=
1+;n−1

i=1 a
−ai
t

1+;n−1
i=1 a

−ai
t+1

,

for some a1, ..., an−1 \ 0, we get

B1, t \ −(at−at+1)
ln n

ln at+1
. (9)

We distinguish three cases:

1. trial t is such that at ] at+1 and et < 1/4;

2. trial t is such that at ] at+1 and et=1/4;

3. trial t is such that at=at+1.

ADAPTIVE ON-LINE ALGORITHMS 57



Case 1. Since at as a function of Lg
t−1 is convex, a first-order Taylor expansion

yields

at+1−at \ (L
g
t −L

g
t−1)

“

“Lg
t−1

at=−(L
g
t −L

g
t−1) a

2
t
= ln n
2(Lg

t−1)
3

=−(Lg
t −L

g
t−1) a

2
t

e3t
4 ln n

.

For similar reasons

1
ln at+1

[
1
et+1

[
1
et
+(Lg

t −L
g
t−1)

“

“Lg
t−1

1
et

=
1
et
+(Lg

t −L
g
t−1)

1
e2t

= ln n
2(Lg

t−1)
3

[
1
et
11+ e2t

4 ln n
2 ,

since Lg
t −L

g
t−1 [ 1. Putting together as in (9) yields

B1, t \ −(L
g
t −L

g
t−1)
a2t e

2
t

4
11+ e2t

4 ln n
2 \ −(Lg

t −L
g
t−1)
a2t e

2
t

4
11+ e2t

4 ln 2
2

\ −(Lg
t −L

g
t−1)
e2t
4
(1+4et),

where in the second inequality we used n \ 2 and in the last inequality we used the
bound (1/(1− e)2)(1+e2/(4 ln 2)) [ 1+4e, for 0 [ e [ 1/4.

Case 2. First of all, notice that there is at most one trial such that at at ] at+1
and et=1/4. Recall (9). For such a trial we have

−(at−at+1)
ln n

ln at+1
=
1/4− et+1
3/4(1− et+1)

ln n
ln(1− et+1)

, (10)

where 1/4 \ et+1 \`2 ln n/(1+32 ln n). By a derivative argument it is not hard to
see that (10) is increasing in et+1. Thus the minimal value is obtained when we set
et+1=`2 ln n/(1+32 ln n) therein. This substitution yields a function which is
decreasing in n. Thus the minimal value is achieved when nQ.. Computing the
limit gets

B1, t \
1
144

1
ln(3/4)

> −
1
40
.

Case 3. It is trivially verified that B1, t=0.
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To summarize:

B1, t \ ˛
−(Lg

t −L
g
t−1)
e2t
4
(1+4et) if at ] at+1 and et < 1/4;

−
1
40

if at ] at+1 and et=1/4;

0 otherwise.

Next, we turn to bounding B2, t from below. Using the inequality ln(1− e) \
− e− e2/2− e3, for 0 [ e [ 1/4, we obtain

B2, t=ln
a−L

g
t

t

a−L
g
t−1

t

\ − et(L
g
t −L

g
t−1)(1+et/2+e

2
t ).

Finally, B3, t is lower bounded through the following chain of (in)equalities,

B3, t=ln
Wt
W −

t

=−ln 1 C
n

i=1
wt, ia

−|yt −xt, i |/2
t
2

=− ln 11+C
n

i=1
wt, i(a

−|yt −xt, i |/2
t −1)2

\ − C
n

i=1
wt, i(a

−|yt −xt, i |/2
t −1)

\ et C
n

i=1
wt, i |yt−xt, i |/2

\ et : yt− C
n

i=1
wt, ixt, i :;2

=et(Lt−Lt−1),

where we used the very definitions of B3, t, Wt, and W −

t, the facts ln(1+x) [ x for
x > −1, 1−(1− e)x \ ex for 0 [ e, x [ 1, and the convexity of | · |.

