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Abstract

We give a complete classification up to isomorphisms of complex graded quasi-filiform Lie algebras of
dimension n � 15 with a finite number of subspaces greater than their nilindex n − 2.
© 2008 Elsevier Inc. All rights reserved.
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1. Background and notation

The difficulties to obtain the classification of a class of nilpotent Lie algebras lead to study
the algebras which can give useful information about such a class. In this way, the graded Lie
algebras play an important role.

If g is a nilpotent Lie algebra of dimension n and nilindex k (index of nilpotency), it is natu-
rally filtered by the descending central sequence of g, (Cig)0�i�k , (C0g = g, Cig = [g,Ci−1g]).
We consider the filtration given by (Si+1), where Si+1 = g, if i � 0; Si+1 = Cig, if 1 � i � k−1,
and Si+1 = {0}, if i � k. Associated to g there exists a graded Lie algebra grg = ⊕

i∈Z
gi , where

gi = Si/Si+1. Thus, we have

grg =
⊕
i∈Z

gi , gi = Ci−1g/Cig.
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When grg and g are isomorphic, denoted by grg = g, we will say that the algebra is naturally
graded.

From Vergne’s work, if g is an n-dimensional naturally graded filiform Lie algebra, then g is
isomorphic to Ln or Qn [12]. This classification plays a fundamental role in the cohomological
study of the variety of nilpotent Lie algebras laws.

Let us note that, for the filiform case, Goze and Khakimdjanov [8] give the complete classifica-
tion of graded (not necessarily naturally graded) filiform Lie algebras and they give the geometric
description of the characteristically nilpotent filiform Lie algebras by using those graded filiform
Lie algebras. We note that, in this last classification, the case denoted Cr is not necessary because
these algebras are isomorphic to Qn (this remark was given by one of the authors). In this paper,
we are interested by the quasi-filiform Lie algebras, that is nilpotent Lie algebras g whose nilin-
dex is equal to dim(g) − 2. This class of algebras correspond to the class whose Goze’ invariant
is (n− 2,1,1). In a previous paper [3] we have given the classification of naturally graded quasi-
filiform Lie algebras. Here we approach the general classification by considering a hypothesis
called “length-condition”: let g = ⊕p

i=1 gni
be a connected gradation, that is:

(1) [gni
,gnj

] ⊂ gni+nj
,

(2) gni
�= {0}.

Such a gradation is said of length p. The length l(g) of g is the maximum of the lengths of
connected gradations. It is clear that l(g) � dim(g). In [5] we have given the classification when
l(g) = n = dim(g) and we have studied easily some of their cohomological properties by con-
sidering a gradation with n subspaces [7]. We remark that a graded Lie algebra with a gradation
with a large number of subspaces facilitates the study of some cohomological properties for these
algebras (see [1,2,9,10]).

The quasi-filiform Lie algebra g = Qn−1 ⊕ C is graded and satisfies l(g) = n − 1 while the
natural gradation has only n − 2 non-zero subspaces. The aim of this paper is to give the classi-
fication of graded quasi-filiform Lie algebras with l(g) = n − 1.

This paper is structured in the following way. In Section 2, we define the quasi-filiform Lie
algebras of maximum length. Then we introduce the quasi-filiform Lie algebras with a gradation
of length n− 1, and we state the main classification theorem. In Section 3 we study the existence
of adequate homogeneous bases, which allows us to obtain the basis structure of quasi-filiform
Lie algebras with a gradation of length n−1. Finally, in the last section we discuss how the proof
of the classification theorem has been obtained. We also show how the programming language
Mathematica [13] has been used as an assistant, with packages elaborated ad hoc in order to
study similar problems.

2. Quasi-filiform Lie algebras of length bigger than dimg − 2

We use the following definition of quasi-filiform Lie algebra which is a key concept in this
paper.

Definition 2.1. An n-dimensional nilpotent Lie algebra g is said to be quasi-filiform if Cn−3g �= 0
and Cn−2g = 0, where C0g = g, Cig = [g,Ci−1g].

Recently a new invariant has been introduced by Goze to study nilpotent Lie algebras. Let g

be a nilpotent Lie algebra. Let gz(X) be the ordered sequence of Jordan block’s dimensions of
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nilpotent operator ad(X), where X ∈ g. In the set of these sequences, we consider the lexico-
graphical order. Then the sequence

gz(g) = max
X∈g\[g,g]

{
gz(X)

}
is an invariant of g. An n-dimensional Lie algebra g is quasi-filiform if and only if the invariant
of Goze gz(g) is (n − 2,1,1).

Thus, an n-dimensional quasi-filiform Lie algebra is characterized by its nilindex k = n − 2,
which determines all the algebras belonging to the quasi-filiform family. Hence, the number of
subspaces for the natural gradation in the quasi-filiform case is n − 2, but we can obtain other
algebras with a gradation of length n.

2.1. Quasi-filiform Lie algebras of length dimg

The algebras g = gi
(n,1), i = 1,2,3, defined in the basis (X0,X1, . . . ,Xn−2, Y ) as follows, can

be graded g = g1 ⊕ · · · ⊕ gn with n one-dimensional subspaces gi .
g1
(n,1) (n � 5, n odd):

{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xn−2−i] = (−1)i−1Y, 1 � i � n − 3

2
.

g2
(n,1) (n � 5):

{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Y ] = Xi+2, 1 � i � n − 4.

g3
(n,1) (n � 7):

{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Y ] = Xi+2, 1 � i � n − 4,

[X1,Xi] = Xi+3, 2 � i � n − 5.

These algebras can be graded with a number of subspaces equal to their dimension and for
this reason they are said to be of maximum length. In [5] we prove the following theorem.

Theorem 2.2 (Quasi-filiform Lie algebras of maximum length). Let g be an n-dimensional non-
split quasi-filiform Lie algebra of maximum length l(g) = n, n � 13. Then, the algebra g is
isomorphic to g1

(n,1) (n odd ), g2
(n,1) or g3

(n,1).

2.2. Quasi-filiform Lie algebras of length dimg − 1

We summarize now the classification of quasi-filiform Lie algebras with length n − 1 in the
following main theorem of this paper.

Theorem 2.3 (Quasi-filiform Lie algebras of length n − 1). Let g be an n-dimensional quasi-
filiform Lie algebra of length n − 1, with n � 15. Then, the law of the algebra g is isomorphic to
one of the following laws.
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n even n odd

Qn−1 ⊕ C

g1
(n,p) (3 � p � n − 3) g1

(n,p) (3 � p � n − 3)

g2
(n,p)

(3 � p � n − 3) g2
(n,p)

(3 � p � n − 3)

g3
(n,p) (3 � p � n − 3,p odd;p = n − 4)

g4
(n,p) (n − 5 � p � n − 3) g4

(n,p) (n − 5 � p � n − 3)

g5
(n,p) (n − 5 � p � n − 3) g5

(n,p) (n − 5 � p � n − 3)

g6
(n,p) (5 � p � n − 1, p odd) g6

(n,p) (5 � p � n − 2, p odd)

g7
(n,p) (5 � p � n − 3, p odd) g7

(n,p) (5 � p � n − 2, p odd)

g8
(n,p) (5 � p � n − 1, p odd)

g9
(n,p)

(p = 5,p = 7) g9
(n,p)

(p = 5,p = 7)

g10
(n,p) (p = 5,p = 7) g10

(n,p) (p = 5,p = 7)

g11
(n,n−3)(α)

g12
(n,n−4)

g13
(n,n−5)

This family of algebras has been divided into three subfamilies: algebras from extensions,
principal algebras and extremal algebras, defined in a basis (X0,X1, . . . ,Xn−2, Y ) as follows:

• Algebras from extensions (dimC1ggg = n − 3).
Qn−1 ⊕ C (n � 7, n odd):{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xn−2−i] = (−1)i−1Xn−2, 1 � i � n − 3

2
.

g1
(n,p) (n � 6;3 � p � n − 3):

{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Y ] = Xi+p, 1 � i � n − p − 2.

g2
(n,p)

(n � 6;3 � p � n − 3):

{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Y ] = Xi+p, 1 � i � n − p − 2,

[X1,Xi] = Xi+2, 2 � i � n − 4.

g3
(n,p) (n � 8, n even; 3 � p � n − 3, p odd; p = n − 4):

⎧⎪⎨
⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Y ] = Xi+p, 1 � i � n − p − 2,

[Xi,Xn−3−i] = (−1)i−1Xn−2, 1 � i � n − 4
.

2



590 J.R. Gómez et al. / Journal of Algebra 320 (2008) 586–611
g4
(n,p) (n � 13; n − 5 � p � n − 3):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,X2� n−3
2 �−1−i

] = (−1)i−1X2� n−3
2 �, 1 � i �

⌊
n − 5

2

⌋
,

[Xi,X2� n−3
2 �−i

] = (−1)i−1
(⌊

n − 3

2

⌋
− i

)
X2� n−3

2 �+1, 1 � i �
⌊

n − 5

2

⌋
,

[Xi,Xn−3−i] = (−1)i
(i − 1)(n − 4 − i)

2
αXn−2, 2 � i � n − 4

2
,

[Xi,Y ] = Xi+p, 1 � i � n − p − 2,

with α = 0, if n is odd, and α = 1, if n is even.
g5
(n,p) (n � 13; n − 5 � p � n − 3):

⎧⎪⎨
⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = 6(i − 1)!(j − 1)!(j − i)

(i + j)! Xi+j+1, 1 � i �
⌊

n − 4

2

⌋
, i < j � n − 3 − i,

[Xi,Y ] = Xi+p, 1 � i � n − p − 2.

