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Abstract 

We study the duality for maximal Cohen-Macaulay modules (MCM modules for short) over 
Cohen-Macaulay local rings. We characterize (low dimensional) rings over which any MCM 
module is self-dual, and establish a correspondence between the isomorphism classes of a class 
of self-dual MCM modules (called “orientable” Auslander modules) and the even linkage classes 
of Gorenstein ideals of height two over Gorenstein normal domains. An application is given to 
the complete intersection ideals of height two. 

1. Introduction 

Let (R, m, k) be a d-dimensional Cohen-Macaulay local ring with the canonical 

module KR. A d-dimensional Cohen-Macaulay R-module is called a maximal 

Cohen-Macaulay R-module (an MCM R-module for short). For a given 

MCM R-module M, the R-module M* = Hom,(M, KR) is called the (canonical) 

dual of M. Then M* is also an MCM R-module, and the duality M** z M holds 

(see Proposition 1.1). We say that M is self-dual if M is isomorphic to its dual. 

The aim of this paper is to study some fundamental questions on self-dual MCM 

modules. 

First, in Section 1, we examine elementary properties of the dual of an MCM 

module. In Section 2, we consider the problem of characterizing the local rings over 

which any MCM module is self-dual, especially in the cases of low dimensional local 

rings. In Section 3, we introduce and examine a class of self-dual MCM modules 

which we call Auslander modules. These are self-dual MCM R-modules obtained as 

extensions of Gorenstein ideals of height two by the canonical module of R. Special 

cases of these modules are studied by many authors in various contexts. For Goren- 

stein normal domains, we establish a correspondence (Rao correspondence) between 

the set of isomorphism classes of “orientable” Auslander modules and the set of even 

linkage classes of Gorenstein ideals of height two (this is essentially done in [4, 81). As 

an application, we show that for an isolated hypersurface singularity of dimension 

0022-4049/96/$15.00 c: 1996 Elsevier Science B.V. All rights reserved 
SSDI 0022-4049(95)0001 3-5 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82647085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


greater than five, any Gorenstein ideal of height two is a complete intersection. This 

gives a slight generalization of a famous theorem of Serre. 

0.1. Notations and terminolog?: 

Throughout this paper, (R, HI, 1;) stands for a CohenPMacaulay local ring with 

dim (R) = d. We denote by E,(k) the injective envelope of the R-module k. We denote 

by d(M) and p(M) the length and the minimal number of generators of an R-module 

M, respectively. For an MCM R-module M, we denote by e(M) and r(M), the 

multiplicity and the Cohen-Macaulay type dim,,Ext“(k. M) of M, respectively. We say 

that R is a hypersurfuce if emb(R) = d + 1, i.e., R-r S/(f) with a regular local ring 

S and a non-zero element f’ of S. 

1. The dual of an MCM module 

Let M be an MCM R-module. A finitely generated R-module N is said to be 

a (canonicul) dual of M if its completion N ^ is isomorphic to HomR(HR,(M), ER(k)) as 

an R c‘-module. A dual of M does not necessarily exist, but if it exists it is unique up to 

isomorphisms. (This follows. for example. from [9. p. 48, Lemma 5.81.) Hence we often 

say that N is the dual of M. and we denote it by KAw. The dual K, of R is called the 

canonical module of R, and it is well-known that it exists if and only if R is a residue 

ring of a Gorenstein ring (theorem of Foxby and Reiten). We recall the following 

well-known facts for completeness. 

Proposition 1.1. (1) A.s.swze that the canoniccll module KR of R exists. Then 

M* := Hom,(M, KR) is u dual of 121. 

(2) If N is the dual qf M, the?? N is also an MCM R-module and M is the dual of N. 

Proof. We may assume that R is complete. (1) follows from the isomorphisms 

HomR(K!(M), E,(k)) z HomK(M 0 K!(R), EK(k)) 

z Hom,(M, HomKK!(R), EK(k))) 

z Hom,(M, KK). 

(2) It is enough to show that M* is an MCM R-module and M** 2 M. This is easy 

and well known (see [S]). 0 

If d = 0, then K, z E,(k) and M* is the Matlis dual of M. If R is a Gorenstein local 

ring, then the dual of M is isomorphic to the usual R-dual HomR(M, R) of M. More 

generally, if R is a finite extension of a Gorenstein local ring S, then K, g Homs(R, S) 

and M* = Hom,(M, KR) g Hom,(M, Homs(R, S)) r Homs(M, S) as R-modules. 



