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Abstract

Let T1, . . . , Td be linear contractions on a complex Hilbert space and p a complex polynomial in d

variables which is a sum of d single variable polynomials. We show that the operator norm of p(T1, . . . , Td)

is bounded by

d sin
( π

2d

)
sup

|z1|,...,|zd |�1
|p(z1, . . . , zd )|

and that this is the best possible inequality of this type.
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1. Introduction

For z ∈ C and r � 0, we denote D(z, r) = {w ∈ C; |w − z| � r}, D = D(0, 1), � = {z ∈
C; |z| < 1} and T = {z ∈ C; |z| = 1}, A(D) denotes the disk algebra of functions continuous on
D and holomorphic in � and similarly, A(Dd) denotes the polydisk algebra for the d-dimensional
polydisk.
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The von Neumann inequality [1, Chapter 1, Proposition 8.3] can be stated as follows:

Theorem 1. Let T be a linear contraction on a complex Hilbert space H and let p be a polynomial
of one variable. Then

|||p(T )||| � sup
|z|�1

|p(z)|. (1)

The quantity |||S||| denotes the operator norm of S. It follows from von Neumann’s result that
the symbolic calculus of linear contractions on a complex Hilbert space can be extended to the
case where p ∈ A(D) with the inequality (1) continuing to hold.

We investigate the following question. Let T1, . . . , Td be linear contractions on a complex
Hilbert space H (which are not assumed to commute). Let f be an analytic function of the form

f (z1, . . . , zd) =
d∑

k=1

fk(zk), z̃ ∈ �d ,

where z̃ denotes (z1, . . . , zd) and the fk are analytic functions of one variable defined in �. We
assume that f is continuous on the closed polydisk Dd and it then follows easily that the fk are
also continuous on D. Is it true that

|||f (T1, . . . , Td)||| � C sup
z̃∈Dd

|f (z1, . . . , zd)| (2)

for some constant C depending only on d? The point of taking only functions of the specified
form is that this is the most general function that allows the operator f (T1, . . . , Td) to be defined
unambiguously. It is very easy to see that the answer is yes and a proof can be given simply by
writing

f (z1, . . . , zd) =
d∑

k=1

f (0, . . . , 0, zk, 0, . . . , 0) − (d − 1)f (0, . . . , 0)

and applying the von Neumann inequality. This method gives C = 2d − 1 and the only issue is
that of finding the best constant.

Theorem 2. The best possible constant in (2) is d sin
(

π
2d

)
.

2. An example

We show first that one cannot do better than C = d sin
(

π
2d

)
. The example that we will use is

on a 2-dimensional Hilbert space. Let

Uk =
(

cos
(

kπ
2d

)
sin
(

kπ
2d

)
− sin

(
kπ
2d

)
cos

(
kπ
2d

)
)

, J =
(

1 0
0 −1

)

and set

Tk = U�
k JUk =

(
cos

(
kπ
d

)
sin
(

kπ
d

)
sin
(

kπ
d

) − cos
(

kπ
d

)
)

.

Then since Uk is unitary, it follows that Tk is a normal contraction.



S.W. Drury / Linear Algebra and its Applications 428 (2008) 305–315 307

Now, let δ > 0 be small and consider the eye-shaped domain �δ between the circle passing
through −1, iδ and 1 and the circle passing through −1, −iδ and 1. By the Riemann Mapping
Theorem, there is an analytic function g mapping the open unit disk onto �δ with g′(0) real and
positive and indeed, this function can be computed explicitly and it can be verified that g extends
continuously to the closed unit disk and that g(±1) = ±1. For f we take

f (z1, z2, . . . , zd) =
d∑

k=1

ωkg(zk),

where ω = e
πi
d . We claim that supz̃∈Dd |f (z1, . . . , zd)| � dδ + cosec( π

2d
). Since �δ ⊆ [−1, 1] +

D(0, δ), it suffices to show that∣∣∣∣∣
d∑

k=1

ωkεk

∣∣∣∣∣ � cosec
( π

2d

)

for all choices of εk = ±1. However, the numbers ωkεk are distinct 2dth roots of unity, so our
conclusion will follow if we can show that∣∣∣∣∣

∑
k∈�

ωk

∣∣∣∣∣ � cosec
( π

2d

)
for all subsets � of {1, 2, . . . , 2d} with d elements. An elementary rearrangement theorem shows
that the sum on the left takes its largest value when the set {ωk, k ∈ �} is a block of d consecutive
2dth roots of unity and the claim follows from summing a geometric series.