• Principal algebras (dimC1ggg = n − 2).
g6
(n,p) (n � 6; 5 � p � n − 1, p odd):

{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xp−2−i] = (−1)i−1Y, 1 � i � p − 3

2
.

g7
(n,p) (n � 9; 5 � p � n − 2, p odd):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xp−2−i] = (−1)i−1βY, 1 � i � p − 3

2
,

[Xi,X2� n−3
2 �−1−i

] = (−1)i−1
(
X2� n−3

2 � + (1 − β)Y
)
, 1 � i �

⌊
n − 5

2

⌋
,

[Xi,X2� n−3
2 �−i

] = (−1)i−1
(⌊

n − 3

2

⌋
− i

)
X2� n−3

2 �+1, 1 � i �
⌊

n − 5

2

⌋
,

[Xi,Xn−3−i] = (−1)i
(i − 1)(n − 4 − i)

2
αXn−2, 2 � i � n − 4

2
,

where α = 0, if n is odd, and α = 1, if n is even; and where β = 0, if p = 2�(n − 1)/2� − 1,
and β = 1, in other cases.
g8
(n,p) (n � 8, n even; 5 � p � n − 1, p odd):

⎧⎪⎪⎨
⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xp−2−i] = (−1)i−1βY, 1 � i � p − 3

2
,

[Xi,Xn−3−i] = (−1)i−1
(
Xn−2 + (1 − β)Y

)
, 1 � i � n − 4

2
,

where β = 0 if p = n − 1, and β = 1 in other cases.
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• Extremal algebras (dimC1ggg = n − 2).
g9
(n,p) (n � 9; p = 5, p = 7):

⎧⎪⎨
⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[X1,Xj ] = Xj+2 + δp−3,j Y, 2 � j � n − 4,

[Xi,Xp−2−i] = (−1)i−1Y, 2 � i � p − 3

2
.

g10
(n,p) (n � 9; p = 5, p = 7):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = 6(i − 1)!(j − 1)!(j − i)

(i + j)! Xi+j+1 + δp−2−i,j Y,

1 � i �
⌊

n − 4

2

⌋
, i < j � n − 3 − i.

g11
(n,n−3)(α) (n � 12, n even):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xn−5−i] = (−1)i−1(αXn−4 + Y), 1 � i � n − 6

2
,

[Xi,Xn−4−i] = (−1)i−1
(

n − 4 − 2i

2

)
αXn−3, 1 � i � n − 6

2
,

[Xi,Xn−3−i] = (−1)i
(

(i − 1)(n − 4 − i)

2
α + 1

α

)
Xn−2, 1 � i � n − 4

2
,

[X1, Y ] = Xn−2,

where α = reiθ , with r �= 0, and −π/2 � θ < π/2.
g12
(n,n−4) (n � 13, n odd):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xn−6−i] = (−1)i−1(aXn−5 + Y), 1 � i � n − 7

2
,

[Xi,Xn−5−i] = (−1)i−1
(

n − 5 − 2i

2

)
aXn−4, 1 � i � n − 7

2
,

[Xi,Xn−4−i] = (−1)i
(

(i − 1)(n − 3 − i)

2
a + 1

a

)
Xn−3, 1 � i � n − 5

2
,

[Xi,Xn−3−i] = (−1)i−1(i − 1)

(
(i − 2)(3n − 15 − 2i)

12
a + 1

a

)
Xn−2, 1 � i � n − 5

2
,

[Xi,Y ] = Xn−4+i , 1 � i � 2,

where a = √−12/(n − 6)(n − 7).
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g13
(n,n−5) (n � 13, n even):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xn−7−i] = (−1)i−1(aXn−6 + Y), 1 � i � n − 8

2
,

[Xi,Xn−6−i] = (−1)i−1
(

n − 6 − 2i

2

)
aXn−5, 1 � i � n − 8

2
,

[Xi,Xn−5−i] = (−1)i
(

(i − 1)(n − 6 − i)

2
a + 1

a

)
Xn−4, 1 � i � n − 6

2
,

[Xi,Xn−4−i] = (−1)i−1(i − 1)

(
(i − 2)(3n − 18 − 2i)

12
a + 1

a

)
Xn−3,

1 � i � n − 6

2
,

[Xi,Xn−3−i] = (−1)i(i − 1)(i − 2)

(
(i − 3)(2n − 12 − i)

24
a + 1

2a

)
Xn−2,

1 � i � n − 4

2
,

[Xi,Y ] = Xn−5+i , 1 � i � 3,

where a = √−12/(n − 7)(n − 8).

We will prove in the next sections that there are no n-dimensional quasi-filiform Lie algebra
of length n − 1 different from the above algebras.

3. Structure of quasi-filiform Lie algebras of length dimg − 1

The initial problems in the study of graded Lie algebras are the existence of basis such that
the expression of the brackets for the law of such algebras is reduced and to determine one
of those bases. We will now restrict our attention to obtain an adapted homogeneous basis
for any possible gradation of length dimg − 1 on a quasi-filiform Lie algebra [5], i.e., a basis
(X0,X1, . . . ,Xn−2, Y ) formed by homogeneous vectors such that

[X0,Xi] = Xi+1, 1 � i � n − 3,

[X0,Xn−2] = [X0, Y ] = 0.

We can note that the algebras gi
(n,p), 1 � i � 13 of Theorem 2.3 are defined by considering such

adapted and homogeneous basis.

3.1. Existence of adapted homogeneous basis

The n-dimensional quasi-filiform algebras with length n−1 admit a decomposition g = gn1 ⊕
· · · ⊕ gn1+n−2. We will study the cases n1 � 0, n1 < 0 < n1 + n − 2 and n1 + n − 2 � 0; and
we will show that there exists an adapted and homogeneous basis in each case. In the following
lemma we show that if n1 � 0 then n1 = 1 or n1 = 0.
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Lemma 3.1. Let g be an n-dimensional quasi-filiform Lie algebra of length l(g) = n − 1, that
admits the decomposition g = gn1 ⊕ · · · ⊕ gn1+n−2 with n1 � 0, then n1 = 1 or n1 = 0 with
dimg0 = 1.

Proof. Indeed, if g = gn1 ⊕ · · · ⊕ gn1+n−2 is a quasi-filiform Lie algebra with l(g) = n − 1 and
n1 � 2, then C1g ⊂ g2n1 ⊕ · · ·⊕ gn1+n−2, C2g ⊂ g3n1 ⊕ · · ·⊕ gn1+n−2, . . . ,C

n−3g ⊂ g(n−2)n1 ⊕
· · ·⊕ gn1+n−2 thus (n− 2)n1 � n1 +n− 2 so (n− 3)n1 � n− 2. If n1 � 2 then 2(n− 3) � n− 2
thus n � 4 which is impossible.

If n1 = 0 and dimg0 = 2, then C1g ⊂ g3 ⊕ · · · ⊕ gn−2 thus C2g ⊂ g4 ⊕ · · · ⊕ gn−2, . . . ,

Cn−3g ⊂ gn−1 ⊕ · · · ⊕ gn−2, which is impossible, thus dimg0 = 1 when n1 = 0. �
We now prove that there exists an adapted homogeneous basis of g.

Theorem 3.2. If g is an n-dimensional quasi-filiform Lie algebra of length l(g) = n − 1, that
admits the decomposition g = gn1 ⊕ · · · ⊕ gn1+n−2, then there exists an adapted homogeneous
basis of g.

Proof. Let g be an n-dimensional quasi-filiform Lie algebra that admits the decomposition g =
gn1 ⊕ · · · ⊕ gn1+n−2. We can consider the cases n1 < 0 < n1 + n − 2 and n1 � 0. In a similar
way, we obtain an adapted homogeneous basis of g, in both cases.

For instance, when n1 � 0 by Lemma 3.1 we have to consider n1 = 0 and n1 = 1.


 n1 = 1.

Let g be an n-dimensional quasi-filiform Lie algebra that admits the decomposition g = g1 ⊕
· · · ⊕ gn−1. Then there exists m ∈ Z with 1 � m � n − 1, such that dimgi = 1 for i �= m and
dimgm = 2. As the nilindex of g is k = n − 2, there exists p � 1 such that dimCig = n − 1 − i

for 1 � i � p − 1 (this condition being empty when p = 1), and dimCig = n − 2 − i for p �
i � n − 2. We will distinguish the case p �= 1, i.e., dimC1g = n − 2, from the case p = 1 where
dimC1g = n − 3. The treatment is similar in both cases. We consider a homogeneous basis of
g for the gradation and the generators of the basis belonging to a supplementary space of C1g.
Then, as dimCi−1g− dimCig is equal to 1 or 2, we can determine g/Cig. Hence, we can obtain
an appropriate reordering of the vectors which leads to the adapted homogeneous basis of g.

• Case dimC1g = n − 2.

