
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 16, 323-332 (1978)

A 22*” Upper Bound on the Complexity of Presburger Arithmetic*

DEREK C. OPPEN

Artificial Intelligence Laboratory, Computer Science Department,
Stanford University, Stanford, California 94305

Received February 6, 1976; revised September 26, 1977

The decision problem for the theory of integers under addition, or “Presburger
Arithmetic,” is proved to be elementary recursive in the sense of Kalmar. More precisely,
it is proved that a quantifier elimination decision procedure for this theory due to Cooper
determines, for any n, the truth of any sentence of length rr within deterministic time

2a2sn for some constant p > 1. This upper bound is approximately one exponential higher
than the best known lower bound on nondeterministic time. Since it seems to cost one
exponential to simulate a nondeterministic algorithm with a deterministic one, it may
not be possible to significantly improve either bound.

INTRODUCTION

In recent years, considerable research has been done on the complexity of decidable
theories in logic. The results tend to take two forms. In lower bound worst case results,
a theory is proved to have some inherent lower bound on its complexity such that every
decision procedure for the theory must exceed this lower bound on some set of input
formulas. In upper bound worst case results, a theory is shown to admit a dicision pro-
cedure which satisfies some bound on its complexity.

We shall consider one well-known theory, the so-called “Presburger Arithmetic” or
theory of integers under addition. This theory has long been known to be decidable for
truth [6]. We will analyze a decision procedure for this theory due to Cooper [2] and
prove that there is a superexponential upper bound on the size of formula produced by
the algorithm when all variables have been eliminated. Thus there is a superexponential
bound on the time required to decide the truth of any formula, and the decision problem
is elementary recursive in the sense of Kalmar.

More precisely, the superexponential bound on deterministic time required for a
sentence of length n is proved to be 2aarn for some constant p > 1. This upper bound is
approximately one exponential higher than the best known lower bound on nondeter-
ministic time [4]. Since it seems to cost one exponential to simulate a nondeterministic

* An earlier version of part of this paper was presented at the Fifth Annual ACM Conference on
the Theory of Computing, May 1973, and appears in the author’s Ph. D. Thesis (University of
Toronto, 1975). The research was supported by the National Research Council of Canada, the
Department of Computer Science, University of Toronto, and the Department of Computer Science,
Stanford University, under ARPA Contract DAHC 15-73-C-0435.

323
0022-0000/78/0163-0323$02.00/0

Copyright 0 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82647111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

324 DEREK C. OPPEN

algorithm with a deterministic one, it may not be possible to significantly improve either
bound.

This result contrasts with the complexity results for two related theories. Meyer [5]
has shown that the weak monadic second order theory of two successors is not elementary
recursive. On the other hand, the set of satisfiable sentences in quantifier-free Presburger
arithmetic is NP-complete (see Section 4).

1. PRESBURGER ARITHMETIC

We will first define 5?+, the language of Presburger arithmetic. The symbols of 9+
are (A A, v, 3 V, 3, =, <, +, -, 0, 1, x, y, z ,.... x, y, z ,... are called variables and may
be subscripted. An expression is a finite sequence of symbols of 8+.

Define a term as follows:

1. Variables, 0, and 1 are terms.

2. If t, and t, are terms, then so are (tl + tJ and -t, .

3. These are the only terms.

An atomic formula or atom is an expression of one of the forms (tl < t.J or (tl = tJ
where t, and t, are terms.

A formula is defined as follows:

1. An atom is a formula.

2. If A and B are formulas and x is a variable, then 5~4, Vz4, (A v B), (A A B),
(A 1 B), (A EE B), and -,A are all formulas.

3. These are the only formulas.

A sentence is a formula which has no free variables. From now on, we will adopt the
usual conventions for parentheses,

The following are examples of sentences in 9+:

1 <l,

Vy’y3xVz[x + y = z].

We define the standard interpretation Y+ for 9+ as follows:

1. The domain from which the variables take their values is the set of positive and
negative integers.

2. =, <, +, -, 0, 1 all take their natural interpretations.