On the other hand, since the eigenvalues of Tk are 1 and −1, we have g(Tk) = Tk , so that

f (T1, T2, . . . , Td) =
d∑

k=1

ωkTk = 1

2
dω

(
1 i
i −1

)
.

It follows that |||f (T1, T2, . . . , Td)||| = d . Thus the optimal constant in (2) can be no smaller
than d(δ + cosec( π

2d
))−1 and letting δ tend to zero, we have our result.

3. Operator theoretic issues

To complete the proof of Theorem 1 we establish the following result.

Proposition 3. Let T1, . . . , Td be linear contractions on a complex Hilbert space. Let f ∈ A(Dd)

be of the form

f (z1, . . . , zd) =
d∑

k=1

fk(zk),

where fk ∈ A(D). Then |||f (T1, . . . , Td)||| � d sin( π
2d

) supz̃∈Dd |f (z1, . . . , zd)|.

We break the proof up into steps.

Lemma 4. It suffices to prove Proposition 3 in the case when T1, . . . , Td are unitary with finite
spectrum.

Proof. We start by showing that the case when T1, . . . , Td unitary will suffice. Towards this, we
will show that we may construct separate unitary dilations Uk (k = 1, . . . , d) to the Tk . This
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involves finding a complex Hilbert space K , an isometric inclusion J : H −→ K and unitary
operators Uk on K such that T n

k = J �Un
k J for all n ∈ Z+ and all k = 1, . . . , d.

Achieving this is routine, it suffices to dilate the operators in turn. Suppose that, at the kth
stage we have T1, . . . , Tk−1 unitary and Tk, . . . , Td contractions on a space H . Then by the Sz.
Nagy dilation theorem [1, Chapter 1, Theorem 4.2], we may dilate the operator Tk to a unitary
operator Sk . This involves a complex Hilbert space K , an isometric inclusion J : H −→ K and
the identity T n

k = J �Sn
k J for all n ∈ Z+. We set Sj = JTjJ

� + (I − JJ �) for j /= k. Then it
is routine to verify that T n

j = J �Sn
j J for all n ∈ Z+ and all j = 1, . . . , d, that S1, . . . , Sk−1 are

unitary and that Sk+1, . . . , Sd are contractions.
At this point, we may assume that T1, . . . , Td are unitary. We write the spectral resolution of

each such unitary as

Tk =
∫

T

zkdPk(zk),

where the spectral measures Pk do not necessarily commute. We have

f (T1, . . . , Td) =
d∑

k=1

∫
T

fk(zk)dPk(zk).

Let ξ be a unit vector. Then denoting the probability measure � �→ 〈ξ, Pk(�)ξ〉 by μk we have

〈ξ, f (T1, . . . , Td)ξ〉=
d∑

k=1

∫
T

fk(zk)dμk(zk)

=
∫

Td
f (z̃)d(μ1 × · · · × μd)(z̃).

Let δ > 0 and let β : T −→ T be a Borel map with finite image which moves points a distance
at most δ. For k = 1, . . . , d, let Qk = β̌(Pk), the image of Pk by β (i.e. Qk(�) = Pk(β

−1(�)).
Further, let

Rk =
∫

T

zkdQk(zk)

unitaries with finite spectrum. Then denoting

νk(�) = 〈ξ, Qk(�)ξ〉 = 〈ξ, Pk(β
−1(�))ξ〉 = β̌(μk)(�),

we have

〈ξ, f (R1, . . . , Rd)ξ〉 =
d∑

k=1

∫
T

fk(zk)dνk(zk) =
∫

Td
f (z̃)d(ν1 × · · · × νd)(z̃).

This leads to

|〈ξ, (f (T1, . . . , Td) − f (R1, . . . , Rd))ξ〉| � ωf (δ)‖ξ‖2,

where ωf is the modulus of continuity of f on Td for the maximum metric on Td . Using the
standard result that the norm of a Hilbert space operator is bounded by twice its numerical radius,
this gives

|||f (T1, . . . , Td) − f (R1, . . . , Rd)||| � 2ωf (δ).

Since f is uniformly continuous on Td , we see that the result for unitaries with finite spectrum
implies that for general unitaries. �
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The remainder of the proof hinges on the following geometrical proposition which is of some
interest in its own right and which we state in greater generality than we need.