We now use the bounds on B1, t, B2, t, B3, t in (8) and sum for t=1, ..., T. We
obtain

4 ln n=−
ln w1, 1
e1

\
ln wT+1, igT+1
eT+1

−
ln w1, 1
e1

\ − ln n 1 1
eT+1
−
1
e1
2− C

t: at+1 ] at, et < 1/4
(Lg
t −L

g
t−1)
et

4
(1+4et)−

1
10

− C
T

t=1
(Lg
t −L

g
t−1)(1+et/2+e

2
t )+LT.
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Further manipulation yields

4 ln n \ −
ln n
eT+1
+4 ln n− C

t: Lgt ] L
g
t−1, et < 1/4

(Lg
t −L

g
t−1)
et

4
(1+4et)−

1
10

−Lg
T− C

t: Lgt ] L
g
t−1

(Lg
t −L

g
t−1)(et/2+e

2
t )+LT

=−
ln n
eT+1
+4 ln n− C

t: Lgt ] L
g
t−1, et < 1/4

(Lg
t −L

g
t−1)
et

4
(1+4et)−

1
10

−Lg
T− C

t: Lgt ] L
g
t−1, et < 1/4

(Lg
t −L

g
t−1)(et/2+e

2
t )

− C
t: Lgt ] L

g
t−1, et=1/4

(Lg
t −L

g
t−1)(et/2+e

2
t )+LT

=−
ln n
eT+1
+4 ln n− C

t: Lgt ] L
g
t−1, et < 1/4

(Lg
t −L

g
t−1) 1

3et
4
+2e2t 2−

1
10

−Lg
T− C

t: Lgt ] L
g
t−1, et=1/4

(Lg
t −L

g
t−1)(et/2+e

2
t )+LT. (11)

We continue by bounding from above the three terms

ln n
eT+1
, (12)

C
t: Lgt ] L

g
t−1, et < 1/4

(Lg
t −L

g
t−1) 1

3et
4
+2e2t 2 , (13)

C
t: Lgt ] L

g
t−1, et=1/4

(Lg
t −L

g
t−1)(et/2+e

2
t ). (14)

To bound (12) we argue the following. If Lg
T [ 32 ln n then eT+1=

1
4 . Hence in this

case

ln n
eT+1
=4 ln n.

On the other hand, if Lg
T > 32 ln n then

ln n
eT+1
=

ln n

= 2 ln n
Lg
T

== 1
2
Lg
T ln n.

To bound (13) observe that if Lg
T [ 32 ln n holds then et=1/4 for t=1, ..., T. Thus

in this case (13) is trivially zero.
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On the other hand, if Lg
T > 32 ln n we can write

C
t: Lgt ] L

g
t−1, et < 1/4

(Lg
t −L

g
t−1) 1

3et
4
+2e2t 2

= C
t: Lgt ] L

g
t−1, et < 1/4

(Lg
t −L

g
t−1) 1

3
4
= 2 ln n
Lg
t−1

+
4 ln n
Lg
t−1

2

[ C
t: Lgt ] L

g
t−1, et < 1/4

(Lg
t −L

g
t−1) 1

3
4
= 2 ln n
Lg
t −1
+
4 ln n
Lg
t −1
2

[ F
LgT

32 ln n

13
4
= 2 ln n
L−1

+
4 ln n
L−1
2 dL

< F
LgT

32(ln n)−1

13
4
= 2 ln n
L
+
4 ln n
L
2 dL

=
3
2
`2Lg

T ln n−
3
2
`2 ln n`32(ln n)−1+4(ln n) ln

Lg
T

32(ln n)−1

[
3
2
`2Lg

T ln n+
1
5
−12 ln n+4(ln n) ln Lg

T,

where in the last inequality we used 3
2`2x`32x−1 \ 12x−

1
5, for x \ ln 2, and we

dropped the denominator from the last logarithm.
Finally, a simple bound on (14) is

C
t: Lgt ] L

g
t−1, et=1/4

(Lg
t −L

g
t−1)(et/2+e

2
t )= C

t: Lgt ] L
g
t−1, et=1/4

(Lg
t −L

g
t−1)(

1
8+

1
16)

[ (18+
1
16) 32 ln n

=6 ln n.

We plug these bounds back into (11) and solve for LT. We obtain

LT [ L
g
T+10 ln n+ 1

10 ,

in the case that Lg
T [ 32 ln n, and

LT [ L
g
T+2`2L

g
T ln n−6 ln n+4(ln n)(ln Lg

T)+
3
10 ,

in the case that Lg
T > 32 ln n. Therefore in both cases

LT [ L
g
T+2`2L

g
T ln n+4(ln n)(ln(1+Lg

T))+10 ln n+ 3
10 ,

thereby proving Theorem 2.1. L
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The last theorem improves on results obtained by the doubling trick in [7]. In
that paper the authors perform a sophisticated doubling trick analysis with a
slightly different version of the Weighted Majority algorithm we consider here.
They prove the bound LT [ L

g
T+(3.3302+o(1))`L

g
T ln n as TQ.. Theorem 2.1

gives LT [ L
g
T+(2.83+o(1))`L

g
T ln n as TQ.. It is probably possible to modify

the constants in the expression for et in Fig. 1 to allow in our bound a limited trade-
off between the constant 2`2 and the leading constants of the subsequent terms.
We have not investigated this any further.