A sentence is either true or false under 4f. Let r+ be the set of all sentences of 9+
which are true under 9+. For instance, t’x[x + 1 = 1 + x] is in Y+. Y+ is commonly
called the theory of integers under addition or Presburger arithmetic. Presburger [6]
proved that Y+ is decidable, that is, that 9-f is recursive.

COMPLEXITY OF PRESBURGER ARITHMETIC 325

For convenience we will permit the use of certain other symbols in writing formulas
in 9+. 2 will stand for (1 + l), 3 for ((1 + 1) + l), and, in general, K will stand for
1 $... + 1 (1 repeated K times). 0, 1,2 ,... are called numerals. The term ti + (-ta)
will be written as t, - t, and t + ... + t (t repeated k times) as kt. We will also use the
symbols <:, N, 3, >, 1, and f. (1 denotes divisibility by a constant, f indivisibility by
a constant.) These are all definable in terms of < and + alone. For instance, x < y z
x -k l<y, K 1 t = 3X[X$... + x = t] where x does not appear in t and is repeated
K times, and k { t = 4 / t.

2. THE DECISION PROCEDURE FOR TRUTH

A decision procedure for truth for Presburger arithmetic is an algorithm which, given
a sentence in s+, decides whether that sentence is true or false under X+, that is,
whether or not it is in Y+. The decision procedure we will now describe is due to Cooper
[2] and involves quantifier elimination, a general method we now describe. Suppose we
have an algorithm P which, given a formula of 8+ of the form 3&‘(x) where F(x) is
quantifier free, returns a formula F’ of 8+ which is equivalent to &F(x) but which con-
tains no quantifiers. (In other words, P “eliminates” a quantifier.) This suggests
the following decision procedure: given any sentence A of 9+, first replace any expression
Vx by the equivalent expression 4x,. Apply P to the innermost quantified sub-
formulas of A, replacing subformulas of the form 3xF(x) by equivalent subformulas
without quantifiers. Then apply P to the next level of quantified subformulas. Continue
until all quantifiers have been eliminated. The resulting formula contains no variables
and therefore evaluates immediately to true or false. We now describe the algorithm
for Presburger arithmetic.

Consider a formula of the form &F(x) where F(x) is quantifier free but need not other-
wise be in any special form. Assume like terms have been collected. We wish to construct
an equivalent formula not containing x. The following algorithm for doing so is due to
Cooper [2].

Step 1. Eliminate logical negations by first driving them in as far as possible (using
de Morgan’s laws, etc.) and then replacing literals consisting of a negated atom by an
equivalent unnegated atom. (For instance, replace 7(x # a) by x = a.) Replace atomic
formulas containing symbols other than <, I, or +’ by equivalent formulas containing only
< as relation symbol. (For instance, replace x = a by x < a + 1 A a - 1 < x.)

Step 2. Let 6’ be the least common multiple of the coefficients of x. Multiply both
sides of all atoms containing x by appropriate constants so that the coefficients of all
the x’s are 6’. For instance, if in a particular atom the coefficient of x is K (recall that like
terms have been collected), then multiply every constant and the coefficient of every
variable in that atom by F/k. (By definition, 6’ is a multiple of k so 6’/k is an integer.)
The coefficient of x in the new atom is 6’ and the new atom is equivalent to the
original atom. Replace SxF(6’x) by 3x[F(x) A 6’ / x]. Then, each of the atoms of the new
F(x) either does not contain x or is of one of the forms:

326 DEREK C. OPPEN

A. x < ai ;
B. bi < x;
c. si I x + ci ;
D. E~TX+ di;

where ai , bi , ci , and di are expressions without x and Si and ci are positive integers.