Proposition 5. Let S1, . . . , Sd be subsets of C such that S1 + S2 + · · · + Sd ⊆ D. Then there
exist wk ∈ C and rk � 0 for k = 1, . . . , d such that

∑d
k=1 wk = 0, Sk ⊆ D(wk, rk) for each k

and
∑d

k=1 rk � d sin( π
2d

).

There is no loss in assuming also that the Sk are compact and convex.

Proof of Proposition 3 given Proposition 5. We can assume without loss of generality that
supz̃∈Dd |f (z1, . . . , zd)| = 1. By Lemma 4 for each k with 1 � k � d, there is an integer mk

such that we may write Tk = ∑mk

j=1 zk,jEk,j where Ek,j are orthogonal projections with I =∑mk

j=1 Ek,j for each k and |zk,j | = 1. We therefore have for ξ and η arbitrary unit vectors that

〈η, f (T1, . . . , Td)ξ〉 =
d∑

k=1

mk∑
j=1

〈η, Ek,j ξ〉fk(zk,j ) =
d∑

k=1

mk∑
j=1

αk,j fk(zk,j )

with the notation αk,j = 〈η, Ek,j ξ〉. We have
∑mk

j=1 αk,j = 〈η, ξ〉 for all k = 1, . . . , d and

mk∑
j=1

|αk,j | =
mk∑
j=1

|〈η, Ek,j ξ〉| =
mk∑
j=1

|〈Ek,j η, Ek,j ξ〉| �
mk∑
j=1

‖Ek,j η‖‖Ek,j ξ‖

�

⎧⎨
⎩

mk∑
j=1

‖Ek,j η‖2

⎫⎬
⎭

1
2
⎧⎨
⎩

mk∑
j=1

‖Ek,j ξ‖2

⎫⎬
⎭

1
2

= ‖η‖‖ξ‖ = 1.

Let wk,j = fk(zk,j ). Then for all mappings λ : {1, . . . , d} −→ N, with 1 � λ(k) � mk we have∣∣∣∣∣
d∑

k=1

wk,λ(k)

∣∣∣∣∣ =
∣∣∣∣∣

d∑
k=1

fk(zk,λ(k))

∣∣∣∣∣ = |f (z1,λ(1), . . . , zd,λ(d))| � ‖f ‖∞ = 1.

Thus, denoting Sk = {wk,j ; j = 1, . . . , mk}, we have S1 + S2 + · · · + Sd ⊆ D. By Proposition 5
there exist wk summing to zero, with

d∑
k=1

max
1�j�mk

|wk − wk,j | � d sin
( π

2d

)
‖f ‖∞.

Then

|〈η, f (T1, . . . , Td)ξ〉| =
∣∣∣∣∣∣

d∑
k=1

mk∑
j=1

αk,jwk,j

∣∣∣∣∣∣ =
∣∣∣∣∣∣

d∑
k=1

mk∑
j=1

αk,j (wk,j − wk)

∣∣∣∣∣∣
�

d∑
k=1

mk∑
j=1

|αk,j ||wk − wk,j | �
d∑

k=1

max
1�j�mk

|wk − wk,j |

� d sin
( π

2d

)
‖f ‖∞.

This completes the proof. �
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We remark that in the above proof, it is possible with a little extra work to specialize to the
case where mk � 3 for all k, but not in general to the case mk = 2 for all k.

4. Geometric issues

In the balance of this paper we offer a proof of Proposition 5.
We start by remarking that we may assume without loss of generality that the Sk are finite

sets. To see this, we choose ε > 0 and select from each Sk an ε-net Sk(ε). Applying the result for
finite sets implies the existence of wk(ε) such that

∑d
k=1 wk(ε) = 0, Sk(ε) ⊆ D(wk(ε), rk(ε))

and
∑d

k=1 rk(ε) � d sin( π
2d

). Thus Sk ⊆ D(wk(ε), rk(ε) + ε). We may choose a sequence εm

decreasing to zero such that all the wk(εm) and rk(εm) converge. The full result then follows. By
perturbing the Sk we may also assume that they are generic sets.