Let (U1, . . . ,Um,U ′
m, . . . ,Un−1) be a homogeneous basis of g such that gi = 〈Ui〉 for i �= m

and gm = 〈Um,U ′
m〉. If m = 1 then C1g = g2 ⊕· · ·⊕gn−1,C

2g = g3 ⊕· · ·⊕gn−1, . . . ,C
n−2g =

gn−1,C
n−1g = (0) which is impossible. If m �= 1, then g/C1g = 〈U1,U2〉, and we have g/C2g =

〈U1,U2,U3〉, where [U1,U2] = a1,2U3 with a1,2 �= 0 replacing a1,2U3 by U3 we can assume
[U1,U2] = U3; from the gradation we have g/Cig = 〈U1,U2, . . . ,Ui+1〉 for i � p − 1, where
[U1,Uj ] = Uj+1 for 2 � j � i, and g/Cpg = 〈U1,U2, . . . ,Up,Up+1, [U2,Up]〉. Moreover,

g/Cp+1g = 〈
U1,U2, . . . ,Up,Up+1, [U1,Up+1], [U2,Up]〉,
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and there is no other way to obtain g/Cp+1g because if Cpg/Cp+1g = 〈[U1, [U2,Up]]〉, the
algebra g has length equal to n. As [U2,Up] and [U1,Up+1] are independent vectors of gp+2,
we have m = p + 2. Thus,

g/Cmg = 〈
U1,U2, . . . , [U1,Up+1], [U2,Up], [U1, [U1,Up+1]

]〉
.

If [U1, [U2,Up]] �= 0, as 〈[U1,Up+1], [U2,Up]〉 = 〈Um,U ′
m〉, taking the vectors Um =

[U1,Up+1] and U ′
m = [U2,Up] − k[U1,Up+1], with k defined by [U1, [U2,Up]] = kUm+1 we

can suppose [U1,Um] = Um+1 and [U1,U
′
m] = 0 . On the other hand, if [U1, [U2,Up]] = 0,

taking the vectors Um = [U1,Up+1] and U ′
m = [U2,Up], we have [U1,Um] = Um+1 and

[U1,U
′
m] = 0. Hence, (U1, . . . ,Un−1,U

′
m) is an adapted basis of g, that is, [U1,Ui] = Ui+1

for 2 � i � n − 1, and [U1,U
′
m] = 0.

• Case dimC1g = n − 3.

When dimC1g = n − 3, the subspace g/C1g could be either 〈U1,U
′
1,Un−1〉 or 〈U1,U2,U

′
j 〉.

In both cases we can obtain an adapted homogeneous basis of g in a similar way as above. Then,
in the first case we have (U1,U

′
1,U2, . . . ,Un−2,Un−1) with [U1,U

′
1] = U2, and [U1,Ui] = Ui+1

for 2 � i � n − 3. Hence, the algebra g with this gradation is an algebraic extension of a graded
filiform Lie algebra. In the second case, we have (U1,U2, . . . ,Uj ,U

′
j , . . . ,Un−2,Un−1), with

[U1,Ui] = Ui+1 for 2 � i � n − 2.


 n1 = 0.

Let g be an n-dimensional quasi-filiform Lie algebra that admits the decomposition g = g0 ⊕
· · · ⊕ gn−2, with dimg0 = 1, and let (U0, . . . ,Um,U ′

m, . . . ,Un−2) be a basis of g with gm =
〈Um,U ′

m〉, m �= 0, and gj = 〈Uj 〉 for j �= m, then, in a similar reasoning, the algebra is graded
by

g = 〈U0〉 ⊕ 〈
U1,U

′
1

〉 ⊕ · · · ⊕ 〈Un−3〉 ⊕ 〈Un−2〉.


 n1 < 0 < n1 + n − 2.

A similar analysis if n1 � 0 shows that there exists an adapted basis of the algebra g. Thus, if
dimC1g = n− 3, we obtain the basis (Ui,Uj , . . . ,U(n−3)i+j ,U

′
k), where the algebra g is graded

by

g = 〈Un1〉 ⊕ · · · ⊕ 〈
U1,U

′
1

〉 ⊕ · · · ⊕ 〈Un1+n−2〉,

with [U1,U0] = U ′
1, [U1,U

′
1] = U2, [U1,Ui] = Ui+1 for n1 � i � n1 + n − 4 (U ′

k = Un1+n−2),
or by

g = 〈Un1〉 ⊕ · · · ⊕ 〈
U1,U

′
1

〉 ⊕ · · · ⊕ 〈Un1+n−2〉,

with [U1,U0] = U ′
1, [U1,U

′
1] = U2, [U1,Ui] = Ui+1 for n1 + 1 � i � n1 + n− 3 (U ′

k = Un1 ), or
by

g = 〈U3−n〉 ⊕ · · · ⊕ 〈
Uk,U

′ 〉 ⊕ · · · ⊕ 〈U1〉,
k
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with [U1,U
′
k] = 0, [U1,Ui] = Ui+1 for 3 − n � i � −1, and 3 − n � k � 1. If dimC1g = n − 2,

there exists an adapted basis (Ui,Uj ,Ui+j , . . . ,U(n−3)i+j ,U
′
pi+2j ) of the algebra g formed by

homogeneous vectors, and the algebra g admits the gradation

g = 〈Un1〉 ⊕ 〈Un1+1〉 ⊕ · · · ⊕ 〈
U1,U

′
1

〉 ⊕ · · · ⊕ 〈Un1+n−2〉,

where the length of the algebra implies that pi + 2j = n1, with [U1,Ui] = Ui+1 for n1 + 1 �
i � n1 + n − 3, [U1,U

′
1] = U2. �

Note that if an algebra g admits the decomposition g = gn1 ⊕ · · · ⊕ g1 ⊕ · · · ⊕ gn+n1−2, then
it admits the equivalent decomposition g = g−n−n1+2 ⊕ · · · ⊕ g−1 ⊕ · · · ⊕ g−n1 . Analogously,
we will not distinguish for an algebra g the decompositions g = g2−n ⊕ · · · ⊕ g0, g = g−n+1 ⊕
· · ·⊕ g−1, from their respectively equivalent g = g0 ⊕· · ·⊕ gn−2 and g = g1 ⊕· · ·⊕ gn−1. Thus,
there exists an adapted homogeneous basis for each n-dimensional quasi-filiform Lie algebra of
length n − 1, which admits the gradation g = gn1 ⊕ · · · ⊕ gn+n1−2.

Corollary 3.3. Let g be an n-dimensional quasi-filiform Lie algebra of length l(g) = n − 1, that
admits the decomposition g = gn1 ⊕ · · · ⊕ gn1+n−2. Then there exists an adapted homogeneous
basis (X0,X1, . . . ,Xn−2, Y ) of g such that:

(a) If the decomposition of g is g = g1 ⊕ g2 ⊕ · · · ⊕ gn−1, then

g = 〈X0,X1〉 ⊕ 〈X2〉 ⊕ · · · ⊕ 〈Xn−2〉 ⊕ 〈Y 〉

or

g = 〈X0〉 ⊕ 〈X1〉 ⊕ · · · ⊕ 〈Xm−1, Y 〉 ⊕ · · · ⊕ 〈Xn−2〉

with gm = 〈Xm−1, Y 〉 and 1 � m � n − 1.
(b) If the decomposition of g is g = g0 ⊕ g1 ⊕ · · · ⊕ gn−2, then

g = 〈Y 〉 ⊕ 〈X0,X1〉 ⊕ · · · ⊕ 〈Xn−2〉

or

g = 〈X1〉 ⊕ 〈X0,X2〉 ⊕ · · · ⊕ 〈Xn−2〉 ⊕ 〈Y 〉.

(c) If the decomposition of g is g = gn1 ⊕ gn1+1 ⊕· · ·⊕ g0 ⊕ g1 ⊕· · ·⊕ gn1+n−3 ⊕ gn1+n−2 with
4 − n � n1 � −1, then

g = 〈X1〉 ⊕ 〈X2〉 ⊕ · · · ⊕ 〈X1−n1〉 ⊕ 〈X2−n1 ,X0〉 ⊕ · · · ⊕ 〈Xn−2〉 ⊕ 〈Y 〉

or

g = 〈Y 〉 ⊕ 〈X1〉 ⊕ · · · ⊕ 〈X−n1〉 ⊕ 〈X1−n1,X0〉 ⊕ 〈Xn−3〉 ⊕ · · · ⊕ 〈Xn−2〉.
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(d) If the decomposition of g is g = g3−n ⊕ · · · ⊕ g2−n+m ⊕ · · · ⊕ g0 ⊕ g1, then

g = 〈Y 〉 ⊕ 〈X1〉 ⊕ · · · ⊕ 〈X0,Xn−2〉
or

g = 〈X1〉 ⊕ · · · ⊕ 〈Xm,Y 〉 ⊕ · · · ⊕ 〈Xn−2〉 ⊕ 〈X0〉
with either g2−n+m = 〈Xm,Y 〉 and 1 � m � n − 2, or with g1 = 〈X0, Y 〉.