A bound similar to the one in Theorem 2.1 (but with slightly larger constants)
can be obtained by a suitable choice of the parameter p in the self-confident p-norm
algorithm of Section 3.1 (see the discussion in that section).

3. SELF-CONFIDENT ALGORITHMS

We now move on to analyze self-confident algorithms. Though we focus on self-
confident p-norm algorithms, in Section 3.2 we also briefly discuss how our
self-confident analysis could be applied to the algorithms in the Winnow/EG
family.

3.1. Self-Confident p-Norm Algorithms

This section defines and analyzes our self-confident p-norm algorithms. We deal
with two linear regression settings: (1) the square loss setting; (2) the absolute loss
setting with binary labels (i.e., the binary classification problem where the algorithm
makes randomized predictions). Our results for square loss are easily extended to
more general regression frameworks, such as the generalized linear regression model
of Helmbold et al. [18,23].

We first need to recall some preliminaries about the dual norms technology we
will be using in this section. Given a vector w=(w1, ..., wn) ¥ Rn and p \ 1 we
denote by ||w||p the p-norm of w, i.e., ||w||p=(;n

i=1 |wi |
p)1/p (also, ||w||.=

limpQ.(;n
i=1 |wi |

p)1/p=maxi |wi |). We say that p and q are dual if 1p+
1
q=1 holds.

For example, the 1-norm is dual to the .-norm and the 2-norm is self-dual. For the
rest of this section we assume that p and q are some pair of dual values with p \ 2.

The p-norm algorithms are defined [14] in terms of the following bijective
mapping f (a p indexing for f is understood): f: RnQ Rn, f=(f1, ..., fn), where

fi(w)=
sign(wi) |wi |q−1

||w||q−2q
, w=(w1, ..., wn) ¥ Rn. (15)

The function f is just the gradient of Pf(w)=
1
2 ||w||

2
q. The inverse f−1 of f is given by

[14] f−1: RnQ Rn, f−1=(f−11 , ..., f
−1
n ), where

f−1i (h)=
sign(hi) |hi |p−1

||h||p−2p

, h=(h1, ..., hn) ¥ Rn,
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i.e., f−1 is obtained from f by replacing q with p. Note that if p=2 then f is the
identity function.

Recall the definition of Bregman divergence given in Section 1.4. It is easy to
check [14] (see also Gordon [16]) that the Bregman divergence df(u, w) associated
with the gradient mapping f given in (15) can be rewritten as

df(u, w)=
1
2 ||u||

2
q+

1
2 ||w||

2
q−u · f(w). (16)

Also, note that the special case p=2 yields df(u, w)=
1
2 ||u−w||22.

The following lemma is a Bregman divergence version of a classical result about
projection operators. This lemma has also been used in the context of on-line
learning by Herbster and Warmuth [20].

Lemma 3.1 (Bregman [5], Censor and Lent [10]). Let W be a closed and
convex subset of Rn, let w ¥ Rn, and let wŒ=argminu ¥W df(u, w) be the projection of
w onto W w.r.t. the Bregman divergence df given in (16). Then for any u ¥W the
following holds:

df(u, w) \ df(u, wŒ)+df(wŒ, w) \ df(u, wŒ).

In this section we take our comparison class to be the convex set WU=
{w ¥ Rn : ||w||q [ U} and we will always be projecting onto WU. By a simple Kuhn–
Tucker analysis it is not hard to verify that in such a case, wŒ=(wU)/||w||q if ||w||q > U
and wŒ=w, otherwise. (This specific projection occurs in the algorithms of Figs. 2
and 3.) We also have the following lemma.

Lemma 3.2. If u, w ¥WU then df(u, w) [ 2U2.

Proof. The assertion follows from (16) and Hölder’s inequality on the term
u · f(w), for u · f(w) [ ||u||q ||f(w)||p=||u||q ||w||q [ U2, where the equality uses the fact
that ||f(w)||p=||w||q (see Lemma 1, part 3 in [14]). L

The p-norm algorithms are a versatile on-line learning tool. It is noted in [14, 17]
that by varying p these algorithms can behave in a radically different manner.
Consider, for instance, the case of the square loss. Here p=2 yields the Widrow–
Hoff rule, while p=2 ln n gives rise to an algorithm which is very similar to EG.