It is also possible to eliminate the case that one or more of the Sk is a singleton by using an
induction on d. The case d = 1 of the proposition is evident. Suppose now that d � 2 and that (for
example) Sd is a singleton. We set S′

d−1 = Sd−1 + Sd , and use an induction hypthesis to handle
the situation

S1 + S2 + · · · + Sd−2 + S′
d−1 ⊆ D,

yielding numbers w1, w2, . . . , wd−2, w
′
d−1 ∈ C summing to zero and nonnegative r1, r2, . . . ,

rd−2, rd−1 with Sk ⊆ D(wk, rk) for k = 1, 2, . . . , d − 2, S′
d−1 ⊆ D(w′

d−1, rk) and
∑d−1

k=1 rk �
(d − 1) sin( π

2(d−1)
). If Sd = {wd}, it now suffices to set rd = 0 and wd−1 = w′

d−1 − wd by virtue
of the fact that the bound d sin( π

2d
) is increasing with d.

Now, enumerating Sk as (wk,j )
sk
j=1, with sk denoting card(Sk), consider the problem of finding

(wk)
d
k=1 that minimizes

f ((wk)
d
k=1) ≡

d∑
k=1

max
1�j�sk

|wk − wk,j |

subject to the constraint

g((wk)
d
k=1) ≡

d∑
k=1

wk = 0.

It can be shown that f is a convex function on the linear subspace given by g(w) = 0. The
minimum is then uniquely determined except in truly exceptional cases which are avoided by the
assumptions d � 2 and Sk generic. We assume in the sequel that (wk)

d
k=1 denotes this minimum

point. Let �k be the set of j such that the maximum value of max1�j�sk |wk − wk,j | is attained.
Then we can replace Sk by {wk,j ; j ∈ �k} without any loss. In fact since Sk are generic (we can
suppose that no four distinct points of Sk lie on a circle) we can assume that �k and hence that
Sk have one, two or three points. Since the case that Sk is a singleton can also be eliminated, we
may always assume that wk /= wk,j for all j ∈ �k .

Ideally, one would like to work with the case sk = 2 for all k. However, there are examples
that show that one cannot dispose of the case sk = 3 at least in this formulation of the problem.

Lemma 6. Let (wk)
d
k=1 be the minimum point of f described above subject to the constraint

g = 0. Then there is a complex number w such that
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w ∈
d⋂

k=1

co{sgn(wk − wk,j ); j = 1, . . . , sk}.

In the lemma, we have denoted by co(A) the convex hull of the set A in C. We have also
denoted the sign of the complex number z by sgn(z). Specifically, the definition is

sgn(z) =
{

0 if z = 0,

|z|−1z otherwise.

Proof. Let uk ∈ C satisfy
∑d

k=1 uk = 0 and consider making a variation wk(t) = wk + tuk for
t � 0. We find

d∑
k=1

max
1�j�sk

|wk(t) − wk,j | =
d∑

k=1

rk + t

d∑
k=1

max
1�j�sk

�(uksgn(wk − wk,j )) + O(t2),

where rk = max1�j�sk |wk − wk,j |. It follows that for all such (uk)
d
k=1,

d∑
k=1

max
1�j�sk

�(uksgn(wk − wk,j )) � 0

or equivalently, there exist vk ∈ co{sgn(wk − wk,j ); j = 1, . . . , sk} such that
∑d

k=1 �(ukvk) �
0. Let Q be the quotient vector space of Cd by the relation that identifies two vectors that differ
by a constant vector (i.e. one in which all the entries are identical). The dual space of Q is
identified to the set of all (uk)

d
k=1 ∈ Cd that satisfy

∑d
k=1 uk = 0 in a natural way. We now

invoke the Separation Theorem for Convex Sets [2] or [3] to see that the image of the product set
P = ∏d

k=1 co{sgn(wk − wk,j ); j = 1, . . . , sk} by the quotient map taking Cd to Q contains the
zero vector of Q. An equivalent statement is that the set P contains a constant vector. But this is
precisely the conclusion of the lemma. �

Using Lemma 6, we see that Proposition 5 can be reformulated as the following Proposition
by replacing the original wk,j with wk,j − wk .

Proposition 7. Let rk > 0 for k = 1, . . . , d and wk,j ∈ C satisfy |wk,j | = rk for k = 1, . . . , d

and j ∈ �k where �k is either {1, 2} or {1, 2, 3}. Suppose also that∣∣∣∣∣
d∑

k=1

wk,λ(k)

∣∣∣∣∣ � 1

for all mappings λ : {1, . . . , d} −→ N with λ(k) ∈ �k for all k. Suppose further that there is a
complex number w such that

rkw ∈ co{wk,j ; j ∈ �k} for k = 1, 2, . . . , d.

