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1. Introduction

In this paper, we develop a variational inequality method to the local minimizing problems arisen in geometry and
physics. Particularly, we consider the local minimizers with vortex pinning effect for full Ginzburg–Landau functional in
three dimensions (see Fig. 1). The existence of the local minimizers with vortices locating in the pinning regions is ob-
tained. Andre, Bauman, Phillips [2] considered vortex pinning with bounded fields in 2-dimensional case. They proved the
pinning supercurrent patterns near the zeros of a(x). In [13], Montero, Sternberg and Ziemer constructed local minimizers
to Ginzburg–Landau functional in certain 3-dimensional domains where a(x) ≡ 1 (no pinning). In this paper, we give the
local minimizers with vortex pinning to Ginzburg–Landau functional in 3-dimensional case where 0 < a(x) � 1.

When a superconducting material is placed in an applied magnetic field, the state it adopts depends on the Ginzburg–
Landau parameter κ which equals to the ratio of the penetration length to the coherence length. The materials with κ <

1/
√

2 are known as type I superconductors. Type II superconductors are defined to be those materials for which κ > 1/
√

2.
For type I superconductors, if the magnetic field strength H is sufficiently small, then the field will be excluded from

the interior of the material. If H exceeds certain critical value, then the field will penetrate the material fully. There exists
a third state (mixed state) for type II superconductors, in which there exists a partial of the magnetic field penetrating
into the superconducting materials. An important feature of mixed state is the presence of vortices. These are narrow
elongated filaments that carry with them quantized amounts of magnetic flux. At the center of the vortex, the density of
the superconducting electrons is zero. It is important to comprehend the behavior of the superconductor while it is in the
mixed state, since most superconductors are in this state in applications. The motion of vortices is of particular interest,
since the motion dissipates energy and generates an electric field, which in turn results in an effective resistivity for the
material.
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Fig. 1. Pining regions (D1, D2) and no pining region Ω .

The aim of this paper is to study the equilibrium distribution of vortices. Precisely, we research the distribution of
vortices in the presence of pinning sites which are small regions in the superconductor where the material is tempered
with impurities.

Ginzburg–Landau equation is widely accepted as a macroscopic model for superconductivity. It is the Euler–Lagrange
equation of the following functional for the wave function Ψ of superconducting electrons, and the potential A of magnetic
field:

Hλ(Ψ, B) =
∫
Ω̃

1

2

∣∣(∇ − iB)Ψ
∣∣2 + λ

4

(|Ψ |2 − a2(x)
)2 +

∫
R3

1

2
|rot B|2, (1.1)

here Ω̃ ⊂ R
3 is a bounded domain, Ψ is a C-valued function in Ω̃ , and A is an R

3-valued function in R
3, λ > 0 is a

parameter. The function a(x) describes the maximal density of the superconducting electrons. When the pinning effect is
neglected, a(x) is set to equal to 1 in full domain Ω̃ .

There are many important papers on Ginzburg–Landau equation, recently (see [2–4,6,13–15,17,18], etc. and references
therein). In [15], on two-dimensional domain with Dirichlet boundary condition, the pinning effect on vortex locations
was considered by Rubinstein. In [11], we constructed local minimizers with vortices to Ginzburg–Landau functional where
a(x) ≡ 1 (no pinning) by a domain perturbation method. Recently [2] considered vortex pinning with bounded fields in
2-dimensional case. They proved the pinning supercurrent patterns near the zeros of a(x). In [13], Montero, Sternberg
and Ziemer constructed local minimizers to Ginzburg–Landau functional in certain 3-dimensional domains where a(x) ≡ 1
(no pinning). The results of this paper give the local minimizers with vortex pinning to Ginzburg–Landau functional in
3-dimensional case where 0 < a(x) � 1.