We now describe the self-confident p-norm algorithms for square loss and
absolute loss. Both algorithms are assumed to know4 bound U on the q-norm of the

4 It is worth noticing that, in order to make a constant learning rate algorithm achieve bounds of the
form of Theorems 3.1 and 3.2, both the norm of the best u and its loss seem to be a necessary prior
knowledge [2, 22].

comparison vector. This assumption could be removed by applying the results we
mention in Section 3.2.

We observe that, unlike previous on-line regression analyses [14, 18, 22, 23], our
algorithms do not have any prior knowledge about the norm of the instances. The
algorithms are given in Figs. 2 and 3. In Fig. 2 we denote by Lt the cumulative
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square loss of the algorithm up to trial t, i.e., Lt=; t
i=1 li, where lt=

1
2 (yt−ŷt)

2. In
Fig. 3 we denote by Lt the cumulative absolute loss of the algorithm up to trial t,
i.e., Lt=; t

i=1 li, where lt=
1
2 |yt−ŷt |. Also, in both figures (and throughout the rest

of this section) we set

kt=(p−1) X
2
tU

2,

where

Xt= max
i: i [ t, li > 0

||xi ||p.

The algorithms maintain an n-dimensional weight vector. They start from
w1 ¥WU, and in the generic trial t they are required to predict the unknown label yt
associated with the instance xt. The square loss algorithm predicts the label yt ¥ R

through the linear combination ŷt=wt ·xt, while the absolute loss algorithm

Initialization: Initial weight vector w1 ¥WU;
For t=1, 2, ..., T:

• Get instance xt ¥ Rn;

• Predict with ŷt=wt ·xt;

• Get label yt ¥ R;

Incur loss lt=
1
2 (yt−ŷt)

2;

• If lt > 0 then update weights as follows.

Set

Xt= max
i : i [ t, li > 0

||xi ||p,

kt=(p−1) X
2
tU

2,

ct=
`kt

`kt+Lt−`kt
,

gt=
ct
1+ct

1
(p−1) X2t

.

Let

wmt=f−1(f(wt)+gt(yt−ŷt) xt),

wt+1=˛
wmt if ||wmt ||q [ U,

wmt U
||wmt ||q

otherwise.

FIG. 2. The self-confident p-norm algorithm for square loss.
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Initialization: Initial weight vector w1 ¥WU.
For t=1, 2, ..., T:

• Get instance xt ¥ Rn;

• Let

Xt= max
i : i [ t, li > 0

||xi ||p,

kt=(p−1) X
2
tU

2,

at==
kt/4

kt/4+Lt−1+1
,

ct=1−at;

• Predict with ŷt=sct (wt ·xt)=
˛1 if wt ·xt \ ct,

wt ·xt
ct

if wt ·xt ¥ (−ct, ct),

−1 if wt ·xt [ −ct;

• Get label yt ¥ {−1,+1};

Incur loss lt=
1
2 |yt−ŷt |;

• If lt > 0 then update weights as follows:

wmt=f−1(f(wt)+gt ytxt),

wt+1=˛
wmt if ||wmt ||q [ U,

wmt U
||wmt ||q

otherwise,

where gt=
2at

(p−1) X2t
.

FIG. 3. The self-confident p-norm algorithm for absolute loss and binary labels.

predicts the label yt ¥ {−1,+1} through the ‘‘clipped’’ linear combination ŷt=
sct (wt ·xt), as specified in Fig. 3. Note that the knot ct of the clipping function sct
tends to get close to 1 as the cumulative absolute loss Lt grows. When the label yt is
received, the algorithms incur a loss lt. As we already said, this loss is the square
loss for the algorithm in Fig. 2 and the absolute loss for the algorithm in Fig. 3.
Finally, the algorithms update their weights as indicated. In both figures the update
has two steps. The first step computes wmt by the conventional update of the p-norm
algorithms, as in [14]. The second step computes wt+1 by projecting wmt onto WU
w.r.t. df. Note that weights are not updated if lt=0.5

5 The algorithms do not update also in the degenerate case that xt=0.

The analysis of the algorithms is summarized by the following results.
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Theorem 3.1. Let WU={w ¥ Rn : ||w||q [ U} and S=((x1, y1), (x2, y2), ...),
where each (xt, yt) ¥ Rn×R. Then for any u ¥WU the regression algorithm in Fig. 2,
run on a prefix of S of arbitrary length T, achieves the following cumulative square
loss bound

LT [ Lu, T+4kT+4`kTLu, T+k
2
T ,

where Lu, T=;T
t=1

1
2 (yt−u ·xt)2.