Then
∑d

k=1 rk � d sin( π
2d

).

We now proceed by using the following trick. We may always assume by rotational symmetry
that w is real and nonnegative. In case card(�k) = 3, the point rkw lies in a triangle and it follows
that at least one side of the triangle meets the nonnegative real axis. Choose such a side. The
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strategy is to throw away the vertex of the triangle which is not on this side. This leads to a harder
problem, but one that involves only intervals.

Proposition 8. Let rk > 0 for k = 1, . . . , d, let αk, βk also be given such that

|αk| � βk � π

2
. (3)

Suppose further that∣∣∣∣∣
d∑

k=1

rkei(αk+εkβk)

∣∣∣∣∣ � 1

for all choices εk = ±1. Then
∑d

k=1 rk � d sin( π
2d

).

We remark that the condition (3) encodes the fact that the line segment from ei(αk−βk) to
ei(αk+βk) meets the nonnegative real axis.

Before proving Proposition 8, it may be helpful to describe some of the situations that lead to
equality.

• βk = π
2 , rk = 2 sin( π

2d
) for k = 1, . . . , d; −π

2 � α1 � − (d−2)π
2d

, αk = αk−1 + π
d
,

k = 2, . . . , d.
• α1 = β1 = 0; rk = 2 sin( π

2d
) for k = 1, . . . , d; βk = π

2 and αk = (2k−d−2)π
2d

for k = 2, . . . , d.

Proof. The proof of the proposition is very messy and is split up into steps.
Step 1. The case when d = 2.

Suppose without loss of generality that α1 � α2. Using the hypotheses explicitly, we find that

r2
1 + r2

2 + 2r1r2 cos(α2 − α1 + β1 − β2) �1, (4)

r2
1 + r2

2 + 2r1r2 cos(α2 − α1 − β1 − β2) �1, (5)

r2
1 + r2

2 + 2r1r2 cos(α2 − α1 − β1 + β2) �1. (6)

We claim that at least one of the cosines is nonnegative. If not, then suppose that β1 � β2, (a similar
argument involving (5) and (6) works in case β2 � β1). We must have α2 − α1 + β1 − β2 > π/2
since this quantity is known to be in the interval [0, 3π/2] and similarly α2 − α1 − β1 − β2 <

−π/2 since this quantity is known to be in the interval [−π, 0]. Subtracting off, we get 2β1 > π

a contradiction. Thus by either (4) or (5), we must have r2
1 + r2

2 � 1 and our result follows from
the Cauchy–Schwarz inequality.
Step 2. The case when 4r2

k + sin2(βk) � 4 for all k = 1, . . . , d.

We can rewrite
∑d

k=1 rkei(αk+εkβk) = a +∑d
k=1 εkbk where

a =
d∑

k=1

rkeiαk cos(βk) and bk = irkeiαk sin(βk).

Let sin(γ0) = |a| and sin(γk) = |bk| = rk sin(βk), then we assert that

d∑
k=0

γk � π

2
.
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Q

P

B

A

2γk

Fig. 1. A side AB of the convex polygon and its associated chord PQ.

This is because the boundary polygon of the convex hull of the points {ε0a +∑d
k=1 εkbk; εk =

±1, k = 0, . . . , d} lies inside the unit disk and has pairs of sides with length 2|a| and 2|bk|,
k = 1, . . . , d. For a given side of the polygon, to each endpoint we consider the intersection of
the unit circle with the outward normal to the side at the endpoint. This defines a chord in the
unit circle. As illustrated in Fig. 1, the chord PQ is associated to the side AB of the polygon. It
is clear that the length of PQ is at least that of AB, that it subtends an angle 2γk at the centre of
the unit circle. Chords corresponding to different sides do not meet.

We note that |a| � �a = ∑d
k=1 rk cos(αk) cos(βk) �

∑d
k=1 rk cos2(βk). We deduce that

arcsin

(
d∑

k=1

rk cos2(βk)

)
+

d∑
k=1

arcsin(rk sin(βk)) � π

2
.

Now if tk are nonnegative numbers with
∑d

k=1 tk � 1, then it can be shown by induction that

d∑
k=1

arcsin(tk) � arcsin

(
d∑

k=1

tk

)
.