In this paper, the existence of local minimizers to (1.1) with vortices which are located in the pinning regions is proved
where a(x) may take non-zero value. For this purpose, we shall use a variational inequality method as well as the domain
perturbation method. For a non-simply connected bounded domain Ω , it is well known that there is a harmonic map
from Ω to S1 in each homotopic class, and when λ is large enough, because the Ginzburg–Landau functional is approxi-
mated by the harmonic map functional, we can construct local minimizers (Φλ, Aλ) ∈ H1(Ω,C)× Z to the Ginzburg–Landau
functional (see [7,9,10,20]). On the other hand, a simply connected domain Ω̃ can be regarded as a perturbation of a non-
simply connected domain Ω by adding thin disks. So we can expect local minimizers (Ψλ, Bλ) to the Ginzburg–Landau
functional on the simply connected domain Ω̃ too. The domain perturbation method has been used in [8] and [11] success-
fully. In this paper we want to improve these results by using variational inequality to obtain the local minimizers (Ψλ, Bλ)

on the simply connected domain Ω̃ which is a perturbation of a non-simply connected domain Ω adding disks. We want to
use the smallness of the value of pinning function a(x) to replace the thinness of pinning regions. The key steps are to prove
a non-degeneracy inequality (see Section 3), and to develop a special variational inequality argument (see Sections 4–5). We
first obtain a minimizer of the Ginzburg–Landau functional with some constraints in Section 4. The constraints are removed
in Section 5 by the non-degeneracy inequality and some other estimates. Thus, the minimizer of the variational inequality is
a minimizer of the Ginzburg–Landau functional. Variational inequality methods are often used in geometric problems, such
as minimizing surfaces, constant mean curvature surfaces, etc. (see [5,16]). Similar variational inequality method has been
used in Ginzburg–Landau type equations [20].

2. Main Theorem

Let Ω be a non-simply connected bounded domain in R
3 with C3 boundary. From [10] (or see [19]), for large λ, there

exists a local minimizer (Φλ, Aλ) to the Ginzburg–Landau functional HΩ
λ in H1(Ω;C) × Z :

HΩ
λ (Φ, A) =

∫
Ω

(
1

2

∣∣(∇ − i A)Φ
∣∣2 + λ

4

(
1 − |Φ|2)2

)
dx +

∫
R3

1

2
|rot A|2 dx, (2.1)

where space Z is defined by

Z = {
B ∈ L6(

R
3;R

3) ∣∣ ∇B ∈ L2(
R

3;R
3×3)}. (2.2)

Precisely, we have proved next theorem in [10] (or see [19]).
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Fig. 2. Pining region D j .

Theorem A. Assume that Ω is non-simply connected and θ0 is a continuous map from Ω to S1 which is not homotopic to a constant
valued map. Then there exists λ0 > 0 such that for λ � λ0 , there exists a local minimizer (Φλ, Aλ) ∈ (H1(Ω) × Z) ∩ (C2+α(Ω) ×
C1+α(R3)) to (2.1). Moreover,

lim
λ→∞ sup

x∈Ω

∣∣|Φλ| − 1
∣∣ = 0

and Φλ/|Φλ| is homotopic to θ0 .

Let Ω̃ be a simply connected domain in R
3. We shall consider following Ginzburg–Landau model for pinning:

Hλ(Ψ, B) =
∫
Ω̃

1

2

∣∣(∇ − iB)Ψ
∣∣2 + λ

4

((
a(x)

)2 − |Ψ |2)2 +
∫
R3

1

2
|rot B|2, (2.3)

here Ω̃ = Ω ∪ (
⋃n

j=1 D j), Ω is a non-simply connected bounded domain in R
3 with C3 boundary (see Figs. 1 and 2),

B
(
x̄( j), r j

) × [−t j, t j] ⊂ D j ⊂ B
(
x̄( j), r̄ j

) × [−t̄ j, t̄ j], B
(
x̄( j), r j

) ⊂ B
(
x̄( j), r̄ j

) ⊂ R
2,

0 < r j < r̄ j , 0 < t j � t̄ j , and a(x) is a function satisfying

a(x) =
{

1, for x ∈ Ω \ (
⋃

1� j�n B(x̄( j), r̄ j) × [−t̄ j, t̄ j]),
a0 ∈ (0,1), for x ∈ ⋃

1� j�n B(x̄( j), r j) × [−t̄ j, t̄ j].
(2.4)

