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An upper bound for the number of lines in a geodetic block of diameter d on p points is 
obtained, using some new general properties of geodetic blocks which are also of independent 
interest. 

1. Introduction 

The concept of a geodetic graph is a natural generalization of that of a tree: In 
a tree there is a unique path  between any two points; in a geodetic graph there is 
a unique shortest path  (distance path) between any two points. In this paper  we 
address ourselves to the prob lem of finding bounds on the number  of lines in a 
geodetic graph. If the class of graphs is kept as general as all connected graphs an 
obvious lower bound for a p-point  graph is ( p - l ) ,  since any tree is geodetic. A 

fairly easy upper  bound is also obtained in this case, viz., (d-1)+(~+21-a), 
(Theorem 1). The  problem becomes interesting only when we restrict the class to 
geodetic blocks. The  main result of this paper  is an upper  bound for the number  
of lines in this case (Theorem 2 and 3). In the course of deriving this bound 
several general propert ies  of geodetic blocks have been discovered, which are also 
of independent  interest (Propositions 1 to 7 and the corollaries). 

2. Terminology and notation 

The general terminology we follow is that of Hara ry  [1]. We  consider only 
ordinary graphs, without loops and multiple lines. For  a graph G, the set of points 
is V ( G ) =  V and the set of lines is E ( G ) =  E. The  induced graph on the point set 
U _  V is denoted by (U). The  induced graph on the line set F ~ E  is denoted by 
(F). For v a V we denote  the set {u[d(v ,  u) = i} by Ni(v) and call it the ith 
neighbourhood of v. We  set /~.(v)  = E(Ni(v)) ,  the set of lines in (/Vi(v)). When it is 
clear f rom the context we may omit  the reference to v. For u ~/V~(v) a point 
w ~ Ni_x(V) such that uw ~ E ( G )  is called a predecessor of u and a point t ~ N~+l(V) 

*The second author is on leave from the A.M. Jain College, Madras, and acknowledges the 
financial support of the U.G.C. teacher fellowship for this research. 

0012-365X/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland) 



152 K.R. Parthasarathy, N. Srinivasan 

such that ut • E ( G )  is called a successor of u. If there is a sequence of points 
uj+s e Ni+s(v) s = O, 1 . . . .  , i - j -  1, i - j  (j ~ i), each a predecessor of the next, we 
say u~ is an ancestor ( ( i - j ) t h  ancestor) of u~. In such a situation we also refer to u~ 
as the ( i - j ) t h  progeny of u i. We extend these notations to sets of points as 
follows. If C ~ Ni (v), 

P = { u e N i _ l ( V )  1 3 w e C  with w u • E ( G ) }  

is called the predecessor set of C and 

S = {u e/Vi+l(v) 1 3w • C with wu • E(G)} 

is called the successor set of C. The ( i - j ) t h  ancestral set and progeny set are 
defined analogously. Note that all this terminology is relative to a chosen v e V, 
which we call the progenitor. 

It is well known that the centre (set of all points with minimum eccentricity) of 
a graph lies in a block. When G is a block, if every point of G is a central point, 
we refer to G as a central block. Every point of G is then, also, a peripheral point 
and r(G) = d(G),  where r(G) and d(G)  denote  the radius and the diameter  of G 
respectively. The  properties of geodetic graphs have also been studied by [2, 3, 
6-9]. 

3. Some general results on geodetic blocks 

The first general result is a simple characterization of geodetic graphs proved in 
[4]. 

l~roposilion 1 (The Unique Predecessor Theorem).  A graph G is geodetic if / for 
each v • V, every u • N,(v) has a unique predecessor, for 2 ~ i  ~ k = e(v). 

Corollm'y 1. Each point in a geodetic graph has a unique kth ancestor. 

The  next is an important necessary condition for a graph to be geodetic. 

Proposition 2. Let  G be a geodetic graph. Let v •  V (G)  and xy• /~ . (v) .  Let a, 
b • N i ( v ) ,  j--P i such that a ~  b and d(x, a ) =  d(y, b ) =  Ij-il.  Then ab~  E(G) .  

Pl~ot .  By hypothesis d(v, x) = d(v, y) = i. If possible let there be a b • Nl(v), ] ~  i, 
a ~ b  with d ( x , a ) = d ( y , b ) = l j - i l  and a b • E ( G ) ,  We may assume that ] > i  
(otherwise, we can interchange ab and xy). Now d(x, b) = j - i or j - i + 1. In the 
former case, d(v, b ) = j  and we get two j-distance paths between v and b, one 
through x and another through y. In the latter case, d(x, b ) = j - i + 1  and we get 
two distance paths between x and b, one through y and the other  through s. In 
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either case geodetiacity of G is violated. This contradiction establishes the 
proposition. 