Proof. Obtaining the decomposition of g by using an adapted homogeneous basis is a similar
problem in each case. For instance, if g = g1 ⊕· · ·⊕gn−1, then Theorem 3.2 guarantees the exis-
tence of an adapted homogeneous basis such that g = 〈U1,U

′
1〉 ⊕ 〈U2〉 ⊕ · · · ⊕ 〈Un−1〉 verifying

[U1,U
′
1] = U2, and [U1,Ui] = Ui+1 for 2 � i � n − 3, or g = 〈U1〉 ⊕ · · · ⊕ 〈Um,U ′

m〉 ⊕ · · · ⊕
〈Un−1〉, with [U1,Ui] = Ui+1, for 2 � i � n − 2. In the first case, by putting X0 = U1, X1 = U ′

1,
Xi = Ui for 2 � i � n − 2 and Y = Un−1, we have the algebra g with the decomposition

g = 〈X0,X1〉 ⊕ · · · ⊕ 〈Xn−2〉 ⊕ 〈Y 〉
and in the second case by putting Xi = Ui+1 for 0 � i � n − 2, and Y = U ′

m, we have that the
algebra g admits the decomposition

g = 〈X0〉 ⊕ · · · ⊕ 〈Xm−1, Y 〉 ⊕ · · · ⊕ 〈Xn−2〉.
We can obtain the other decompositions in a similar way. �
We remark that if g is a quasi-filiform Lie algebra of length l(g) = n − 1, we can determine

its decomposition in an adapted homogeneous basis (X0,X1, . . . ,Xn−2, Y ) by knowing the in-
dex n1 of the first subspace on the gradation, the index a of the subspace ga containing the
vector Y , and the index b of the subspace verifying dimgb = 2. These data will be called the
type of the algebra g.

Notation 3.4. Let g = gn1 ⊕ · · · ⊕ gn1+n−2 be an n-dimensional quasi-filiform Lie algebra of
length n − 1, and let (X0,X1, . . . ,Xn−2, Y ) be an adapted homogeneous basis of g. We will say
that g is an algebra of type g = g(n,n1,a,b) when Y ∈ ga and dimgb = 2.

This notation simplifies the computations during the classification of the quasi-filiform Lie
algebras of length n − 1. For instance, we can express easily the previous decompositions in
Corollary 3.3 by using the above notation.

Corollary 3.5. Let g be an n-dimensional quasi-filiform Lie algebra with length n − 1. Then,
there exists an adapted homogeneous basis (X0,X1, . . . ,Xn−2, Y ) of the algebra g = gn1 ⊕
· · · ⊕ gn1+n−2 such that g has one of the following types:

(i) g = g(n,3−n,p,p) with 3 − n � p � 1,
(ii) g = g(n,2−p,2−p,1) with 2 � p � n − 1,

(iii) g = g(n,3−p,n−p+1,1) with 2 � p � n − 1,
(iv) g = g(n,1,p,p) with 1 � p � n − 1.
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Proof. We can see that these gradations are suitable with the decompositions in Corollary 3.3.
For instance, when g = g(n,1,p,p) with 1 � p � n − 1 its gradation is obtained from a part of (a).
Indeed, if g = g1 ⊕ g2 ⊕ · · · ⊕ gn−1, the algebra can be g = 〈X0〉 ⊕ 〈X1〉 ⊕ · · · ⊕ 〈Xm−1, Y 〉 ⊕
· · ·⊕ 〈Xn−2〉 with gm = 〈Xm−1, Y 〉 for 1 � m � n− 1, and then g = g(n,1,p,p) with p = m. More
precisely let us split the cases (i)–(iv)(a)–(d) in subcases and let us compare them:

(i) (n,3 − n,p,p),3 − n � p � 1;
(ii)′ (n,2 − p,2 − p,1),3 � p � n − 2, (ii)′′ (n,0,0,1), (ii)′′′ (n,3 − n,3 − n,1);

(iii)′ (n,3 − p,n − p + 1,1),4 � p � n − 1, (iii)′′ (n,1, n − 1,1), (iii)′′′ (n,0, n − 2,1);
(iv) (n,1,p,p),1 � p � n − 1;
(a)′ (n,1, n − 1,1), (a)′′ (n,1,m,m),1 � m � n − 1;
(b)′ (n,0,0,1), (b)′′ (n,0, n − 2,1);
(c)′ (n,n1, n + n1 − 2,1),4 − n � n1 � −1, (c)′′ (n,n1, n1,1),4 − n � n1 � −1;
(d)′ (n,3 − n,3 − n,1), (d)′′ (n,3 − n,2 − n + m,2 − n + m),1 � m � n − 1;

then (i) = (d)′′ (p = 2 − n + m), (ii)′ = (c)′′ (p = 2 − n1), (ii)′′ = (b)′, (ii)′′′ = (d)′, (iii)′ = (c)′
(p = 3 − n1), (iii)′′ = (a)′, (iii)′′′ = (b)′′, (iv) = (a)′′ (p = m). �

In order to obtain the classification of the n-dimensional quasi-filiform Lie algebras of length
n − 1, we have to determine the structure for the family of those algebras. We will determine the
structure of the algebras g = g(n,1,p,p) and then we will give some relations about the structure
constants to use later in order to obtain the general classification.

3.2. Structure of algebras of type g = g(n,1,p,p)

We remark that the quasi-filiform Lie algebra of type g = g(n,1,p,p) admits the decomposition
g = 〈X0〉⊕· · ·⊕〈Xp−1, Y 〉⊕· · ·⊕〈Xn−2〉, with Xi ∈ gi+1 for 0 � i � n−2, and Y ∈ gp , where
(X0,X1, . . . ,Xn−2, Y ) is an adapted basis of algebra g. Next lemma indicates the structure of
those families of algebras.

Lemma 3.6. Let (X0,X1, . . . ,Xn−2, Y ) be an adapted basis of a quasi-filiform Lie algebra of
type g = g(n,1,p,p) with 1 � p � n − 1. Then, the law of the algebra is

g =
⎧⎨
⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = ai,jXi+j+1 + αδp−2−i,jBiY, 1 � i < j � n − 3 − i,

[Xi,Y ] = AiXi+p, 1 � i � n − 2 − p,

where α = 0 if p � 4, δi,j = 1 if i = j , δi,j = 0 if i �= j , and the structure constants {ai,j ,Bi,Ai}
verify Jacobi’s relations.

Proof. Everything is obvious except maybe α = 0 if p � 4. Indeed [Xi,Xp−2−i] =
ai,p−2−iXp−1 + αBiY , and one must have i < p − 2 − i that is p > 2i + 2 � 4. �

We now can obtain the relations among the structure constants ai,j for a quasi-filiform Lie
algebra of type g = g(n,1,p,p).

Proposition 3.7. Let g be a quasi-filiform Lie algebra of type g = g(n,1,p,p) with the law of the
algebra as in Lemma 3.6. Then:
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(a) Ai = A1 for 1 � i � n − 2 − p.

(b)

⎧⎨
⎩Bi = (−1)i−1B1, i �

⌊
p − 3

2

⌋
, if p is odd;

Bi = 0, if p is even.

(c) ai,j =
i−1∑
k=0

(−1)k
(

i − 1

k

)
a1,j+k, with 2 � i < j � n − 3 − i.

(d)
i∑

k=0

(−1)k
(

i

k

)
a1,i+1+k = 0, for 1 � i �

⌊
n − 5

2

⌋
.

Proof. Let (X0,X1, . . . ,Xn−2, Y ) be an adapted basis of a quasi-filiform Lie algebra g of type
g = g(n,1,p,p). Then g belongs to the family given in Lemma 3.6. The proof is a consequence of
some Jacobi identities J (X,Y,Z) = 0 for appropriate X,Y,Z ∈ g.

For instance, from Jacobi relations J (X0,Xi, Y ) = 0 for 1 � i � n − 3 − p and J (X0,Xi,

Xp−3−i ) = 0 for 1 � i � �(p − 5)/2� (a) and (b) are obtained respectively.
We will consider Jacobi’s relations J (X0,Xm,Xj ) = 0 for 1 � m < j � n − 3 − m and we

will prove (c) by induction. Indeed, from the Jacobi relations J (X0,Xm,Xj ) = 0, 1 � m < j −1,
we have that am+1,j = am,j − am,j+1, and therefore the expression is true for the particular case
m = 1, that is i = 2, and every j . We now suppose for 2 � i � s and every j that

as,j =
s−1∑
k=0

(−1)k
(

s − 1

k

)
a1,j+k,

and we will obtain as+1,j for every j . In fact, the Jacobi relation J (X0,Xs,Xj ) = 0 implies
as+1,j = as,j − as,j+1, and we have

as+1,j =
s−1∑
k=0

(−1)k
(

s − 1

k

)
a1,j+k −

s−1∑
k=0

(−1)k
(

s − 1

k

)
a1,j+1+k.

But

(−1)0
(

s − 1

0

)
a1,j = (−1)0

(
s

0

)
a1,j ,

(−1)k
((

s − 1

k

)
+

(
s − 1

k − 1

))
a1,j+k = (−1)k

(
s

k

)
a1,j+k, 1 � k � s − 1,

(−1)s
(

s − 1

s − 1

)
a1,j+s = (−1)s

(
s

s

)
a1,j+s .

Thus

as+1,j =
s∑

k=0

(−1)k
(

s

k

)
a1,j+k.