Main Theorem. For fixed λ � λ0 , there is δ(λ) > 0, if we take r j ∝ r̄ j , and t̄ j , r̄ j and a0 satisfying∑
1� j�n

t̄ j
{

a2
0 ln[r̄ j

√
λ ] + a0 + r̄2

j λ
}

� δ,

then there exists a local minimizer (Ψλ, Bλ) ∈ H1(Ω̃) × Z of (2.3) with vortices locating in D j (∀ j = 1,2, . . . ,n).

3. Non-degeneracy inequality

Let (Φλ, Aλ) be the minimizer obtained in Theorem A. Since the Ginzburg–Landau functional is invariant under the gauge
transformation:

(Φλ, Aλ) �→ (
Φ ′

λ, A′
λ

)
: Φ ′

λ = eiρΦλ, A′
λ = Aλ + ∇ρ

(
ρ : R

3 → R
)
,

varying ρ , we get a continuum of solutions from the solution (Φλ, Aλ). Let T (Φ ′
λ, A′

λ) and N(Φ ′
λ, A′

λ) denote the tangent
space and the normal space of the continuum of solutions at (Φ ′

λ, A′
λ), respectively. To study the stability of a solution, we

only need to consider the variation of the solution in N-space.
Let Φ(x) = u(x) + iv(x). Then, we have

T (u, v, A) = {
(−vξ, uξ,∇ξ): ξ ∈ L6

loc

(
R

3), ∇ξ ∈ Z
}

by calculation. To obtain the expression of N(u, v, A), we use the Helmholtz decomposition of L6(R3,R
3) (cf. [12]):
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L6(
R

3,R
3) = Y1 ⊕ Y2:

Y1 = {∇ξ : ξ ∈ L6
loc

(
R

3), ∇ξ ∈ L6(
R

3;R
3)},

Y2 = {
B ∈ L6(

R
3;R

3): div B = 0 in R
3}.

We have (cf. [9,10] or see [19])

N(u, v, A) =
{
(φ,ψ, B) ∈ H1(Ω)2 × Z :

∫
Ω

(vφ − uψ) = 0, B ∈ Y2

}
.

Next we prove an important non-degeneracy inequality.

Lemma 3.1. Let (Ψ, B) ∈ N(Φλ, Aλ), where Ψ = (φ,ψ) ∈ C0(Ω) satisfies ‖Ψ ‖C0(Ω) � M and M � 3 is a constant. There exist
δ0 = δ0(λ) > 0 and c0 > 0 (c0 is independent of λ) such that if

‖Ψ ‖L2(Ω) � δ0, ‖∇B‖L2(R3) � δ0,

then

HΩ
λ (Φλ + Ψ, Aλ + B) −HΩ

λ (Φλ, Aλ) � c0
(‖Ψ ‖2

H1(Ω)
+ ‖B‖2

L2(Ω)
+ ‖∇B‖2

L2(R3)

)
provided that λ is large enough.

Proof. For any ε ∈ R,

HΩ
λ (Φ + εΨ, A + εB) =

∫
Ω

1

2

∣∣(∇ − i(A + εB)
)
(Φ + εΨ )

∣∣2 +
∫
Ω

λ

4

(
1 − |Φ + εΨ |2)2 +

∫
R3

1

2

∣∣rot(A + εB)
∣∣2

=HΩ
λ (Φ, A) + ε2LΩ

λ (Φ, A;Ψ, B) + ε3
∫
Ω

Re
[
(−iB)Ψ · (−iBΦ + (∇ − i A)Ψ

) + λ(ΦΨ )|Ψ |2]
+ ε4

∫
Ω

1

2
|BΨ |2 + λ

4
|Ψ |4,

where

LΩ
λ (Φ, A;Ψ, B) =

∫
Ω

1

2

∣∣−iBΦ + (∇ − i A)Ψ
∣∣2 − Re

[
(iBΨ ) · (∇ − i A)Φ

]
+ λ

4

((
2 Re(ΦΨ )