The next two propositions give some insight into the structural properties of the 
neighbourhood sets of an arbitrary point in a geodetic block. 

Proposition 3. A block G is geodetic if the smallest cycle containing any pair of 
points is odd. 

Proof. Let G be not a geodetic block. Then there exists a pair of points xl, x~ 
such that xl, x2 have been them two distance paths. Among all such pairs consider 
a pair which have smallest distance between them. The smallest cycle containing 
that pair of points is of even length and hence the proposition. 

Note  1. That the condition is not necessary is established by the following 
example, (Fig. 1). The smallest cycle containing xl and x2 of the graph in Fig. 1 is 
0 and yet the block is geodetic. 

Definition 1. We say a graph G1 is the extension of a graph G at a point v e V, if 
G1 is formed from G by subdividing each line incident with v by the insertion of a 
new point. We now describe the graphs of the type KC,~ ) obtained from a given 
complete graph Kn (n I> 2) whose points are, in this context called basic points. A 

graph G~ is of the type K~ ) where i I>0 is an integer if either i = 0 and Gx = Kn or 
i >/1 and there is a graph G of the type KC~-~) and a basic point v of G such that 
G~ is the extension of G at v. The graph Gx has the same basic points as G. In 
general, a KCd ~ has n basic points and i ( n -  1) non-basic points. Any K(2 ) and / (~  
are homeomorphic. We see that the number i does not determine a KCd ) uniquely 
(Fig. 2). 

Proimsltlon 4. Let G be a geodetic block of diameter d >I 2. I f  (N~ (v)) is a clique for 
some v ~ V, then i = e(v) = d. 

Proof. Case (i): i<e (v ) .  Suppose (N~(v)) is a clique. By Proposotion 1 the P(x~) 
are disjoint. Since G is a block, there exists x~, Yi e/V~(v) and z eP(x~), teP(y~) 
such that z t e E ( G ) .  By Proposition 1, z and t belong to same /V~(v) since 
x~yi ~ E(G) ,  which contradicts Proposition 2. 

Fig. 1. 
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Fig. 2. Two non-isomorphic  K 4. 

Case (ii): i =  e(v)<d.  H (Ni(v)) is a clique then by Proposition 2, each Ni(v), 
1 <~j~i are independent sets and hence diameter  of G is i < d - - a  contradiction. 
Hence  i = e(v) = d. 

Remark  1. If Na(v) is a clique, then by Proposition 2, each ( ~ ( v ) )  1 ~<i~ < d -  1 is 
an independent set and by Proposition 3 G is a geodetic block. 

Remark 2. G is a particular type of /((a-~) 

Proposition 5. In any geodetic block G of diameter d >~2, [or any v ~ V(G),  
(Nx(v)) is a disjoint union of at least two cliques. 

l ~ t ~ t .  By Proposition 4, N~(v) is not a clique. If (Nt(v)) is connected, then there 
are non-adjacent points x, y in N~ which are joined by a 2-path xzy in (N~(v)). 
But then xvy is another  2-path between x and y which are at distance 2 fl-om 
each other, contradicting geodeticity of G. Thus, (Nt(v)) is disconnected. Repeat-  
ing the argument for each component  of (N~(v)), we see that each is a complete 
subgraph. 

Proposit ion 6. I f  G is a geodetic block of diameter d >t 2, for any v ~ V, every point 
of Nl(v) is adjacent to at least one point of N2(v). 

l l ~ t .  Let u ~ Nt(v) be a point without a successor. Let  C 1 be the component  of 
(N~(v)) containing u. By Proposition 5, C~ is a complete subgraph and there is at 
least one more component  C~ of (Nx(v)) and it is also a complete subgraph. The 
progeny sets of C] and C~ are disjoint by Proposition 1. Since G is a block, there 
exist C~ and C~, the progeny sets of C~ and C 1 in a certain/V~(v), and xi ~ C~ and 
yi~C~ are connected in (N~(v)) by a path x~, t~, t2 . . . . .  tk, yl (t~¢:x~). Then 
d(u, tx) = i + 1 and there are two (i + 1)-paths between u and t~ on through x~ and 
another through v, contradicting geodeticity of G. This contradiction establishes 
the proposition. 

Corollary 2. In any geodetic block G o[ diameter d ~ 2 ,  for v e  V(G)  INt(v)[<~ 
IN2(v)l. 
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Proposition 7. In a geodetic block of diameter d, which is neither a / (2 ,  nor an 
odd cycle, there exists at least one pair of lines xy e E, uv ~ E  such that 
d(x, u) = d(x, v) = d(y, u) = d(y, v) = d. 