Step 3. Let 6 be the least common multiple of the & and ci . Let F-,(x) be F(x) with
“true” substituted for all atoms of type A, and “false” for all atoms of type B. Let F,(s)
beF(x) with “false” substituted for all atoms of type A and “true” for all atoms of type B.
Depending on whether the number of atoms of type A exceeds the number of atoms of
type B or not, replace 3xF(x) by

or

F- 3 i Fern(j) v i V F(b, + j)
j-1 j=l bi

Fm = ‘$ F,(-j) v $ v F(a, - j),
j=l j=l ai

respectively. Simplify by collecting like terms.
To illustrate Cooper’s algorithm, we will use it to eliminate x from the formula

&F(x) = 3x[2x < 2y + 32 + 5w A 3y + 5z + 2w < 3x A 5x < 5y + 22 + 3w].

Step 1 does not change the formula.
In Step 2,6’ = 30, the least common multiple of the coefficients of x. We now multi-

ply both sides of each of the conjuncts of F(x) by, respectively, 15, 10, and 6 so that all
the coefficients of x are 6’ = 30. This gives us

3xFyx) = 3x[3Ox < 3oy + 45x + 75w A 3Oy + 502 + 2Ozu < 30x A 30x

< 3Oy + 122 + 18~1.

We then replace 3xF’(x) by

3xF”(x) = 3x[x < 30y + 452 + 75~ A 30y + 50~ + 20w < x A x < 30y

+ 12x + 18w A 30 1 x].

In Step 3, 6 = 30. F-,(x) = [“true” A “false” A “true” A 30 1 x] G “false.” So, we
replace 3xF(x) by

F-m = v (“false”) v v [3Oy + 50x + 2Ow + j < 3Qy + 45x + 75~
j=l j=l

A30y+502+2ti<303,+~~+2@z~+j

A 3Oy + 50~ + 20w +j < 30y + 122 + 18w

A 30130y+50~+2Ow+j]

= ,t [j < -5~ + 55 w A j < -382 - 2w A 30 I3Oy + 50~ + 2oW + j].

COMPLEXITY OF P-BURGER ARITHMETIC 327

This is a formula that is equivalent to the original one, but which does not contain x.
To justify Cooper’s algorithm, we must prove that F-” and F” are both equivalent to

the original formula. We will consider only F-“. Notice first that the new formula 3xF(x)
produced by Steps 1 and 2 is equivalent to the original We therefore wish to show that
the new 3xF(x) z Vi-, F-,(j) v Vi*, Vb, F(b, + j). The following proof appears in [2].

Suppose first that the right-hand side is true. If one of the disjuncts F(bi + j) is true,
then certainly 3xF(x) is true. Suppose then that F-J j) is true for some j such that
1 < j < 6. Then, by definition of F-, , F-,(j - k8) is true for any positive integer K.
In particular, if K is sufficiently large, F-,(j - K6) = F(j - K6) and so again 3xF(x)
is true.

Conversely, suppose 3xF(x) is true. Let a be such that F(a) is true. Suppose first that
a is of the form bi + j for some b, and some j where 1 < j < 6. Then F(bi + j) is true
and the right-hand side is true. Suppose then that a is not of this form and consider
F(a - 6). Suppose F(a - 6) is false. Then, some atom in F must change from true to
false as a changes to a - 6. This can only happen for relations of the form bi < x (recall
thai we have eliminated negations), and then only if a - 6 < bi < a. But then a = bi + j
for some j between 1 and 6. Contradiction. So F(u - 6) must be true. This argument may
be repeated until we reach some a - k8 such that either a - k8 is of the form bi + j
or a - K6 is so small thatF(u - K6) = F-,(a - KS). In either case, F-” is true.

3. ANALYSIS OF COOPER'S ALGORITHM

We are now ready to analyze the algorithm, by first investigating the growth in the
size of the formula produced by successive applications of the algorithm. The basic
idea in the following analysis is to relate the growth in the number of atoms and the size
of the constants appearing in these atoms essentially to the number of distinct coefficients
that may appear.

Consider the formula Q~x,,,Q+rx,,,-r *** Qp~Q1x~F(xl , x2 ,..., x,,,) where Qr , Qe ,..., Q,,,
are each either 3 or V and F(x, , x2 ,..., x,) is a quantifier-free formula in our language.
We apply the algorithm m times to successively eliminate x, , x2 ,..., x, .