)2 − 2
(
1 − |Φ|2)|Ψ |2) +

∫
R3

1

2
|rot B|2

is the second variation.
Fix ε = 1. From [10] (the detailed proof for a similar inequality can been found in [9] or see [19]), we know that there

exists c1 > 0 such that for large λ,

LΩ
λ (Φ, A;Ψ, B) � c1

(‖Ψ ‖2
H1(Ω)

+ ‖B‖2
L2(Ω)

+ ‖∇B‖2
L2(R3)

)
. (3.1)

On the other hand, we have the following estimates:∫
Ω

|B|2|Ψ | � C1(η)

∫
Ω

|B|4 + η

∫
Ω

|Ψ |2,
∫
Ω

|B||Ψ ||∇Ψ | � C2(η)

∫
Ω

|B|4 + η

∫
Ω

|Ψ |4 + η

∫
Ω

|∇Ψ |2,
∫
Ω

|B||Ψ |2 � C3(η)

∫
Ω

|Ψ |4 + η

∫
Ω

|B|2,

and

λ

∫
Ω

|Ψ |2∣∣Re(ΦΨ )
∣∣ � λM

∫
Ω

|Ψ |3,

with η ∈ (0, c1/4).
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Let {v j}∞j=1 and {μ j}∞j=1 be the eigenfunctions and eigenvalues of Laplace operator −� in H1(Ω,R):⎧⎨⎩
−�v j = μ j v j in Ω,

∂v j

∂ν
= 0 on ∂Ω.

Let P : H1(Ω,R) → span{v1, v2, . . . , vm−1} be a projector and Q = I − P , and

Ψp = (Pφ, Pψ) =
(

m−1∑
j=1

〈φ, v j〉v j,

m−1∑
j=1

〈ψ, v j〉v j

)
,

Ψq = (φq,ψq) = (Q φ, Q ψ).

From ∫
Ω

∇Ψp · ∇Ψq = −
∫
Ω

(�Ψp)Ψq = 0,

we have

‖∇Ψ ‖2
L2(Ω)

= ‖∇φ‖2
L2(Ω)

+ ‖∇ψ‖2
L2(Ω)

= ‖∇φp‖2
L2(Ω)

+ ‖∇φq‖2
L2(Ω)

+ ‖∇ψp‖2
L2(Ω)

+ ‖∇ψq‖2
L2(Ω)

� μ2
(∥∥φp − 〈φ, v1〉v1

∥∥2
L2(Ω)

+ ∥∥ψp − 〈ψ, v1〉v1
∥∥2

L2(Ω)

) + μm
(‖φq‖2

L2(Ω)
+ ‖ψq‖2

L2(Ω)

)
.

Then

c1

2
‖Ψ ‖2

H1(Ω)
� c1

2
‖Ψ ‖2

L2(Ω)
+ c1

2
μm‖Ψq‖2

L2(Ω)
. (3.2)

Next, we prove some estimates for Ψ ,

λ

∫
Ω

|Ψ |3 � 2λ

∫
Ω

|Ψ ||Ψp|2 + |Ψ ||Ψq|2

� 2λ

(∫
Ω

|Ψ |2
) 1

2
(∫

Ω

|Ψp|4
) 1

2

+ 2λM

∫
Ω

|Ψq|2

� 2δ0λk2
p

(∫
Ω

|Ψp|2
)

+ 2λM

∫
Ω

|Ψq|2,

where we have used(∫
Ω

|Ψp|4
) 1

4

� kp

(∫
Ω

|Ψp|2
) 1

2

for some constant kp .
Similarly, we can get(

η + C3(η)
) ∫
Ω

|Ψ |4 � 2M
(
η + C3(η)

)
δ0k2

p

(∫
Ω

|Ψp|2
)

+ 2M2(η + C3(η)
) ∫
Ω

|Ψq|2.