Proof. The proposition is obvious if G is complete and p >~4. Let  then G be a 
geodetic block of diameter d ~>2, which is not an odd cycle. Then there exists a 
point v ~ V ,  such that [Nd(v)l>~2. Clearly, there exist two points x d, yd~Nd(v)  
such that xaya~ E. By Corollary 1, x a and ya have unique ancestors in N~(v). 

Case (i). x a and yd have a common ancestor x ~ Nl(v) .  Since G is block degree 
(v) I> 2 and there exists another point y ~ Nl(v)  (Fig. 4). We claim that d(y, x ' )  = 
d(y, ya) = d. If not, suppose, for example d(y, x a) ~ d. Then d(y, x a) = (d - 1) and 
this will result in the existence of two d-paths between v and x d, one through x 
and the other through y, contradicting the geodeticity of G. The lines vy, xay '~ of 
G establish the claim in the proposition. 

Case (ii). x a and yd have distinct ancestors x 1, y l ~  N:(v). Then by Corollary 1, 
x d and yd cannot have common ancestors in/V~(v), 2~<i~<(d-1).  Let x i, yl be 
the distinct ancestors of x d, yd in/V~(v), 1 ~<i ~<(d-1) .  By Proposition 1, Corol- 
lary 1 and Proposition 2 the points v, x i, y~ with l<~i<~d constitute an induced 
odd cycle C (Fig. 3). We claim that pair of opposite points on C are at distance d. 
The claim is established sequentially as follows: d(x 1, y a ) ~  d implies the exis- 
tence of two d-paths between x and yd, violating the geodicity of G. 
d(x~ ,yd -X)~d  implies the existence of two d-paths between x ~ and yd. 
d(x 2, yd-1) ~ d implies the existence of two d-paths between x ~ and ya-X . . . . .  etc. 

Thus all points on C are peripheral. Since G ~  C, there is at least one point, say 
x i on C with degree (x i )>2 .  Let w ~ C  be adjacent to x ~. Then d(w, yd-~) = 
d(w, yd-~+~) = d by arguments similar to the ones used above. The lines wx ~, yd-i 
yd-~+l of G establish the claim in the proposition. 

Remark  3,  Case (ii) of above proposition establishes that a geodetic block G of 
diameter d, which is neigther a / (2  nor an odd cycle, containing an induced C2d+x, 
contains (2d+2) peripheral points. 

Problem 1. A geodetic block with diameter d I>2 contains an induced C2d+z. 

x I x i, x d 

y, -" -- ~t  d 

Fig. 3. 
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n d 

- yd 

Fig. 4. 

Corollary 3. In a geodetic block of diameter d, which is neither a K2 nor an odd 
cycle, there exist at least 

4 points with eccentricity d, 
4 points with eccentricity ( d - 1 ) ,  
4 points with eccentricity ( d -  2), 

4 points with eccentricity [½(d + 2)J. 

Proof .  By Proposition 7 there exist 4 points x, y, u, v with eccentricity d, such 
that d(x, u) = d(y, u) = d = d(v, x) = d(v, y) and xy, uv E E(G) .  Clearly u, v E 
Na(x) and y ENI(X ). Let  uua-1, w e _ l E E ( G ) ,  ua-1, 1)a-IENa-I(x). Now e(~a-0,  
e(va-1) are at least (d - 1) because d(ua-1, x) = d(va-1, x) = d - 1. Again x, y E 
Na(u), x y E E ( G ) .  Let  xul,  yu2EE(G) ,  Ul, u2ENa-l (u) .  Obviously e(ul) and 
e(u2) are at least ( d -  1) because d(ul ,  u) = (d - 1) = d(u2, u). Note that d(u, x) = 
d = d ( u ,  y). Clearly ua-1, va-t,  u~, u2 are different points if d>~3. Hence  there 
exist at least 4 points with eccentricity at least (d - 1). Similarly we can extend the 
above arguments to show that there exist sets of at least 4 points each with 
eccentricity at least d-2, d-3 . . . . .  L½(d + 2)]. 

4. Bounds for the number of lines in a geodetic graph 

Theorem 1. I[ G is a connected geodetic graph on p points with q lines and 
diameter d, then p - 1 <~ q <~ (d - 1) + (p+l-a). 

Proof .  Obviously any tree on p points is a connected geodetic graph with 
diameter d, and with minimum number lines. Hence  q ~ ( p -  1). 