Let ck be the number of distinct positive integers ai and ci appearing in atoms of the
form 6,] t or ci 7 t, t a term, plus the number of distinct coefficients of variables in the
formulaF, = Q,,,x~Q,,,-~x,,+~ s.0 Qk+lxx+lF,‘(xk+, ,..., x,) produced after the kth iteration
of the algorithm. Similarly, let sk be the largest absolute value of the integer constants
(including all coefficients) and ak the total number of atoms in Fk . In particular, let the
values of c, , s, , and a0 be c, s, and a, respectively, their values before the algorithm is
first applied.

THEOREM 1.
Cl < p,

Sl < SJC,

a, < ave.

328 DEREK C. OPPEN

Proof. Let a’, a”, and a”’ be the number of atoms after Steps 1, 2, and 3, respectively
of the algorithm, assuming there are a atoms before the algorithm is executed. Similarly
define c’, c”, c”’ and s’, s”, sm.

Step 1. The elimination of logical negations does not affect c’, s’, nor a’ since we do
not require the formula to be in any special form. Elimination of relation symbols other
than /, 7, or < may double the number of atoms and may increase by one the largest
absolute value of those integer constants that do not appear as coefficients of variables.
As an illustration of this, note that x = a is replaced by x < a + 1 A a - 1 < x.
The number of atoms with relation symbols 1 or 7 remains at most a:

a’ < 2a; s’<sS 1; c’ < c.

Step 2. Replacing x by S’x may affect the value of s’. The worst case occurs for an
atom containing both the term x (with coefficient 1) and the term s’. An example of this
is the atomx < .a* + s’. The constant term s’ grows to S’s’,where 6’ is the least common
multiple of the coefficients of x. Since there are at most c distinct coefficients of x, each
of them at most s, 6’ < sc. Hence S” < SCS’ < (s + l)~+l.

The value of c” may also be altered. There are at most c - 1 variables other thah x
with coefficients different from any particular coefficient of x and there are are at most c
distinct coefficients of x. Hence, c’ may grow to at most C(C - 1) plus 1 for the unity
coefficient of x after Step 2 plus 1 for the constant 6’ occurring in 6’ 1 x. As an example of
this, consider the effect of Step 2 on the formula 3x(2x < 2y + 3x + 5w A 3x < 3y +
5x + 2w A 5x < 5y + 22 + 3~); in this case, c’ = 3 while C” = 8. Thus, c” < c(c - 1) +
2<c2forc>1.

Finally, Step 2 increases the number of atoms by 1:

a” <2a+ 1; s” < (s + I)c+l; en < 8.

Step 3. We consider first a”‘. The number of atoms in vL1 F-J j) is at most Z%(a + 1)
since all atoms with the relation < simplify to “true” or “false” and there are at most
a + 1 atoms of the form & j x + di or ei f x + e, . Now, the number of terms b, is at
most a (in spite of Steps 1 and 2) and there are at most 2a + 1 atoms in F(b, + j). Hence
the number of atoms in Vj”=, VbiF(bi + j) . IS b ounded by S(a)(2a + 1) and the number
of atoms a”’ in FBm is at most S(2a2 + 2a + 1) < Sa4, for a > 1.

We must now find a bound on 6. Each constant Si or ci appearing in atoms of the form
Si 1 x + di or E$ TX + ei is the product of two integers 01 and /3 where LY < s and /3 1 6’.
This follows from Step 2. There are at most c such distinct 01 so the least common
multiple 6 of all the 6, and ci is at most scS’. Hence, 6 < s2c and a”’ < a+.

Simplifying by collecting like terms may affect both s”’ and c”‘. The largest absolute
value of the constants may now be at most 2s” + 22c < 2(s + l)c+l + s2” < 3(s + l)ac.
A similar argument to that given for Step 2 gives a bound of c4 for cm:

.“’ < a4s2c. , s#’ < 3(s + 1)2”; cm < 8.

Sufficient for our purposes are the inequalities:

al < ds2c* , s, < sac; Cl < c4
valid for s, c > 2.