If we take large m such that

2M2(η + C3(η)
) + Mλ � c1μm

2
,

and take δ0 such that(
2M

(
η + C3(η)

) + λ
)
δ0k2

p � c1

2
,

then we get(
η + C3(η)

) ∫
|Ψ |4 + λ

∫
|Ψ |3 � c1

2
‖Ψ ‖2

H1(Ω)
.

Ω Ω
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On the other hand, it is easy to obtain the estimate∫
Ω

|B|4 � |Ω| 1
3 δ2

0

∫
R3

|∇B|2.

We have completed the proof. �
4. Variational problem with constraint

Let

Z := {
B ∈ L6(

R
3;R

3) ∣∣ ∇B ∈ L2(
R

3;R
3×3)}. (4.1)

Lemma 4.1. Z is a Banach space with norm ‖B‖L6(R3) + ‖∇B‖L2(R3) , and is a Hilbert space with norm ‖∇B‖L2(R3) .

Proof. We only need to prove that Z is complete with norm ‖∇B‖L2(R3) . Suppose {Bn} ⊂ Z and

lim
n→∞

∥∥∥∥ ∂

∂xi
Bn − B

∥∥∥∥
L2(R3)

= 0.

Then, by Sobolev’s inequality, {Bn} converges to B̃ in L6(R3). For any ϕ ∈ C∞
0 (R3,R

3), by definition of weak derivative,∫
R3

∂ Bn

∂xi
· ϕ dx = −

∫
R3

Bn · ∂ϕ

∂xi
dx.

The left converges to∫
R3

B · ϕ dx

and the right converges to∫
R3

B̃ · ∂ϕ

∂xi
dx.

Thus ∂
∂xi

B̃ = B in weak sense. That is, B̃ ∈ Z .
Then, Z is complete in norm ‖∇B‖L2(R3) . �

Definition 4.2. For δ > 0, we define

Eδ = {
(Ψ, B) ∈ (

H1(Ω̃) ∩ L∞(Ω)
) × Z : (Ψ, B) satisfies (4.2)

}
,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

div B = 0 in R
3,∥∥∇(Aλ − B)

∥∥
L2(R3)

� δ,

‖Ψ ‖L∞(Ω) � M,

inf
ρ∈R

∥∥Ψ − eiρΦλ

∥∥
L2(Ω)

� δ.

(4.2)

Lemma 4.3. Hλ can take its minimum at (Ψδ, Bδ) ∈ Eδ .

Proof. Take {(Ψn, Bn)} ∈ Eδ such that

lim
n→∞Hλ(Ψn, Bn) = min

(Ψ,B)∈Eδ

Hλ(Ψ, B).

Since ∫
Ω̃

|∇Ψn|2 �
∫
Ω̃

∣∣(∇ − iBn)Ψn
∣∣2 + |iBnΨn|2 � C +

∫
Ω̃

|Bn|4 + |Ψn|4

and
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∫
Ω̃

|Bn|4 � CΩ̃

(∫
Ω̃

|Bn|6
) 2

3

� CΩ̃

(∫
R3

|rot Bn|2
)2

� C,

∫
Ω̃

|Ψn|4 � C

(∫
Ω̃

(
a2 − |Ψn|2)2 + 1

)
� C,

∫
Ω̃

|Ψn|2 � CΩ̃

(∫
Ω̃

|Ψn|4
) 1

2

� C,

{Ψn} is bounded in H1(Ω̃) and {Bn} is bounded in Z . Thus there exists weak convergence subsequence (Ψni , Bni ) which
weakly converges to (Ψδ, Bδ) ∈ H1(Ω̃) × Z . Because

Ψn → Ψδ a.e. in Ω,

‖Ψn‖L∞(Ω) � M,

Ψn → Ψδ strongly in L2(Ω̃),

and

(Bn − Aλ) → (Bδ − Aλ) weakly in Z ,

we get

‖Ψδ‖L∞(Ω) � M,

inf
ρ∈R

∥∥Ψδ − eiρΦλ

∥∥
L2(Ω)

� δ,

and ∥∥∇(Bδ − Aλ)
∥∥

L2(R3)
� lim inf

n→∞
∥∥∇(Bn − Aλ)

∥∥
L2(R3)

� δ.