Let  G be a connected geodetic graph on p points with diameter  d. It should 
have a diametral path P of length d. G has maximum number of lines only when 
the remaining ( p - d -  1) points form a complete graph and each of these points 
are made adjacent to adjacent points of P. This G has d + 2 ( p - d - 1 ) + ( P - a 2  -1) 
lines establishing the upper bound. 

The  graph realising the upper bound is a Kp+l-d to two points of which are 
attached paths Pr,, P,2 (rl, r2 >~ 1) such that rl + rE = (d + 1) (Fig. 5), and the graph 
realising the lower bound is a tree. 
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Fig. 5. 

Proposit ion 8. In a geodetic block G for every 
degree(v) ~< ½(p - 2e + 3). 

v E v ( a )  

157 

with eccentricity e, 

Proof .  Since eccentricity v = e ,  N , ( v ) ~  and IN`(v)l~2 for l ~ i ~ e ( v ) .  By 

Proposition 6, Corollary 2, INl(v)l ~< IN2(v)l. But  INl(v)l + IN2(v)l + ~7L~ IN,(v)l = 
(p - 1). Hence  we get 2 [Nl(v)l ~< (p - 1) - 2(e - 2) = (p - 2e + 3). Hence  the propos- 
.ition. 

When G is a block, the following theorems give upper bounds for the number 
of lines. The result of Theorem 2 is sharper, since every point of a central block is 
a peripheral points. 

Theorem 2. I f  G is a central geodetic block on p points with diameter d >! 2, then 
q <~¼p(p-2d + 3). 

Proof .  Since G is central geodetic block with diameter d I>2, each v ~ V(G)  has 
eccentricity d and hence degree (v )=  ½(p- 2d + 3) by Proposition 8. This proves 
that q ~<¼p(p - 2d + 3). 

Note 2. Stemple [8] has proved that geodetic blocks of diameter 2 are central 
blocks. In [5] we have extended this result to geodetic blocks of diameter  3. In [4] 
we have shown that for d/> 4 there are geodetic non-selfcentered blocks. 

Note 3. This bound is attained when G is an odd cycle of diameter  ½(p-1) .  

Theorem 3. I f  G is a non-selfcentered geodetic block of diameter d on p points with 
q lines, then 

I ~ [ p 2 - p ( d + E ) - ( d - 3 ) ( d - 9 ) - E k ( d - 8 ) ]  if d is odd, 

q ~< [¼[p2 -p (d  + 1 ) - ( d - 4 ) ( d - 6 ) - E k ( d - 7 ) ]  if d is even, 

where k is the maximum degree of a point with eccentricity d. 

ProoL By Proposition 8, a point v with eccentricity ( d - i )  has degree ( v ) ~  < 
½(p- 2d + 2i + 3). Let  k be the maximum degree of a point v with eccentricity d. 
Then 

INx(v)l=k, [N2(v)l~k, [N,(v)l--->2 for 3<~i<~d. 
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We have by Corollary 3 at least 4 points with eccentricity d and with degree at 
most k; (k +2) points with eccentricity at least ( d - 1 )  and with degree at most 
½(p-2d+5) ;  (k+2)  points with eccentricity at least ( d - 2 )  and with degree at 
most ½(p-2d +7); 4 points with eccentricity at least ( d -  3) and with degree at 
most ½(p- 2d + 9 ) ; . . . ,  etc. 

When d is odd then the remaining ( p - 2 d - 2 k  +6) points have eccentricity 
½(d + 1) and each point has degree at most ½(p-d + 2). When d is even then the 
remaining ( p -  2 d -  2k + 4) points have eccentricity ½d and each point has degree 
at most ½(p - d + 3). 

Case (i). When d is odd 

2q~<4k+(k+2) (  p - 2 d + 5 + p 2  - 2 d + 7 )  

- p - 2 d + l l  . + p - d )  +4(.19 2 ~ + 9 +  2 4-.. 2 

+ ( p _ 2 d _ 2 k  +6) (P-2d+  2) 

which simplifies to 

q ~<~[p2_ p(d + 2) - (d - 3)(d - 9) - 2k(d - 8)]. 

Case (ii). When d is even 

2q ~< 4k + (k + 2)( p - 2d + 5 +2 p - 2d + 7) 

+ 4 ( P - 2 d + 9 + p - 2 d + 1 1  
2 2 

4-. • . q - - -  p - d + l ) 2  

+ ( p _ 2 d _ 2 k  + 4 ) ( p - ~  + 3) 

which simplifies to 

q ~<¼[p2_ p(d + 1) -  ( d -  4 ) (d -  6 ) - 2 k ( d -  7)]. 
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