Theorem 3.2. Let WU={w ¥ Rn : ||w||q [ U} and S=((x1, y1), (x2, y2), ...),
where each (xt, yt) ¥ Rn×{−1,+1}. Then for any u ¥WU the algorithm in Fig. 3, run
on a prefix of S of arbitrary length T, achieves the following cumulative absolute loss
bound

LT [
1
2 Du, T+

3
2 kT−A+1+`2kT Du, T+4kT−4kTA+3k

2
T

=1
2 Du, T+O(kT+`kT Du, T),

where

A=
1
2
k1−
(p−1) X21 df(u, w1)

4
, 0 [ A [

1
2
k1,

Du, T= C
T

t=1, lt > 0
Du, t,

Du, t=max{0, 1−ytu ·xt}.

The bounds of Theorems 3.1 and 3.2 above have the same form of those proven
for algorithms whose constant learning rate has been optimized in terms of the total
loss of the comparison class (e.g., [2, 22, 23]). It should be clear that analogous
bounds could also be obtained by applying the doubling trick to the corresponding
p-norm algorithms with constant learning rate. Comparing these three groups of
bounds—i.e., ours, those for the optimally tuned constant learning rate, and those
for the doubling trick—requires a careful analysis of the leading constants that we
did not carry out in this paper.

Note that the bound for the absolute loss algorithm is in terms of the deviation
D(u; (xt, yt)) of a linear threshold classifier u with threshold 0 on example (xt, yt),
defined as D(u; (xt, yt))=max{0, 1−ytu ·xt}. The quantity 12 D(u; (xt, yt)) is related
to a ‘‘loss’’ of u on example (xt, yt). For instance, if u is the ith unit vector and
xt ¥ [−1,+1]n, we obtain the finite expert framework considered in [7]. Here the
tth prediction of the ith expert is xt, i=u ·xt, and 12 D(u; (xt, yt))=

1
2 |yt−xt, i | ¥ [0, 1]

is exactly the absolute loss suffered by the ith expert in the ith trial. As another
example, if u and xt are n-dimensional {0, 1}-vectors then 1

2 D(u; (xt, yt)) corre-
sponds to the so-called attribute error [27] of u on (xt, yt) This quantity counts the
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minimal number of components of xt that need to be flipped to make u classify
(xt, yt) correctly.

The two results above have other interesting properties. The dual norms quantity
kT is a function of the norm p. This affects the dependence of the p-norm algorithm
on the dimension n of the input space. Recall that ||xt ||p [X for all t implies that
kT [ (p−1) X2U2. For instance, if p=2 ln n [14] then6 kT < 2e ln nU21X

2
., where

6 Here e is the base of natural logarithms.

U1 is an upper bound on the 1-norm of u and X. is an upper bound on the .-norm
of the instances. In the expert case we have U1=X.=1. Thus p=2 ln n yields
kT < 2e ln n. This gives rise to a loss bound which is similar to the one we have
proven in Section 2 for the adaptive Weighted Majority algorithm. (As a matter of
fact, the constants in the bound of Theorem 3.2 are slightly larger.)

To prove Theorems 3.1 and 3.2 we need the following three technical lemmas.
The first lemma is taken from [14], but it essentially follows from a combination of
[17, 22]. The second lemma appears in various forms in [13, 14, 21, 23]. The third
lemma is a simple technical tool for our self-confident analysis.

Lemma 3.3. Let u, wt ¥ Rn, xt ¥ Rn, with ||xt ||p [Xt, and set wmt=f−1(f(wt)+
gt(yt−ŷt) xt), with gt=ct/((1+ct)(p−1) X

2
t ), ct \ 0,Xt > 0, yt ¥ R, and ŷt=wt ·xt.

Then the following inequality holds:7

7 In the degenerate case that Xt=0 we have wmt=wt. In such a case gt is not defined, but the inequality
of the lemma trivially holds true for any ct \ 0.

ct
1+ct

1
2
(yt−ŷt)2−ct

1
2
(yt−u ·xt)2 [ (p−1) X

2
t (df(u, wt)−df(u, w

m
t )).