Finally, (d) is obtained in a similar way from J (X0,Xi,Xi+1) = 0, 1 � i � �(n − 5)/2�. �
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We remark that when A1 �= 0 or B1 �= 0, we can always consider A1 = A = 1 and B1 = B = 1
in Proposition 3.7, by shifting to the appropriate adapted homogeneous basis if it is necessary.
Thus, we can observe that if dimC1g = n− 3 then B = 0 and when dimC1g = n− 2 then B = 1
and p � 5 odd.

4. Proof of classification theorem

In this section we consider in detail the proof of Theorem 2.3. First of all, the next proposition
shows that the algebras defined in Section 2.2 are actually different.

Proposition 4.1. The quasi-filiform Lie algebras Qn−1 ⊕ C, g = gi
(n,p)

, 1 � i � 13, are pairwise

non-isomorphic. Two laws g11
n (α1), g11

n (α2) with α1 �= α2 of the same family g11
(n,p)(α), where

α = reiθ , r > 0, −π/2 � θ < π/2, are also non-isomorphic.

Proof. Let g = gi
(n,p), 1 � i � 13. If dimC1g = n−2 then dimCig = n−1− i for 1 � i � p−3,

and dimCig = n − 2 − i for p − 2 � i � n − 2. Consequently, g1 = gs
(n,r) and g2 = gk

(n,q) are

non-isomorphic for r > q � 6. In a similar way the result is true for dimC1g = n − 3. In the
following table, for any pair of algebras with the same p there exists an invariant showing that
they are non-isomorphic.

g\dim C1g ceng [C1g,C1g] ceng Cig

Qn−1 ⊕ C n − 3 2 – –
g1
(n,p) n − 3 1 0 n − 2 and i = 1

g2
(n,p) n − 3 1 0 n − 3 and i = 1

g3
(n,p) n − 3 1 1 if n is even –

g4
(n,p) n − 3 1 2 if n is odd –

3 if n is even
g5
(n,p) n − 3 1 n − 7 –

g6
(n,p) n − 2 2 0 p = 5 n − 1 p = 5 and i = 2

1 p � 7 n − 2 p � 7 and i = 2
g7
(n,p) n − 2 2 3 if n is odd –

4 if n is even
g8
(n,p) n − 2 2 2 –

g9
(n,p) n − 2 2 0 p = 5 n − 2 p = 5 and i = 2

1 p = 7 n − 3 p = 7 and i = 2
g10
(n,p) n − 2 2 n − 6 –

g11
(n,n−3)

(α) n − 2 1 3 –

g12
(n,n−4) n − 2 1 4 –

g13
(n,n−5) n − 2 1 5 –

Now, observe that the change of basis X′
0 = X0, X′

i = −Xi , 1 � i � n − 2, Y ′ = Y , proves
that the algebras g11

(n,n−3)(α) and g11
(n,n−3)(−α) are isomorphic. We will show that if the alge-

bras g11 (α) and g11 (α′) are isomorphic then α = ±α′. Indeed, as X0 and X1 are the
(n,n−3) (n,n−3)



600 J.R. Gómez et al. / Journal of Algebra 320 (2008) 586–611
unique generators, we only need to consider two changes of basis determined by X′
0 = X0 and

X′
1 = ∑i=n−2

i=0 aiXi +an−1Y , or X′
0 = ∑i=n−2

i=0 biXi +bn−1Y and X′
1 = X1. By combining these

changes of bases one can obtain any change of basis.
For example, consider the change of basis X′

0 = X0 and X′
1 = ∑i=n−2

i=0 aiXi + an−1Y . By

[X′
0,X

′
i] = X′

i+1 for 1 � i � n−3 we have X′
k = ∑n−k−1

i=1 aiXi+k−1, for 2 � i � n−2. Suppose

Y ′ = ∑n−2
i=0 a′

iXi + a′
n−1Y . From [X′

0, Y
′] = 0 and [X′

1, Y
′] = X′

n−2 we get a′
i = 0 for 0 � i �

n − 3. The brackets [X′
1,X

′
n−3], [X′

1,X
′
n−5] and [X′

1,X
′
n−4] imply that α′ = ±α.

When we consider X′
0 = ∑i=n−2

i=0 biXi + bn−1Y and X′
1 = X1, from the brackets [X′

0,X
′
i−1]

we obtain the vectors X′
i with i > 1. Besides, the law of the algebra must verify [X′

0, Y
′] = 0 and

[X′
1, Y

′] = X′
p+1, thus α′ = b0α and α = b0

2α′. Finally, from the bracket [X′
2,X

′
p−2] we have

b0
2 = 1, hence α = α′. Then g11

(n,n−3)(α) and g11
(n,n−3)(α

′) are non-isomorphic for α �= α′ in this
case. �

We now study the algebras family law of type g = g(n,1,p,p). When the derived algebra of g

has dimension n − 3 we can obtain g by an appropriate extension of a filiform Lie algebra g′.
When dimC1g = n − 2 (p is odd) we obtain the three finite locally families (depending on n)
of non-split algebras gi

(n,p), i = 6,7,8, introduced as principal in Section 4. We must consider
in a different way the extremal cases where either p is very small (p = 5,7) or is close to the
dimension of g (n − 5 � p � n − 1). In the particular case p = n − 3 we obtain the parametric
family g11

(n,n−3)(α). Finally, we will see that the algebras of type g �= g(n,1,p,p) has been already
computed. In a certain way, if p �= n−3, every quasi-filiform Lie algebra g of length l(g) = n−1
is either obtained from an extension of a filiform algebra of maximum length or is a principal
algebra.

4.1. The algebras from extensions

By Proposition 3.7, we can observe that if the dimension of the derived algebra is n − 3 and
A = 0 then the algebra is a split quasi-filiform algebra, i.e. Qn−1 ⊕C and if A �= 0, we will prove
that these algebras can be obtained from an extension by derivations of a filiform Lie algebra with
maximum length.

Proposition 4.2. Let g be a quasi-filiform Lie algebra of type g = g(n,1,p,p) with p � 1 and
dimC1g = n − 3. Then, there exists an (n − 1)-dimensional filiform Lie algebra g′ of maximum
length such that g is an extension by derivations of the algebra g′.

Proof. Let g be a quasi-filiform Lie algebra of type g = g(n,1,p,p) and dimC1g = n − 3,
from Corollary 3.3 we have guaranteed the existence of an adapted homogeneous basis
(X0,X1, . . . ,Xn−2, Y ), such that the law of the algebra is given by:

g =
⎧⎨
⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = ai,jXi+j+1, 1 � i < j � n − 3 − i,

[Xi,Y ] = AXi+p, 1 � i � n − 2 − p.

Let V be the vectorial space generated by the vectors (X0,X1, . . . ,Xn−2) of g, and let g′ =
(V , [, ]g) be the Lie algebra defined by the restriction of the law of g on V . Then, the algebra
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g′ is a filiform Lie algebra because of [X0,Xi] = Xi+1, 1 � i � n − 3. In [4] we showed that a
filiform Lie algebra of maximum length g′ belongs to the family characterized by

{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = ai,jXi+j+1, 1 � i < j � n − 3 − i.

Then, we can connect the vector Y with the homogeneous derivation defined by dp(Xi) = Xi+p ,
1 � i � n − 2 − p, and dp(Xi) = 0 in other case. Thus g = g′ ⊕ dp . �

Conversely, from every (n − 1)-filiform Lie algebra of maximum length we can obtain in this
way a quasi-filiform Lie algebra of type g(n,1,p,p).

Proposition 4.3. Let g′ be an (n−1)-dimensional filiform Lie algebra of maximum length defined
in an adapted homogeneous basis (X0,X1, . . . ,Xn−2), and let dp be the homogeneous derivation
given by dp(Xi) = Xi+p , 1 � i � n − 2 − p, and dp(Xi) = 0 in other cases. Then, there exists
an n-dimensional quasi-filiform Lie algebra g of type g = g(n,1,p,p), p � 1, such that dimC1g =
n − 3 and g is an extension by derivations of the algebra g′.

Proof. Indeed, let g′ be a filiform algebra of maximum length, whose law is described
in the proof of Proposition 4.2. We can define the algebra g generated by the vectors
(X0,X1, . . . ,Xn−2, Y ), where the vector Y is obtained from the homogeneous derivation
ad−Y = dp , where dp is defined by dp(Xi) = Xi+p , 1 � i � n − 2 − p, and dp(Xi) = 0 in
other cases. Then, dimC1g = n − 3 and the algebra g is a quasi-filiform Lie algebra of type
g = g(n,1,p,p), p � 1. �

In [4] we show that if n � 12, the n-dimensional filiform Lie algebras of maximum length are
the algebras Ln, Rn, Wn, Q′

n and Kn. Thus, we can determine those quasi-filiform Lie algebras
g of length l(g) = dimg − 1 obtained from such filiform algebras.

Corollary 4.4. Every n-dimensional quasi-filiform Lie algebra g of type g = g(n,1,p,p) such that
dimC1g = n − 3, n � 13 is isomorphic to Qn−1 ⊕ C or to one of the algebras gi

(n,p), 1 � i � 5.

We remark that if p � 2, a quasi-filiform Lie algebra of type g = g(n,1,p,p) is a direct sum
g = g′ ⊕ C, where g′ is a filiform Lie algebra. Then the algebra g is a split algebra, so it must be
Qn−1 ⊕ C.