COMPLEXITY OF PRESBURGER ARITHMETIC 329

THEOREM 2. Ifs, c > 2 then

ak < a4ks(4c) 8 .

Proof. The proof follows from the previous theorem by induction on K and the fact
that we do not require formulas to be in any special form.

We now prove our main result.
Suppose we are given a sentence of length n encoding Q~x~Q,,+~x~-~ a** Qixi

WI , x2 >**-, x,) and wish to find an upper bound on the space required in producing the
quantifier-free formula F, . We can assume m < n, c < n, a < n, s < n. For each K,
the space required to store Fk is bounded by the product of the number of atoms ak
in Fk , the maximum number m + 1 of constants per atom, the maximum amount of
space sk required to store each constant, and some constant q (included for the various
arithmetic and logical operators, etc.). That is, the space required to store Fk satisfies:

space < q * n4n * d4*) dn . (n + 1) . n(4nPn < 222’”

for some constant p > 1.
An upper bound on the deterministic time required to test the validity of a sentence

in Presburger arithmetic will be dominated by, say, the square of the time required
to write out the largest Fk . Thus, the above space bound is also a bound on deterministic
time.

We have been assuming that the original formula was of the form Qmx,,, **a Qlxl
F(x, ,..., x,), where F(x, ,..., x,J is quantifier free. However, it is easily verified that an
arbitrary formula can be put into this form in linear time and further that the space
required by the new formula is bounded by, say, twice the space required by the original.
A small modification of the algorithm described here avoids putting the formula in this
form and this modification should probably be used in practice since it avoids increasing
the scope of the quantifiers. The results proved here hold regardless.

The bounds proved here also hold if we permit other logical connectives such as
G and 3. If we eliminate these connectives at the very beginning, the number of occur-
rences of atoms may of course exponentiate, but none of the other relevant quantities
change. That is, if the original formula is of length n, the formula obtained from it by
eliminating = and3 in the usual fashion satisfies a < 2”, m < n, c < n, s < n. The
only change this makes to the expression bounding the space needed to store Fk is
in the second term, which now becomes (2n)4”, but which is still dominated by
22y

The upper bound can also be easily show to hold for the theory of natural numbers
under addition, the theory actually considered by Fischer and Rabin [4].

Finally, Rabin [7] has shown that a numeral of length n, in binary notation, is definable

330 DEREK C. OPPEN

in the theory considered here by a formula of length O(n) and hence our upper bound
also holds for the theory whose language includes all the numerals rather than just the
constants 0 and 1.

4. OBSERVATIONS AND CONCLUSIONS

The analysis of the previous section has shown that there is a decision procedure for
Presburger arithmetic and a constant p > 0 such that for all positive integers n and all
sentences of 9+ of length n, the decision procedure requires at most 2p’” computational
steps to determine the truth of the sentence. This bound also applies to space as well,
but Ferrante and Rackoff [3] h ave shown that one can reduce the upper bound on
space by one exponential.

Fischer and Rabin [4] have proved that there exists a constant c > 0 such that for
every decision procedure for the Presburger arithmetic, there exists an integer n, such
that for every n > n,, there exists a sentence of B+ of length n for which the decision pro-
cedure requires more than 22Cn computational steps to decide the truth of the sentence.
Their lower bound also applies to the length of proof required and thus on the space
required.

There is a one exponential difference between the lower time bound and upper time
bound. Fischer and Rabin’s lower bound applies to nondeterministic procedures
as well as deterministic ones while our upper bound applies to a deterministic
procedure. Since it seems to cost one exponential to simulate a nondeterminstic algorithm
by a deterministic one, it will probably be difficult to significantly improve either bound.
Any substantial improvement would settle some open questions on the relation between
time and space.

Two important points should be made as to why we are able to prove a superexponential
bound for Presburger arithmetic.