Therefore, we obtain

d∑
k=1

arcsin(rk cos2(βk)) +
d∑

k=1

arcsin(rk sin(βk)) � π

2
. (7)

The condition 4r2
k + sin2(βk) � 4 ensures that

arcsin(rk) � arcsin(rk cos2(βk)) + arcsin(rk sin(βk))

for each k = 1, . . . , d and hence we obtain
∑d

k=1 arcsin(rk) � π
2 . We now get from the fact that

sin is concave down on [0, π/2] that
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d−1
d∑

k=1

sin(arcsin(rk)) � sin

(
d−1

d∑
k=1

arcsin(rk)

)
� sin

( π

2d

)
,

as required.
Step 3. Reduction to the case of a single large rk .
Step 2 establishes the result unless there exists k with 4r2

k + sin2(βk) > 4. In this step, we show that
there cannot be two such k. Otherwise, we can assume after reordering that 4r2

1 + sin2(β1) > 4
and 4r2

2 + sin2(β2) > 4. According to hypothesis, and averaging over (εk)
d
k=3, we have∣∣∣z + r1eiα1 cos(β1) + r2eiα2 cos(β2) + i(ε1r1eiα1 sin(β1) + ε2r2eiα2 sin(β2))

∣∣∣ � 1,

where z = ∑d
k=3 rkeiαk cos(βk). Squaring and averaging over (εk)

2
k=1 yields

|z + r1eiα1 cos(β1) + r2eiα2 cos(β2)|2 + r2
1 sin2(β1) + r2

2 sin2(β2) � 1. (8)

Now �z � 0, so

|z + r1eiα1 cos(β1) + r2eiα2 cos(β2)|
� �(z + r1eiα1 cos(β1) + r2eiα2 cos(β2))

� r1 cos(α1) cos(β1) + r2 cos(α2) cos(β2) � r1 cos2(β1) + r2 cos2(β2). (9)

Thus we obtain, substituting (9) into (8) and throwing away the cross term in the square, that

2∑
k=1

r2
k (cos4(βk) + sin2(βk)) � 1,

leading to

2∑
k=1

(
1 − 1

4
sin2(βk)

)
(cos4(βk) + sin2(βk)) < 1.

However, the minimum value of(
1 − 1

4
sin2(θ)

)
(cos4(θ) + sin2(θ))

as θ runs over [0, π
2 ] is seen to be approximately .6458745. This contradiction establishes the

conclusion of this step.
Step 4. The remaining case of a single large rk .

After relabelling, we can assume that r1 >
√

3
2 and that 4r2

k + sin2(βk) � 4 for k = 2, . . . , d. The
idea is that the (rk)

d
k=1 are so unbalanced that the situation is far from extremal. Let

arcsin(R1) = arcsin(r1 cos2(β1)) + arcsin(r1 sin(β1)),

then starting from (7) and repeating the argument of step 2 with r1 missing gives
d∑

k=2

rk � (d − 1) sin

(
arccos(R1)

d − 1

)
.

Now the equation

R1 = r1

(
sin(β1)

√
1 − r2

1 cos4(β1) + cos2(β1)

√
1 − r2

1 sin2(β1)

)
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leads to R1 � μr1 where μ = 10(3
√

3−5)

(3−√
3)3 ≈ 0.96225, the smallest value that may be taken by

sin(β1)
√

1 − cos4(β1) + cos2(β1)

√
1 − sin2(β1). Thus, it remains to prove that

r1 + (d − 1) sin

(
arccos(μr1)

d − 1

)
� d sin

( π

2d

)
(10)

provided that r1 >
√

3
2 and d � 3. The derivative of the left hand side of (10) with respect to r1 is

1 − μ√
1 − μ2r2

1

cos

(
arccos(μr1)

d − 1

)

and this quantity is seen to be negative for r1 >
√

3
2 and d � 2. Thus it remains to show that

√
3

2
+ (d − 1) sin

(
arccos(μ

√
3/2)

d − 1

)
� d sin

( π

2d

)
for d � 3. This is easy to verify for large values of d using the bound

|u−1 sin(tu) − t | � t3u2/6 for 0 � tu � π/2

using the pairs (u, t) = (d−1, π/2) and (u, t) = ((d − 1)−1, arccos(μ
√

3/2)) and for smaller
values of d � 3 numerically. It fails for d = 2 which explains the necessity of providing a separate
proof of this case. �
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