Thus, (Ψδ, Bδ) is a minimizer of Hλ on Eδ . �
5. Remove the constraints

Lemma 5.1. For fixed λ � λ0 , if we take t̄, r̄, r1 and a0 satisfying

t̄

{
a0

(
a0 ln[r1

√
λ ] + 1

) + (
r̄2 − r2

1

)( 1

r2
1

+ 1

(r̄ − r1)2
+ λ

)}
� Cc0δ,

then we have

Hλ(Ψδ, Bδ) �HΩ
λ (Φλ, Aλ) + c0δ

2
.

Proof. For convenience, we assume that n = 1, B(0, r̄) is a ball in R
2 and

B(0, r1) × [−t1, t1] ⊂ D ⊂ B(0, r̄) × [−t̄, t̄].
We first rewrite Φλ on Ω ∩ ∂(B(0, r̄) × [−t̄, t̄]) as

Φλ(r̄ cos θ, r̄ sin θ, t) = wλ(r̄ cos θ, r̄ sin θ, t)eiβλ(r̄,θ,t),

and define

Vλ(x) =

⎧⎪⎨⎪⎩
Φλ(x), x ∈ Ω \ (B(0, r̄) × [−t̄, t̄]),
[( r̄−r

r̄−r1
)a0 + ( r−r1

r̄−r1
)wλ(r̄ cos θ, r̄ sin θ, t)]eiβλ(r̄,θ,t), r1 � r � r̄, −t̄ � t � t̄, 0 � θ < 2π,

ρ( r
ε )eiβλ(r̄,θ,t), r � r1, −t̄ � t � t̄, 0 � θ < 2π,

here x = (r cos θ, r sin θ, t) for x ∈ B(0, r̄) × [−t̄, t̄], ε = 1√
λ

and ρ(s) for s ∈ [0,1] is the solution of ODE⎧⎨⎩ρ ′′ + 1

s
ρ ′ − 1

s2
ρ − ρ

(
a2

0 − ρ2) = 0,
ρ(0) = 0, ρ(1) = a0,
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and

ρ(s) := a0, ∀s ∈
[

1,
r1

ε

]
.

Note that (Vλ, Aλ) ∈ Eδ and

Hλ(Vλ, Aλ) �HΩ
λ (Φλ, Aλ) +

∫
(B(0,r1)×[−t̄,t̄])

1

2

∣∣(∇ − i Aλ)Vλ

∣∣2 + λ

4

(
a2 − |Vλ|2

)2

+
∫

(B(0,r̄)\B(0,r1))×[−t̄,t̄]

1

2

∣∣(∇ − i Aλ)Vλ

∣∣2 + λ

4

(
a2 − |Vλ|2

)2
.

Step 1. We first estimate the integration on (B(0, r1) × [−t̄, t̄]),∫
(B(0,r1)×[−t̄,t̄])

1

2

∣∣(∇ − i Aλ)Vλ

∣∣2 + λ

4

(
a2 − |Vλ|2

)2 � C1t̄
(
a2

0 ln[r1
√

λ ] + C2
)
.