In the rest of this section, for simplicity, we assume the existence of the canonical 

module KK of R. 

Proposition 1.2. For any nr-primary ideul I of R and uny parameter ideal J contained in 

I. \ve kacr 

/(M*,‘IM*) = /((JM:l),jJM) = /(Ext;(R/I, M)). 

Proof. This follows from the isomorphisms 

M*/IM* 2 M*/JM* BRiJ R/I 2 (M/JM)* @R;J R/l 

2 Hom,:,(M/JM, ER,.J(k)) OR.J R/I 

2 HomR,JWow:J(R!I, MiJM), ER,‘J(k)), 

Hom,(RII, MjJM) z (JM:I),,,/JM z Exti(R/I, M) 

and the Matlis duality. 0 

Corollary 1.3. We hare e(M*) = e(M), p(M*) = r(M) and r(M*) = p(M). Zf R is 

a k~~prrsurfizce, then p(M) = r(M). 

Proof. We may assume that k is an infinite field. Take a minimal reduction I of m. 

Then by the Matlis duality. 

e(M*) = /(M*IlM*) = /((M/IM)*) = /(M/lM) = e(M), 

and il(M*) = /(M*/ntM*) = /(Extg(R/m. M)) = r(M). By the duality M** z M, we 

get I’( M*) = ,u( M). Finally. the last assertion follows from [9, Lemma 1.51. 0 

In general, we have the inequalities p(M) I e(M) and r(M) I e(M). The equality 

e(M) = p(M) holds if and only if e(M) = r(M), and in this case M is called a Ulrick 

R-module (cf. [16. Proposition 1.11) 

Corollary 1.4 M is N Ulrick R-module if’ and only if M* is a Ulrick R-module. 

Corollary 1.5 (cf. Kirby [lo, Theorems 4.3 and 4.41). For any nt-primary ideal I of R. 

the jiunction 

f(n) = /(Ext$(R;‘I”+‘. M)) 

is a polynomial ,jiinction. 

Proof. By Proposition 1.2. we have .f(n) = /(M*/l”+lM*), and this is the Hil- 

bert-Samuel function of M* with respect to I. 0 

We say that an MCM R-module M is seydual if it is isomorphic to its dual. 
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Example 1.6. (1) Let R c S be a finite extension of Cohen-Macaulay local rings. If 

S is Gorenstein, then S is a self-dual MCM R-module. In fact, we may assume that R is 

complete, and then we have Hom,(S, KK) 2 KS 2 S as R-modules. For example, if 

a finite group G acts on a Gorenstein local ring S and the order of G is a unit in S, then 

the invariant subring R = S” is Cohen-Macaulay and S is a self-dual MCM 

R-module. The converse does not hold in general. But, if S is contained in the total 

quotient ring of R, then S is Gorenstein if and only if S is a self-dual MCM R-module, 

since two torsion-free S-modules are isomorphic if and only if they are isomorphic as 

R-modules. 

(2) Let R = @ [[X, Y. Z]]/(,f‘) be a normal hypersurface singularity. Then Mar- 

tsinkovsky shows that the module of derivations OR = Derc(R) is a self-dual MCM 

R-module (cf. [13, Corollary 5.23 ). 

2. Rings over which the self-duality property holds 

In this section, we investigate the problem of characterizing Cohen-Macaulay local 

rings over which any MCM module is self-dual, especially in the cases of low 

dimensional local rings. Note that such rings are necessarily Gorenstein rings. 

Proposition 2.1. Let R be cm urtinirrn Gorenstein local ring und I an ideal of R. Then I is 

self--dual if und only iJ’ I is u principal ideal. 

Proof. If I is self-dual, then by Corollary 1.4, we have ~(1) = p(I*) = r(Z) < r(R) = 1. 