4.2. Principal and extremal algebras

In the next proposition we will determine the quasi-filiform Lie algebras of type g = g(n,1,p,p)

with dimC1g = n − 2. To obtain the classification we have considered some restrictions for
the n-dimensional graded quasi-filiform family of length n − 1, which agree with an (n − 1)-
dimensional graded filiform family of maximum length. In [11] Reyes considers a filiform Lie
algebra g admitting the gradation g = g1 ⊕· · ·⊕gn with gi = 〈Xi−1〉, and determines what condi-
tions must verify the structure constants of the family of such graded algebras. Those conditions
are collected in the following lemma.
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Lemma 4.5. (See [5].) Let g be an n-dimensional filiform Lie algebra, with n � 12, that admits
a gradation g = g1 ⊕ · · · ⊕ gn, with gi = 〈Xi−1〉. Then the law of the algebra g belongs to the
family { [X0,Xi] = Xi+1, 1 � i � n − 2,

[Xi,Xj ] = ai,jXi+j+1, 1 � i < j � n − i − 2,

where the structure constants {ai,j } take one of the following set of values:

1. ai,j = 0, for every i, j .

2.

{
a1,j = β, 2 � j � n − 3,

ai,j = 0, for i �= 1.

3.

{
ai,n−2−i = (−1)i−1β, 1 � i � n − 3

2
,

ai,j = 0, in other case,
where n is odd.

4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
i,2� n−2

2 �−1−i
= (−1)i−1β, 1 � i �

⌊
n − 4

2

⌋
,

a
i,2� n−2

2 �−i
= (−1)i−1

(⌊
n − 2

2

⌋
− i

)
β, 1 � i �

⌊
n − 4

2

⌋
,

ai,n−2−i = (−1)i
(i − 1)(n − 3 − i)

2
βα, 2 � i � n − 3

2
,

ai,j = 0, in other case,
where α = 0, if n even, and α = 1, if n odd.

5.

{
ai,j = 6(i − 1)!(j − 1)!(j − i)

(i + j)! β, 1 � i < j � n − 2 − i.

We now consider a quasi-filiform Lie algebra g = g1 ⊕ · · · ⊕ gn−1 such that dimC1g = n − 2
which admits the decomposition g = 〈X0〉 ⊕ 〈X1〉 ⊕ · · · ⊕ 〈Xp−1, Y 〉 ⊕ · · · ⊕ 〈Xn−2〉, where
(X0,X1, . . . ,Xn−2, Y ) is an adapted homogeneous basis of g. Then, we have the following
proposition.

Proposition 4.6. Every n-dimensional quasi-filiform Lie algebra g of type g = g(n,1,p,p) such
that dimC1g = n − 2, n � 15, is isomorphic to one of the algebras gi

(n,p), 6 � i � 13.

Proof. Since dimC1g = n − 2, by Proposition 3.7, we have p � 5 odd, and the structure of g is
given by

g =
⎧⎨
⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = ai,jXi+j+1 + (−1)i−1BY, 1 � i < j � n − 3 − i,

[Xi,Y ] = AXi+p, 1 � i � n − 2 − p,

where B �= 0 if i + j + 2 = p, B = 0 if i + j + 2 �= p, and the structure constants {ai,j ,A,B}
verify Jacobi’s relations. First of all, we suppose that the vector Y belongs to the center of the
algebra, and then the other possible case.

• Case Y ∈ ceng.
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If Y ∈ ceng, then we have A = 0 since [Y,g] = 0, and we only have to consider the Jacobi
relations J (Xi,Xj ,Xk) = 0 with 0 � i < j < k � n−4− i−j . Note that this is the only possible
situation for p > n − 3. Then, if p � 9, we can consider the Jacobi relations (Xi,Xj ,Xk) = 0,
with i + j + k = p − 3 to obtain the equations

(−1)i−1aj,p−3−i−j = (−1)j−1ai,p−3−i−j + (−1)i+j ai,j .

Now, we can use Lemma 4.5 to modify these equations. Thus we show that the structure constants
verifying these equations are exactly those given for the principal algebras laws g6

(n,p), g = g7
(n,p)

or g = g8
(n,p) for the appropriate 9 � p � n − 1 odd. On the other hand, if p = 5 or p = 7, we

have to consider the equations

ai,j+kaj,k = ai,j ai+j+1,k + ai,kaj,i+k+1

obtained from the Jacobi relations J (Xi,Xj ,Xk) = 0 with i + j + k � n − 4. By using
Lemma 4.5 to modify these equations we obtain in addition to the principal algebras laws g6

(n,p),

g7
(n,p), g8

(n,p), the extremal algebras laws g9
(n,p) or g = g10

(n,p) for p = 5,7.

• Case Y /∈ ceng.

When Y /∈ ceng, then p � n − 3 and A �= 0.
Assume p = n − 3. Then, if (X0,X1, . . . ,Xn−2, Y ) is an adapted homogeneous basis of the

algebra g determined by Corollary 3.5, we have the decomposition g = g1 ⊕ g2 ⊕ · · · ⊕ gn−1,
with

g = 〈X0〉 ⊕ 〈X1〉 ⊕ · · · ⊕ 〈Xp−1, Y 〉 ⊕ 〈Xp〉 ⊕ 〈Xp+1〉.

Therefore, since Cn−3g = 〈Xn−2〉, denoting each class by the corresponding element, we obtain
an adapted homogeneous basis (X0,X1, . . . ,Xn−3, Y ) of the quotient algebra

g/Cn−3g = 〈X0〉 ⊕ 〈X1〉 ⊕ · · · ⊕ 〈Xp−1, Y 〉 ⊕ 〈Xp〉.

Hence, we have that g′ = g/〈Xp+1〉 is an (n − 1)-dimensional quasi-filiform Lie algebra of type
g′ = g(n−1,1,n−3,n−3) with Y /∈ ceng′ and we have by induction g′ = g6

(p+2,p) or g′ = g7
(p+2,p). If

g′ = g6
(p+2,p), the law of the algebra is given by

g =

⎧⎪⎪⎨
⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � p,

[Xi,Xp−2−i] = (−1)i−1Y, 1 � i � p−3
2 ,

[Xi,Xp−i] = aiXp+1, 1 � i � p−1
2 ,

[X1, Y ] = AXp+1,

and the Jacobi relation J (X1,X2,Xp−4) = 0 implies Y ∈ ceng, which contradicts our assump-
tion. Thus g′ = g7

(p+2,p),

g′ =
⎧⎨
⎩

[X0,Xi] = Xi+1, 1 � i � p − 1,

[Xi,Xp−2−i] = (−1)i−1Xp−1 + (−1)i−1Y, 1 � i � p−3
2 ,

[X ,X ] = (−1)i−1 p−1−2i
X , 1 � i � p−3

,
i p−1−i 2 p 2
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therefore

g =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � p,

[Xi,Xp−2−i] = (−1)i−1Xp−1 + (−1)i−1Y, 1 � i � p−3
2 ,

[Xi,Xp−1−i] = (−1)i−1 p−1−2i
2 Xp, 1 � i � p−3

2 ,

[Xi,Xp−i] = a′
iXp+1, 1 � i � p−1

2 ,

[X1, Y ] = AXp+1,

with A �= 0. Let X′
0 = X0, X′

i = 1√
A

Xi , for 1 � i � n − 2, Y ′ = 1
A

Y , then

g =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[X′
0,X

′
i] = X′

i+1, 1 � i � p,

[X′
i ,X

′
p−2−i] = (−1)i−1

√
AX′

p−1 + (−1)i−1Y ′, 1 � i � p−3
2 ,

[X′
i ,X

′
p−1−i] = (−1)i−1 p−1−2i

2

√
AX′

p, 1 � i � p−3
2 ,

[X′
i ,X

′
p−i] = a′

i

√
AX′

p+1, 1 � i � p−1
2 ,

[X′
1, Y

′] = X′
p+1.

Finally, we let α = √
A,ai = a′

i

√
A and replace X′

i , Y
′ by Xi,Y . The law of g then becomes:

g =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � p,

[Xi,Xp−2−i] = (−1)i−1αXp−1 + (−1)i−1Y, 1 � i � p−3
2 ,

[Xi,Xp−1−i] = (−1)i−1 p−1−2i
2 αXp, 1 � i � p−3

2 ,

[Xi,Xp−i] = aiXp+1, 1 � i � p−1
2 ,

[X1, Y ] = Xp+1.

We will use now induction to prove that

ai = (−1)i
(

(i − 1)(p − 1 − i)

2
α − a1

)
for 1 � i � p − 1

2
.

Indeed, from the Jacobi relations J (X0,Xi,Xp−1−i ) = 0, 1 � i � (p − 3)/2, we obtain

ai+1 = (−1)i−1
(

p − 1 − 2i

2

)
α − ai, (1)

for 1 � i � (p − 3)/2. Thus, we can express

a2 = (2 − 1)(p − 2 − 1)

2
α − a1

and the relation is true for i = 1. Assume that

aj = (−1)j
(

(j − 1)(p − 1 − j)

2
α − a1

)

for 2 � j � k Then, the expression (1) for i = k + 1 is

ak+1 = (−1)k−1
(

p − 1 − 2k + (k − 1)(p − 1 − k)
)

α − (−1)k+1a1

2
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which can be expressed as

ak+1 = (−1)k+1
(

k(p − k − 2)

2
α − a1

)
,

whence the conclusion. Finally, the Jacobi relation J (X1,X2,Xp−4) = 0 implies a1 = −α−1,
and g is the algebra law g11

(n,n−3)
(α).