Lemma 3.4. Let u, wt, xt ¥ Rn, gt > 0, and set wmt=f−1(f(wt)+gt ytxt). Then the
following equality holds:

yt(u ·xt−wt ·xt)=
1
gt
(df(u, wt)−df(u, w

m
t )+df(wt, w

m
t )).

Lemma 3.5. Let l1, l2, ..., lT and d be non-negative real numbers. Then

C
T

t=1

lt
`d+; t

i=1 li
[ 2 1=d+C

T

t=1
lt−`d2 ,

where 0/`0=0.

Proof of Lemma 3.5. Let l0=d and Lt=; t
i=0 li, t=0, ..., T. In the inequality

1
2 x [ 1−`1−x, x [ 1, set x=lt/Lt and then multiply both terms of the resulting
inequality by`Lt. This yields

1
2
lt
`Lt

[`Lt−`Lt−1 .

The claim is then obtained by summing over t=1, ..., T. L
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Proof of Theorem 3.1. We note that Lemma 3.3 applies. We can write

ct
1+ct

lt−ctlu, t [ (p−1) X
2
t (df(u, wt)−df(u, w

m
t )).

We divide by ct and apply Lemma 3.1. This lemma allows us to lower bound
df(u, w

m
t ) by df(u, wt+1). We obtain

1
1+ct

lt−lu, t [
(p−1) X2t
ct

(df(u, wt)−df(u, wt+1)). (17)

We need to upper bound the right-hand side of (17). For this purpose, we first
claim that the following inequalities hold:

X2t+1
ct+1

\
X2t
ct
, t=1, ..., T. (18)

To prove this claim, we define the function g(x, L)=x(`x2+L−x). Computing
its first derivatives, it is easy to see that g(x, L) is nondecreasing in x \ 0 for any
L \ 0 and nondecreasing in L \ 0 for any x \ 0. Now simple algebra gives

X2t+1
ct+1
=g 1Xt+1,

Lt+1
(p−1) U2
2 \ g 1Xt,

Lt
(p−1) U2
2=X

2
t

ct
,

thereby proving (18).
Therefore the right-hand side of (17) can be bounded as

X2t
ct
(df(u, wt)−df(u, wt+1))

=
X2t
ct
df(u, wt)−

X2t+1
ct+1

df(u, wt+1)+df(u, wt+1) 1
X2t+1
ct+1
−
X2t
ct
2

[
X2t
ct
df(u, wt)−

X2t+1
ct+1

df(u, wt+1)+2U2 1
X2t+1
ct+1
−
X2t
ct
2 ,

where in the inequality we applied (18) and Lemma 3.2.
Plugging back into (17) and summing over t=1, ..., T gives

C
T

t=1

11− ct
1+ct
2 lt−Lu, T

[
(p−1) X21
c1

df(u, w1)−
(p−1) X2T+1
cT+1

df(u, wT+1)+2 1
kT+1
cT+1

−
k1
c1
2 .
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Since df(u, wT+1) \ 0 and df(u, w1) [ 2U2 this implies

LT− C
T

t=1

ct
1+ct

lt [ Lu, T+
2kT
cT
, (19)

where we set cT+1=cT and XT+1=XT (so that (18) is not violated and kT+1=kT).
Since

ct
1+ct

== kt
kt+Lt

[= kT
kT+Lt

,

we can apply Lemma 3.5 to the second term of the left-hand side of (19), along with
the bound on ct/(1+ct) just given. We also substitute the value cT=`kT/
(`kT+LT−`kT) into the right-hand side. This results in

LT−2`kT (`kT+LT−`kT) [ Lu, T+2`kT (`kT+LT−`kT).

Simplifying and rearranging gets

kT+LT [ 4`kT `kT+LT+Lu, T−3kT.

We solve for LT+kT and simplify. The larger of the roots of the equation obtained
by using= instead of [ gives the desired bound. L

Proof of Theorem 3.2. We denote by M the set of trials where the algorithm
incurs a nonzero loss. Let us focus on a single trial t ¥M and let wmt be as in Fig. 3.
We apply Lemma 3.4 and upper bound the last term df(wt, w

m
t ) as in [17, 14]:

df(wt, w
m
t ) [ (g

2
t /2)(p−1) X

2
t . This yields

yt(u ·xt−wt ·xt) [
1
gt
1df(u, wt)−df(u, w

m
t )+
g2t
2
(p−1) X2t 2 .