Hence I is a principal ideal. Conversely, assume that I is principal ideal, and put 

J = arm(1). From the exact sequence 0 + J --f R ---f I + 0, we get the exact sequence 

0 + I* +R-+J*+O. Since J* g (R/l)** z R/I, we have I* g Ker(R + 

R/I) E I. q 

Theorem 2.2 (cf. Ooishi [14, Theorem 1.71). Let R be an urtinian local ritzy. Then the 

follo!&ng conditions are equiaalent: 

(1) Any jinitely generated R-module M is se~fduul. 

(2) R is Gorenstein und m* 2 III. 

(3) m is a principal iderrl. 

(4) R z S/(nr) for some complete discrete r.aluation ring and some integer r 2 1, 

where rc is a prime element of’ S. 

Proof. (1) * (2) is trivial. (2) * (3) follows from Proposition 2.1. The equivalence of 

(3) and (4) follows from Cohen’s structure theorem for complete local rings. 

(4) 3 (1): It is easy to see that ann(nr’) = ntrmi, O<i<r-l.SinceMisadirect 

sum of cyclic R-modules. we may assume that M 2 R/m” for some integer s 2 0. Then, 

we have 

M* z ann(nt”) = m*-’ 2 R,/ann(m-“) = R/m” z M. 
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Proposition 2.3. Let R he a one-dimensional Gorenstein local ring and I an nl-primary 

ideal of R such that e(1) = /(l/l’) = 2t(R/I). Then I is self-dual. 

Proof. Put G(I)= @,,~~l~/l”+‘, R(I)= @,lzol” and S= u,,~,(Zn:Z”). Then, 

under our assumption, G(Z) is Gorenstein by [15], which implies that Proj(G(1)) is 

Gorenstein. Hence Spec(S) 2 Proj(R(I)) is G orenstein, i.e., S is a Gorenstein ring. 

Therefore I = IS Y S is self-dual. 0 

Corollary 2.4 (Ooishi [15]). Let R he a one-dimensional Cohen-Macauluy local ring. 

(1) If emb (R) = 2, then 111’ is se(f-dual for any n 2 e(R) - 1. 

(2) Assume that R is Gorenstein and emb(R) = e(R) - 1. Then 111” is self-dual for anJ 

n 2 2. 

Proposition 2.5. Let R be a one-dimensional Cohen-Macaulay local ring with injinite 

residue jield. Then 111~ ’ E in if and only if emb(R) = e(R). 

Proof. “If”: We may assume that R is not a discrete valuation ring. Take an element 

x of m such that xnt = nt’. Then nt c (xR:m) s R. Hence m = (xR:nt) = 

.x111- l z 111*. 

“Only if”: Take an element x such that xm-’ = tn. Then R 3 m- ‘111 = 

x ’ in2 3 m. Hence R = 1TtC1 m or x ’ m2 = m. Therefore R is a discrete valuation 

ring or xnt = 1~~‘. In any case, we have emb(R) = e(R). q 

Theorem 2.6. Let R he a one-dimensional Cohen-Macauluy local ring with injinite 

residue ,jield which is not a discrete valuation ring. Then the jbllowing conditions are 

equivalent: 

(1) R is Gorenstein and m* g m. 

(2) emb(R) = 2 and ltt* E tn. 

(3) e(R) = 2. 

Moreoaer, if R is an analytically unramijied local domain, these conditions are also 

equivalent to the following condition: 

(4) An)> jinitel~~ generated torsion-free R-module is self-dual. 

Proof. For a one-dimensional Cohen-Macaulay local ring which is not a discrete 

valuation ring, the following facts are well known: in general, emb(R) < e(R); if 

emb(R) = 2, then R is Gorenstein; e(R) = 2 if and only if R is Gorenstein and 

emb(R) = e(R). Hence the equivalence of (l)-(3) follows from Proposition 2.5. 

(4) + (1): Since R is self-dual, R is Gorenstein. 

(3) * (4): Let I be an m-primary ideal and put S = (I : I). Then S is a Gorenstein 

semilocal ring (cf. [l 11). After completion, S 2 S1 x ... x S, with Si one-dimensional 

Gorenstein local rings. Since ST = Hom,(Si, R) is the canonical module of Si, we have 

S,? z Si. Hence S* E S. Since by [2] (see also [lS]) I g S, I is self-dual. Since any 



finitely generated torsion-free R-module is a direct sum of (m-primary) ideals (cf. 