Now, consider p = n − 4. Then, we have the decomposition

g = 〈X0〉 ⊕ 〈X1〉 ⊕ · · · ⊕ 〈Xp−1, Y 〉 ⊕ 〈Xp〉 ⊕ 〈Xp+1〉 ⊕ 〈Xp+2〉.

Therefore, since Cn−3g = 〈Xn−2〉 denoting as above each class by the corresponding element,
we obtain an adapted homogeneous basis (X0,X1, . . . ,Xn−3, Y ) of the quotient algebra

g/Cn−3g = 〈X0〉 ⊕ 〈X1〉 ⊕ · · · ⊕ 〈Xp−1, Y 〉 ⊕ 〈Xp〉 ⊕ 〈Xp+1〉.

Hence, we have that g′ = g/〈Xp+2〉 is an (n − 1)-dimensional quasi-filiform Lie algebra of type
g′ = g(n−1,1,n−4,n−4), and the law of the algebra g is now given by

g =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � p,

[Xi,Xp−2−i] = (−1)i−1(αXp−1 + Y), 1 � i � p−3
2 ,

[Xi,Xp−1−i] = (−1)i−1(
p−1−2i

2 )αXp, 1 � i � p−3
2 ,

[Xi,Xp−i] = (−1)i(
(i−1)(p−1−i)

2 α + 1
α
)Xp+1, 1 � i � p−1

2 ,

[Xi,Xp+1−i] = aiXp+2, 1 � i � p−1
2 ,

[Xi,Y ] = Xp+i , 1 � i � 2.

The Jacobi relations J (X0,Xi,Xp−i ) = 0 for 1 � i � (p − 1)/2 imply

ai+1 + ai = (−1)i
(

(i − 1)(p − 1 − i)

2
α + 1

α

)
, i �= p − 1

2
, (2)

ap−1
2

= (−1)
p−1

2

(
(
p−3

2 )(
p−1

2 )

2
α + 1

α

)
, (3)

and the Jacobi relation J (X1,X2,Xp−3) = 0 implies a1 = 0. Thus, we can use again induction
to obtain

ai = (−1)i−1
(

(i − 1)(i − 2)(3p − 2i − 3)

12
α + i − 1

α

)
.

Now, from Eq. (3), we have α = √−12/(p − 2)(p − 3). Hence, g is the algebra law g = g12
(n,n−4).

In a similar way for p = n− 5 we obtain that the algebra is g = g13
(n,n−5). We will finish the proof

by induction for the case p � n − 6 and conclude that Y ∈ ceng when Y ∈ C1g. Indeed, for
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p = n − 6, we have g′ = g/〈Xp+4〉 an algebra of type g′ = g(n−1,1,n−6,n−6) with Y ∈ C1g′ and
Y /∈ ceng′; hence g′ = g12

(p+5,p), and the law of the algebra is given by

g =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � p + 3,

[Xi,Xp−2−i] = (−1)i−1(αXp−1 + Y), 1 � i � p−3
2 ,

[Xi,Xp−1−i] = (−1)i−1(
p−1−2i

2 )αXp, 1 � i � p−3
2 ,

[Xi,Xp−i] = (−1)i(
(i−1)(p−1−i)

2 α + 1
α
)Xp+1, 1 � i � p−1

2 ,

[Xi,Xp+1−i] = (−1)i−1(
(i−1)(i−2)(3p−2i−3)

12 α + i−1
α

)Xp+2, 1 � i � p−1
2 ,

[Xi,Xp+2−i] = (−1)i(
(i−1)(i−2)(i−3)(2p−i−2)

24 α + (i−1)(i−2)
2α

)Xp+3, 1 � i � p+1
2 ,

[Xi,Xp+3−i] = aiXp+4, 1 � i � p+1
2 ,

[Xi,Y ] = Xp+i , 1 � i � 4,

with α = √−12/(p − 2)(p − 3). Then, from the Jacobi relations J (X0,X1,Xp+1) = 0 and
J (X1,X2,Xp−1) = 0 we have a1 = a2 = 0. Now, consider the expression

i∑
k=0

(−1)k
(

i

k

)
a1,i+1+k = 0,

that is, the identity (d) in Proposition 3.7, to obtain for i = (p+1)/2 an equation without solution
in n ∈ Z, n � 15, which contradicts our assumption Y /∈ ceng. By using as above the quotient al-
gebra and that there are no extremal algebras for p = 5,7 with Y /∈ ceng we can use an induction
to conclude that for p � n − 6 the only quasi-filiform Lie algebras with length n − 1 are those
obtained in the case Y ∈ ceng. �
4.3. The other types

Now we consider the other types of gradations on a quasi-filiform Lie algebra g of length
l(g) = n − 1. Then, if (X0,X1, . . . ,Xn−2, Y ) is an adapted homogeneous basis of the algebra g,
determined by Corollary 3.5 we have the appropriate decomposition g = gn1 ⊕· · ·⊕gn1+n−2. We
study in this section each type to conclude that we can just obtain one of the algebras Qn−1 ⊕ C,
g1
(n,p) or g6

(n,p), with the adequate p, so we can find a gradation for these algebras in order to
consider them of type g = g(n,1,p,p).

Next proposition shows that the family of Lie algebra of type g = g(n,3−n,p,p) with 3 − n �
p � 1 does not actually have length n − 1.

Proposition 4.7. There are no quasi-filiform Lie algebras of type g = g(n,3−n,p,p) with 3 − n �
p � 1.

Proof. Let (X0,X1, . . . ,Xn−2, Y ) be an adapted basis guaranteed by Corollary 3.5 for a quasi-
filiform Lie algebra of type g = g(n,3−n,p,p).

If p = 1, the law of algebra is

{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = ai,jXi+j−n+2, 1 � i < j � n − 2, n − 1 � i + j,
[Xi,Y ] = AiXi+1, 1 � i � n − 3.
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The Jacobi relations J (X0,Xi, Y ) = 0 for 1 � i � n − 4 imply Ai = A1 for 1 � i � n − 3. The
change of basis X′

i = Xi , 0 � i � n − 2, Y ′ = Y + A1X0, permits to suppose [Xi,Y ] = 0 for
0 � i � n − 2. Then g = g′ ⊕ 〈Y 〉 where g′ is a graded filiform Lie algebra for g′ = g3−n ⊕
· · · ⊕ g1 with X0 ∈ g1 and X1 ∈ g3−n. In [4] we prove that g′ = Ln−1, therefore the algebra is
g = Ln−1 ⊕ C which has maximum length.

When 3 − n � p < 1, and denoting �x� the floor function of x, the law of g is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = ai,jXi+j−n+2, n − 1 � i + j � 2n − 4,

1 � i < j � n − 2, i + j �= 2n + p − 4,

[Xi,Y ] = AiXi+p, 1 − p � i � n − 3,

[Xn−2, Y ] = An+p−2Xn+p−2 + BY,

[Xn+p−3+i ,Xn−1−i] = aiXn+p−2 + BiY, 1 � i �
⌊

1 − p

2

⌋
,

where the structure constants ai , ai,j , Ai , B and Bi must verify Jacobi’s relations. The
nilpotency of g implies Ai = ai,j = ai = B = 0 for all i, j . From the Jacobi relations
J (X0,Xn+p−3+i ,Xn−2−i ) = 0 for 1 � i � �−p/2� we obtain Bi = (−1)i−1B1. If p is even
we have B1 = 0, so g = Ln−1 ⊕ C with maximum length, but if p is odd g is a filiform Lie
algebra. Thus, there are no quasi-filiform Lie algebras of type g = g(n,3−n,p,p). �

Now, we will show that the only quasi-filiform Lie algebras of type g = g(n,3−p,n−p+1,1) are
the algebras g1

(n,p) for some suitable p.

Proposition 4.8. Let g be a quasi-filiform Lie algebra of type g = g(n,3−p,n−p+1,1), 3 � p �
n − 1. Then the algebra g is isomorphic to one of the algebras g1

(n,n−p+1), with 4 � p � n − 2.

Proof. In the basis (X0,X1, . . . ,Xn−2, Y ) guaranteed by Corollary 3.5 the law of an algebra of
type g = g(n,3−p,n−p+1,1) is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = ai,jXi+j−p+2, 1 � i < j � n − 2, p − 1 � i + j � n + p − 4

[Xi,Xn+p−3−i] = BiY, p − 1 � i �
⌊

n + p − 4

2

⌋
,

[Xi,Y ] = AiXi+n−p+1, 1 � i � p − 3.