Note that ∫
(B(0,r1)×[−t̄,t̄])

1

2

∣∣(∇ − i Aλ)Vλ

∣∣2 + λ

4

(
a2 − |Vλ|2

)2

�
t̄∫

−t̄

∫
B(0,r1)

{∣∣∣∣∇ρ

(
r

ε

)∣∣∣∣2

+
∣∣∣∣ρ(

r

ε

)
∇βλ(r̄, θ, t)

∣∣∣∣2

+ |Aλ|2
(
ρ

(
r

ε

))2

+ λ

4

(
a2 −

(
ρ

(
r

ε

))2)2}
r dr dθ dt

� C1t̄

r1∫
0

{
1

2ε2
(ρ ′)2 + (ρ)2 + 1

2r2
(ρ)2 + λ

4

(
a2 − ρ2)2

}
r dr,

with C1 = C1(maxD |Aλ|,maxθ,t(| ∂β
∂θ

| + | ∂β
∂t |)). The last integration can be written as

r1
ε∫

0

{
1

2

(
ρ ′(s)

)2 + 1

2s2

(
ρ(s)

)2 + 1

4

(
a2

0 − ρ(s)2)2
}

s ds +
r1∫

0

(
ρ

(
r

ε

))2

r dr

=
1∫

0

{
1

2

(
ρ ′(s)

)2 + 1

2s2

(
ρ(s)

)2 + 1

4

(
a2

0 − (
ρ(s)

)2)2
}

s ds +
r1
ε∫

1

{
1

2

(
ρ ′(s)

)2 + 1

2s2

(
ρ(s)

)2
}

s ds +
r1∫

0

(
ρ

(
r

ε

))2

r dr

which is smaller than a2
0 ln r̄

ε + C2a0, because

r1
ε∫

1

1

s
(a0)

2 ds = a2
0 ln

r1

ε
,

r1
ε∫

1

(ρ ′(s))2s ds = 0,

and

1∫
0

{
1

2

(
ρ ′(s)

)2 + 1

2s2

(
ρ(s)

)2 + 1

4

(
a2

0 − ρ2(s)
)2

}
s ds = 1

2
[sρρ ′]1

0 − 1

2

1∫
0

{
ρ ′′ + 1

s
ρ ′ − 1

s2
ρ

}
ρs ds + 1

4

1∫
0

(
a2

0 − ρ2(s)
)2

s ds

= 1

2
[sρρ ′]1

0 − 1

2

1∫
0

ρ
(
a2

0 − ρ2)ρs ds + 1

4

1∫
0

(
a2

0 − ρ2(s)
)2

s ds

� Ca0.
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Here ρ ′ is estimated near s = 0 by the equation

s2ρ ′′(s) + sρ ′(s) − ρ = 0,

and ρ is estimated by 0 � ρ � a0 because

−s2ρ ′′ − sρ ′ = f (s,ρ), f (s,0) ≡ 0, f (s,a0) � 0,

from [1], there is a solution ρ ∈ [0,a0].
Step 2. Note that in (Br̄(0) \ Br1 (0)) × [−t̄, t̄],

|∇Vλ|2 � C

(
|∂t wλ|2 + 1

r2
1

|∂θ wλ|2 + 1

(r̄ − r1)2
+ |∂tβλ|2 + 1

r2
1

|∂θβλ|2
)

.

Then ∫
(B(0,r̄)\B(0,r1))×[−t̄,t̄]

1

2

∣∣(∇ − i Aλ)Vλ

∣∣2 + λ

4

(
a2 − |Vλ|2

)2 � C3t̄
(
r̄2 − r2

1

)(
1 + 1

r2
1

+ 1

(r̄ − r1)2
+ λ

)
.

Step 3. To obtain the energy estimate, we only need

t̄

{
C1a0

(
a0 ln[r1

√
λ ] + C2

) + C3
(
r̄2 − r2

1

)(
1 + 1

r2
1

+ 1

(r̄ − r1)2
+ λ

)}
� c0δ

2
. �

Lemma 5.2. (Ψδ, Bδ) obtained in Lemma 4.3 is a minimizer of Hλ on(
H1(Ω̃) ∩ {‖Ψ ‖L∞(Ω) � M

}) × Z .