Next, we exploit the definition of D(u; (xt, yt)), from which it follows that
ytu ·xt \ 1−D(u; (xt, yt)). Then, by Lemma 3.1, we lower bound df(u, w

m
t ) through

df(u, wt+1) and rearrange:

1−ytwt ·xt−
gt

2
(p−1) X2t [ Du, t+

1
gt
(df(u, wt)−df(u, wt+1)).

Next, we claim that for any trial t such that lt > 0 the left-hand side of the last
inequality is at least 2ctlt, where ct=1−at. This would give us the one-trial loss
bound

2ctlt [ Du, t+
1
gt
(df(u, wt)−df(u, wt+1)), (20)
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holding for any t such that lt > 0 and any u ¥WU. We prove this claim by a case
analysis over yt=−1,+1. We work out the details only for yt=−1, the other case
being similar. If yt=−1 then lt=

1
2 (1+ŷt). Hence it suffices to prove that for any

r > −ct we have

1+r−
gt

2
(p−1) X2t [ ct(1+sct (r)). (21)

(The case r [ −ct is not our concern, as this would get lt=0.) We split into two
subcases: r \ ct and −ct < r < ct. If r \ ct then the right-hand side of (21) is 2ct,
since sct (r)=1. On the other hand, recalling the value of gt in Fig. 3, the left-hand
side of (21) is at least 1+ct−at=2ct. If −ct < r < ct then sct (r)=r/ct. It is easy to
see that in this case both sides of (21) are equal to ct+r. This concludes the proof
of (20).

The right-hand side of (20) is upper bounded as

1
gt
(df(u, wt)−df(u, wt+1))

=
(p−1) X2t
2at

(df(u, wt)−df(u, wt+1))

=
p−1
2
1X2t
at
df(u, wt)−

X2t+1
at+1

df(u, wt+1)+df(u, wt+1) 1
X2t+1
at+1

−
X2t
at
22

[
p−1
2
1X2t
at
df(u, wt)−

X2t+1
at+1

df(u, wt+1)+2U2 1
X2t+1
at+1

−
X2t
at
22 ,

where the last inequality follows from Lemma 3.2 and the fact (straightforward to
check) that

X2t+1
at+1

\
X2t
at
, t=1, ..., T. (22)

We plug this back into (20), sum over all t ¥M, drop the non-negative term involving
df(u, wT+1), divide by 2, and rearrange. We obtain

LT− C
T

t=1
atlt [

Du, T

2
+
p−1
4
1X21
a1
df(u, w1)+2U2 1

X2T+1
aT+1

−
X21
a1
22

=
Du, T

2
+
kT+1
2aT+1

−
A
a1
, (23)

where we have set

A=
1
2
k1−
(p−1) X21 df(u, w1)

4
.
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We now handle (23) as follows. We set XT+1=XT, so that (22) is not violated and
aT+1=`(kT/4)/(kT/4+Lt+1). Next, since A \ 0 (Lemma 3.2) and a1 [ 1, we
upper bound A/a1 by A. Finally, we upper bound at in the left-most side of (23) by
`(kT/4)/(kT/4+Lt) and then apply Lemma 3.5 with the bound on at just given.
This leads to

LT−`kT 1`kT/4+LT−
1
2
`kT 2 [

Du, T

2
+`kT `kT/4+LT+1−A.

By virtue of the inequality `1+x [`x+1/(2`x), x \ 0, the second term of the
right-hand side is bounded from above by

`kT 1`kT/4+LT+
1

2`kT/4+LT
2 [`kT `kT/4+LT+1.

Simple algebra then gives

kT/4+LT [
Du, T

2
+2`kT `kT/4+LT−kT/4+1−A.

We solve for LT+kT/4 and simplify. Again, we compute the larger of the roots of
the equation obtained by using = instead of [ . This gives the bound of the
theorem. L

3.2. Self-Confident Winnow/EG-like Algorithms

From the proofs of Theorems 3.1 and 3.2 the reader can see that our technique
applies to a generic quasi-additive algorithm with mapping f, as long as we can
both find a constant upper bound8 on the divergence terms df(u, wt+1), and show a

8 In the case of the p-norm algorithms this is achieved through Lemma 3.2.

one-trial loss bound of the form

(1−a) lt−lu, t [
c
a
(df(u, wt)−df(u, wt+1)),

where lt is the loss of the algorithm in trial t, lu, t is the loss of the generic off-line
predictor u in trial t, a ¥ (0, 1) is a constant proportional to g, and c > 0.