First, Cooper’s algorithm does not require that the formula be put into disjunctive
normal form whenever another quantifier is to be eliminated, unlike the case with the
better-known decision procedures for Presburger arithmetic. Putting a formula into dis-
junctive normal form may cause an exponential growth in the size of the formula (con-
sider (A, v B,) A **a A (A, v B,)). If the original formula contains much alternation of
quantifiers, the formula being produced by the standard decision procedure may grow
too large to permit a superexponential upper bound. Thus, the time required by the
decision procedure may not have a superexponential upper bound (that is, the time may
not be bounded by a fixed composition of exponential functions). Cooper’s algorithm,
as we have shown, does have a superexponential upper bound.

Second, we have related the growth of the size of the formula at each stage in
the execution of the algorithm essentially to the number of distinct coefficients of variables
that may appear, plus the number of distinct integers 6, and E* appearing in atoms of the
form ai J t and Ed r t. This point seems essential to the proof: relating the growth to, say,

COMPLEXITY OF PRBSBURGER ARITHMETIC 331

the number of coefficients or even the number of distinct constants does not appear
to lead to an elementary bound.

It is interesting to contrast this result with those for two related theories.
Meyer [5] has shown that there cannot exist an elementary recursive decision procedure

for the weak monadic second order theory of two successors.
On the other hand, consider the decision problem for satisfiability for quantifier-free

formulas in Presburger arithmetic. Borosh and Treybig [l] show that if a system of linear
equations with integer coefficients has a solution in nonnegative integers, then it has
a solution with all entries bounded by a small polynomial in the maximum of the absolute
values of the minors of the associated augmented matrix. It follows that the set of satis-
fiable systems of linear equalities over the nonnegative integers is in NP. Every inequality
x > y over the nonnegative integers can be represented by the equality x = y + x where
z is a new variable to be satisfied over the nonnegative integers. It follows that the set of
satisfiable systems of linear inequalities over the nonnegative integers is in NP. Further,
every integer can be represented as the difference of two nonnegative integers, and so,
by the same trick of introducing new variables to be satisfied over the nonnegative integers,
it follows that the set of satisfiable systems of linear inequalities over the integers is in NP.
Consider now the disjunctive normal form of any quantifier-free Presburger formula in
which all predicate symbols other than 3 have been eliminated. Each disjunct is a con-
junction of linear inequalities over the integers; further, the length of each disjunct is
linear in the size of the original formula. The original formula is satisfiable if and only if
one of these disjuncts is satisfiable. We can nondeterministically guess which atomic
formulas in the original formula would make up the satisfiable disjunct. It follows that
the set of satisfiable quantifier-free formulas of Presburger arithmetic is NP-complete.

ACKNOWLEDGMENTS

The author acknowledges with thanks the helpful conversations he has had with Al Borodin,
Al Meyer, Michael Rabin, and Larry Stockmeyer concerning aspects of this work. He particularly
thanks Stephen Cook for his supervision of most of the research presented here.

REFERENCES

1. I. BOROSH AND L. B. TREYBIG, Bounds on positive integral solutions of linear diophantine
equations, Proc. Amer. Math. Sot. (1976), 299-304.

2. D. C. COOPER, Theorem proving in arithmetic without multiplication, Machine Intelligence 7
(1972), 91-99.

3. J. FERRANTE AND C. RACKOFF, “A Decision Procedure for the First Order Theory of Real Addition
with Order,” MAC Technical Memorandum 33, Massachusetts Institute of Technology, May
1973.

4. M. FISCHER AND M. RABIN, Super-exponential complexity of Presburger arithmetic, in “Pro-
ceedings of the Symposium on the Complexity of Real Computation Processes, April 1973.”

5. A. MEYER, “Weak Monadic Second Order Theory of Successor is not Elementary Recursive,”
manuscript, 1972.

332 DEREK C. OPPEN

6. M. PRESBURGER, Uber die Vollstandigkeit eines gewissen Systems der Arithmetik gamer Zahlen,
in welchen die Addition als einzige Operation hervortritt, in “Comptes-Rendus du ler Congr&s
des MathCmaticiens des Pays Slavs, 1929.”

7. M. RABIN, private communication. 1972.