Proof. Suppose that (Ψδ, Bδ) at least satisfies one of the following two equations:

inf
ρ∈R

∥∥Ψδ − eiρΦλ

∥∥
L2(Ω)

= δ,∥∥∇(Aλ − Bδ)
∥∥

L2(R3)
= δ. (5.1)

Since infρ∈R ‖Ψδ − eiρΦλ‖L2(Ω) = infρ∈[0,2π ] ‖Ψδ − eiρΦλ‖L2(Ω), we can prove that there exists a constant ρ0 such that∥∥Ψδ − eiρ0Φλ

∥∥
L2(Ω)

= inf
ρ∈R

∥∥Ψδ − eiρΦλ

∥∥
L2(Ω)

.

Note that

0 = d

dρ

∣∣∣∣
ρ=ρ0

∥∥Ψδ − eiρΦλ

∥∥
L2(Ω)

= 〈
Ψδ − eiρ0Φλ,−ieiρ0Φλ

〉
L2(Ω)

= 〈
e−iρ0Ψδ − Φλ,−iΦλ

〉
L2(Ω)

,

and from the definition of N(Φλ, Aλ) (Section 3), we have(
Φλ − e−iρ0Ψδ, Aλ − Bδ

) ∈ N(Φλ, Aλ).

By Lemma 3.1 and (5.1), we get

Hλ(Ψδ, Bδ) �HΩ
λ (Ψδ, Bδ) �HΩ

λ (Φλ, Aλ) + c0δ, (5.2)

provided δ � δ0. But (5.2) is contradicted with Lemma 5.1. �
Lemma 5.3. ‖Ψδ‖L∞(Ω̃) � 1.

Proof. We first denote Ψδ by wδeiθδ , where wδ � 0. Since

Hλ(wδ, θδ, Bδ) = min

{∫
R3

1

2
|rot Bδ |2 +

∫
Ω̃

1

2
|∇wδ |2 + λ

4

(
a − w2

δ

)2 + 1

2

∣∣wδ(∇θδ − Bδ)
∣∣2

}
,

for (wδeiθδ , Bδ) ∈ H1(Ω̃) × Z and ‖wδ‖L∞(Ω̃) � M , we can take

vt := (1 − tϕ)wδ for ϕ ∈ C∞(
Ω̃;R

+)
,

as test function provided that t > 0 is small enough. From
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d

dt

∣∣∣∣
t=0+

Hλ(vt , θδ, Bδ) � 0,

we get

0 �
∫
Ω̃

1

2
∇w2

δ · ∇ϕ + ϕ|∇wδ |2 − λ
(
a − w2

δ

)
w2

δϕ + |∇θδ − Bδ |2 w2
δϕ

�
∫
Ω̃

1

2
∇w2

δ · ∇ϕ + ϕ|∇wδ |2 − λ
(
1 − w2

δ

)
w2

δϕ + |∇θδ − Bδ |2 w2
δϕ

for any ϕ ∈ C∞(Ω̃;R
+). Let

G = {
x ∈ Ω̃: wδ(x) � 1

}
.

Then for any ϕ ∈ C∞(Ω̃;R
+),∫

G

∇w2
δ · ∇ϕ + ϕ

(|∇wδ |2 − λ
(
1 − w2

δ

)
w2

δ

)
� 0.

By Maximum Principle, wδ ≡ 1 a.e. on G . �
Proof of Main Theorem. From Lemmas 5.2–5.3, we get that (Ψδ, Bδ) is a minimizer of Hλ in H1(Ω̃) × Z . Noting that
Ψδ satisfies (4.2) and Φλ/|Φλ| is homotopic to θ0 (cf. Theorem A in Section 2) and by a compactness argument and the
Schauder estimates for second-order elliptic boundary value problem,

‖Ψδ − Φλ‖C2(Ω) → 0, as t̄ j → 0, r̄ j → 0, a0 → 0.

So there must be zeros of Ψδ locating in D . �
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