Consider applying this proof technique to algorithms in the Winnow/EG family
[22, 25, 26], such as Weighted Majority. The measure of progress typically asso-
ciated with these algorithms is a relative entropy-like divergence. Proving the
required one-trial loss bound is quite standard. Rather, the difficulty here stems
from the fact that the relative entropy is hardly upper bounded, unless we introduce
a lower bound constraint on the weights of the algorithm. Via this proof technique,

ADAPTIVE ON-LINE ALGORITHMS 71



it is nevertheless possible to prove self-confident bounds for these algorithms. These
bounds, however, have larger lower-order terms than those of the corresponding
self-confident p-norm bounds in Theorems 3.1 and 3.2.

On the other hand, algorithms like Weighted Majority can be used in frameworks
where the p-norm algorithms are harder to apply. As a relevant example, both the
standard analysis [29, 34] and our self-confident analysis for Weighted Majority
still hold when the dimension of the input space (the number of experts) is count-
ably infinite. This is an interesting setting, since it can clearly formalize an on-line
model selection problem with countably many models. (For instance, this can be
used back in Section 3 to find a good value for the parameter U when we ignore a
bound on the norm of the comparison vector.)

The question of obtaining sharp self-confident bounds for Winnow/EG-like
algorithms remains an open problem.

4. CONCLUSIONS AND OPEN PROBLEMS

We have studied on-line learning algorithms with an incrementally adaptive
learning rate. We have provided the first analysis of an adaptive Weighted Majority
in the finite expert framework to date. This result compares favourably with pre-
vious bounds for Weighted Majority based on doubling strategies. For more
general regression tasks we sketched a versatile and general technique to turn a
constant learning rate algorithm into a variable learning rate algorithm, called self-
confident algorithm. We focused on the analysis of self-confident p-norm algo-
rithms proving regret bounds that are easily generalizable to a wide range of convex
losses.

There are several directions in which this work could be extended. As we pointed
out before, our analysis yields suboptimal results when applied to Winnow/EG-like
algorithms, We would like to see if there is a self-confident analysis for such algo-
rithms yielding bounds of the form

LT [ Lu, T+c1 `df(u, w1) X2Lu, T+c2 df(u, w1) X2,

where weight vectors and instances have countably many components, df is a
relative entropy-like divergence, X is a bound on the .-norm of the instances, and
c1 and c2 are positive constants. Also, it might be possible to extend our techniques
to settings more general than the one studied here, e.g., the so-called shifting target
setting [2, 19, 20].

We have recently applied on-line learning tools to the problem of approximating
the maximal margin hyperplane for a set of linearly separable data (e.g., [12]). Part
of the solution to this problem involves on-line tuning of parameters. As we have
already pointed out, doubling strategies are not expected to work well in practice.
Thus we have solved this tuning problem by a self-confident approach. We have
tested our algorithms on a well-known handwritten digit recognition benchmark.
The results we have obtained so far [15] are very encouraging.
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APPENDIX A: PROOF OF LEMMA 2.1

Proof. Let L be the random variable taking values in the set {a1, ..., an} and
whose distribution is given by

Pr(L=ai)=
a−ai

Q
,

where Q=;n
j=1 a

−aj. With this notation we can write

;n
i=1 b

−ai

;n
i=1 a

−ai
=ln E[(b/a)−L],

where E[ · ] denotes the expectation. Since the logarithm is concave, Jensen’s
inequality gives

ln E[(b/a)−L] \ − ln(b/a) E[L]. (A.1)

We continue by upper bounding the two factors ln(b/a) and E[L]. Using
ln(1+x) [ x and 1 < a [ b yields

ln(b/a)=ln 11+b−a
a
2 [ b−a

a
< b−a.

As far as E[L] is concerned, we ague the following. Denote by H(L) the entropy
(in nats) of L. We have

H(L)=C
n

i=1
Pr(L=ai) ln

1
Pr(L=ai)

=ln Q+E[L] ln a. (A.2)

Now, since L has a support of size n, H(L) [ ln n holds. Moreover, the assumption
Q \ 1 is equivalent to ln Q \ 0. Thus from (A.2) we conclude that

E[L] [
ln n
ln a
.

Putting together as in (A.1) proves the lemma. L
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