Now, we determine the structure constants. We will show that ai,j = 0 for all i, j . Indeed, the
nilpotency of the algebra g imply ai,j = 0 for every i, j , with 1 � i � p−2. Suppose ai,j = 0 for
1 � i � k − 1 and ak,j �= 0, then the Jacobi relation J (X0,Xk−1,Xj ) = 0 implies [Xk,Xj ] = 0,
thus we have ak,j = 0. From the Jacobi relations J (X0,Xi,Xn+p−4−i ) = 0, for p − 1 � i �
�(n + p − 5)/2�, we have Bi+1 = −Bi ; then, B(p−2)+i′ = (−1)i

′−1Bp−1, with 1 � i′ � �(n −
p)/2�. If Bp−1 �= 0 the change of basis X′

0 = X0 + Xp−1, X′
i = Xi , 1 � i � n − 2, X′

n−1 =
Bp−1Y , implies that the algebra g is a filiform Lie algebra. Now, when p = 3 and p = n − 1,
one can check easily that the algebras have maximum length. Finally, if 4 � p � n − 2, from
the Jacobi relations J (X0,Xi, Y ) = 0 for 1 � i � p − 4 we obtain that Ai = Ai+1, and therefore
g = g1 . �
(n,n−p+1)



608 J.R. Gómez et al. / Journal of Algebra 320 (2008) 586–611
When the algebra has type g = g(n,2−p,2−p,1), the key to obtain the classification is that Y ∈
ceng.

Proposition 4.9. Let g be a quasi-filiform Lie algebra of type g = g(n,2−p,2−p,1), 2 � p � n − 1.
Then the algebra g is either isomorphic to the algebra g = Qn−1 ⊕C or to the algebra g = g6

(n,p),
with p � 5 odd.

Proof. Let (X0,X1, . . . ,Xn−2, Y ) be an adapted basis guaranteed by Corollary 3.5 for the alge-
bra of type g = g(n,2−p,2−p,1). Then the law of the algebra is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = ai,jXi+j−p+2, 1 � i < j � n − 2, p − 1 � i + j � n + p − 4,

[Xi,Xp−2−i] = BiY, 1 � i �
⌊

p − 3

2

⌋
,

[Xi,Y ] = AiXi−p+2, p − 1 � i � n + p − 4.

Because of the nilpotency of g we obtain [Xi,Y ] = 0, so Y ∈ ceng. Then, if p = 2, the algebra is
g = g′ ⊕ C with g′ = 〈X0,X1〉 ⊕ · · · ⊕ 〈Xn−2〉, with g′ = Qn−1. On the other hand, if p �= 2, the
nilpotency of g implies ai,j = 0 for 1 � i � p − 2 as well. A reasoning similar to Proposition 4.8
proves that ai,j = 0 for p − 1 � i. Now, from the Jacobi relations J (X0,Xi,Xp−3−i ) = 0, 1 �
i � �(p − 5)/2�, we obtain Bi = (−1)i−1B1 for 1 � i � �(p − 3)/2�. If p is even, the Jacobi
relation J (X0,X(p−4)/2,X(p−2)/2) = 0 implies B1 = 0 and g has maximum length. Thus we
have p � 5 odd, and g = g6

(n,p). �
Finally, we check that the only algebra admitting the gradation g = g(n,1,n−1,1) is the split

algebra g = Qn−1 ⊕ C.

Proposition 4.10. Let g be a quasi-filiform Lie algebra of type g = g(n,3−p,n−p+1,1), with p = 2.
Then the algebra is g = Qn−1 ⊕ K, with n � 7 odd.

Proof. Let (X0,X1, . . . ,Xn−2, Y ) be an adapted basis guaranteed by Corollary 3.5 for an algebra
of type g = g(n,1,n−1,1). Then, the algebra admits the decomposition

g = 〈X0,X1〉 ⊕ · · · ⊕ 〈Xn−2〉 ⊕ 〈Y 〉
with Y ∈ ceng. Thus the quotient algebra g/Cn−2g = g′ is a naturally graded filiform Lie al-
gebra. If dimg′ is odd, the algebra g has maximum length l(g) = n. Thus, dimg is odd, and
denoting each class by the corresponding element, we obtain an adapted homogeneous basis
(X0,X1, . . . ,Xn−2) of the quotient algebra g/〈Y 〉, and the law of the algebra g is given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xn−2−i] = (−1)i−1αXn−2, 1 � i � n − 3

2
,

[Xi,Xn−1−i] = AiY, 1 � i �
⌊

n − 2

2

⌋
,

with α = 0 or α = 1. Now, α = 0 implies that the algebra g has maximum length again.
Assume α = 1, then the Jacobi relations J (X0,Xi,Xn−2−i ) = 0, 1 � i � (n − 5)/2, imply
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Ai = (−1)i−1A1 for 1 � i � (n − 3)/2. Finally, from J (X0,X(n−3)/2,X(n−1)/2) = 0 we obtain
A(n−3)/2 = 0. Thus, we conclude that g = Qn−1 ⊕ C. �

We remark that each quasi-filiform Lie algebra in this section could be obtained assuming
a gradation of type g = g(n,1,p,p). We gather the observation in the following corollary, which
concludes the proof of Theorem 2.3.

Corollary 4.11. Every n-dimensional quasi-filiform Lie algebra g of length l(g) = n−1, n � 15,
is an algebra of type g = g(n,1,p,p).

Actually, the above result is true for n < 15, so the classification obtained in [6] for those alge-
bras of type g = g(n,1,p,p), n � 15, complete the classification for the family in low-dimension,
where the theorem of classification obtained in this paper could not be applied.

4.4. Symbolic calculus and low-dimensional

In low-dimensional (n � 15) we have obtained in [6] the classification by using symbolic cal-
culus. All brackets of an n-dimensional quasi-filiform Lie algebra of length n− 1 are determined
by the fundamental brackets [X0,Xi], 1 � i � n − 3, [X1,X2], [X1,X4], . . ., [X1,X2�(n−4)/2�],
[X1, Y ], in an adapted homogeneous basis (X0,X1, . . . ,Xn−2, Y ). Thus, the algebra g is denoted
by

g = FB
([X1,X2], [X1,X4], . . . , [X1,X2� n−4

2 �], [X1, Y ])
in [6], where we show how to use the computer as assistant for the study of the graded Lie
algebras. For instance, we can automate among other computations:

(1) To generate the initial family of Lie algebras to consider in every dimension.
(2) To compute the Jacobi identities for the family.
(3) To simplify the restriction given by the structure constants.
(4) To substitute the simplified parameter to reduce the family of Lie algebras.

With the simplification obtained in items above we can study the resulting family to obtain the
classification.

Theorem 4.12. Every n-dimensional complex quasi-filiform Lie algebra law of length l(g) =
n − 1 and type g = g(n,1,p,p), with n � 15, is isomorphic to a law gi

n of the List of Laws given
in [6].

We remark that the list is increasing with the dimension, and, for example, there are 51 al-
gebras when n = 14, including a parametric family g50

14(α), with α ∈ C − 0. On the other hand,
for n = 15, the 41 algebras obtained in [6] are actually in other notation the algebras which have
been obtained in this paper. We can see, for instance, that the algebras gi

15, i = 27,31,35,37,40,
are the principal algebras g6

(15,p) with 5 � p � 14, stated in Theorem 2.3.
The following functions show how the law of the algebras was generated by using the software

Mathematica [13]. First, we obtained the brackets with the vector X0 of the adapted homoge-
neous basis.
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For[i=1, i<=dim-3, i++, mu[X[0], X[i]] = X[i+1] ]; mu[X[0],
X[dim-2]]=0; mu[X[0], X[dim-1]]=0;

Then, we assumed the conditions for a graded quasi-filiform Lie algebra of type g = g(n,1,p,p),
where the vector Xn−1 is the vector Y of the adapted basis.

For[i=1, i<=dim-2, i++,
If[i<=dim-grad-2,
mu[X[i],X[dim-1]]=X[i+grad], mu[X[i],X[dim-1]]=0 ] ];

Finally, computing the rest of the bracket with the vectors of the basis, by using Proposi-
tion 3.7. For instance, when the vector Y is not in the derived algebra we have:

For[i=1, i<=dim-3, i++, mu[X[i],X[dim-2]]=0 ];

For[j=2, j<=dim-3, j++,
If[j<=dim-4,
If[j+3 !=grad, mu[X[1],X[j]]= a[1,j] X[j+2],
mu[X[1],X[j]]= a[1,j] X[grad-1] ],

mu[X[1],X[j]]= 0 ] ];

For[i=2, i<=dim-4, i++,
For[j=i+1, j<= dim-3, j++,
If[i+j<= dim-3,
If[i+j+1 != grad-1,
mu[X[i],X[j]]=
Sum[(-1)^k Binomial[i-1,k] a[1,j+k],{k,0,i-1}]
X[i+j+1],

mu[X[i],X[j]]=
Sum[(-1)^k Binomial[i-1,k] a[1,j+k],{k,0,i-1}]
X[grad-1] ],

mu[X[i],X[j]]=0 ] ] ];

In this way, we obtained the goal of the classification in concrete dimensions. Moreover, we
have used the package to check or refuse some conjectures about more larger dimensions, which
lead us to “guess” how should be the general result for any dimension. Indeed, Symbolic Calculus
can be useful in order to obtain the classification of a family of Lie algebras in low dimensions.
In those dimensions usually there exist algebras which do not appear on the general case, so
the computations needed to obtain a classification could be very complicated. But, actually this
approach is also useful to conjecture the existence of certain patterns on a family of algebras. And
these patterns could lead to obtain the classification of that family in any arbitrary dimension.
Some of the results introduced in Section 1 were obtained in this way, which has been successful
again to obtain the quasi-filiform algebras g of length l(g) = n − 1 in arbitrary dimension. Thus,
this approach can be used to study similar problems.
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