[2, lS]), it is self-dual. 0 

Theorem 2.7. Let R be a trvo-dimensional complex analytic normal local domain which 

is not a regular local ring. Then and’ reJe.xiw R-module is self-dual if and only if R is 

isomorphic to one of the ,follol\,ing singularities: 

(A,) x2+y2+z2=o, 

(Dn) x2y + JJ- l + z2 = 0. 

where n is euen and n 2 4. 

(ET) x3 + xy3 + z2 = 0, 

(E,) 2 + y5 + 2 = 0. 

Proof. Since Kx z Ki s R, R is Gorenstein. Let I be any divisorial ideal of R. Then, 

by the assumption, I is isomorphic to I* E Hom(Z, R) E I- ‘. Hence any non-zero 

element of the ideal class group Cl(R) of R has order two. Therefore R is a rational 

double point by [17, Section 6, Satz 11, and Cl(R) is isomorphic to a finite direct sum 

of Z/2Z. Thus our assertion follows from the well-known list of the rational double 

points and their class groups (cf. [ 12; 19, p. 1231). 

The converse follows from the well-known classification of MCM modules over the 

rational double points. Namely, we only have to look the Dynkin diagrams consisting 

of indecomposable MCM R-modules and to consider the existence of irreducible 

homomorphisms from the already known self-dual MCM R-modules successively 

starting from R or divisorial ideals (which are self-dual by the assumption), cf. [19, pp. 

955961. (This proof was pointed out to the author by Professor Y. Yoshino and 

Professor K.-i. Watanabe.) 0 

The author would like to thank Professor S. Goto who communicated the author 

the following: 

Theorem 2.8. If any MCM R-module is self-dual, then R is a hypersurjtice. 

Proof. Let M and N be the dth and (rl + 1)th syzygy module of the R-module k, 

respectively, and let 0 -+ N + Fd + M + 0 be an exact sequence, where Fd is a free 

R-module. Then its dual sequence 0 + M* 4 Ff + N* + 0 is exact, and by the 

assumption, this is isomorphic to the exact sequence 0 + M + Fd --+ N + 0. Hence 

M is (d + 2)th syzygy module of k. Continuing this process to higher syzygies, we see 

that the Betti number Pi(k) is constant for any i 2 cl. Therefore by a theorem of Tate, 

R is a hypersurface [ 19, Lemma 8.1 X]. 0 

Remark. It is a natural speculation that a local ring of positive dimension satisfying 

the property of Theorem 2.8 is either a regular local ring or a quadratic hypersurface. 
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This is certainly true for dimension one and two by the results of this section. But the 

author could not verify this speculation in general. 

3. Auslander modules and Gorenstein ideals of height two 

In this section, we assume that dim(R) 2 2 and R has a canonical module K. Here 

we introduce a special class of self-dual MCM R-modules which can be obtained as 

extensions of Gorenstein ideals of height two by K. For Gorenstein normal domains, 

we establish a correspondence between the set of isomorphism classes of these 

modules which are “orientable” and the set of even linkage classes of Gorenstein ideals 

of height two. 

Recall that an ideal I of R is called a Gorenstein ideal if the residue ring R/I is 

Gorenstein. We say that an R-module A4 is an Auslander R-module if it is a self-dual 

MCM R-module with e(M) = 2e(R). Note that if R is an integral domain, the latter 

condition is equivalent to the condition that rank(M) = 2. 

Proposition 3.1 (Brennen et al. [4, Corollary 4.43). Let I be a Gorenstein ideal of’ R with 

ht(l) = 2. Then there exists an At&under R-module A(Z) which is characterized by the 

following non-split exact sequence: 

O+K-+A(I)+I+O 

Proposition 3.2. For anlj Gorenstein ideal I of’ keiykt two, we kace p(l) I 2e(R) and 

p(A(I)) I p(Z) + r(R). If ,u(I) = 2e(R), then A(I) is a Ulrick R-module. 

Proof. This follows immediately from the exact sequence in Proposition 3.1. 0 

Corollary 3.3. Let I be a Gorenstein ideal of a normal kypersurface singularity with 

ht(l) = 2 and p(Z) = 3. Then we have p(A(I)) = 4. 

Proof. By Proposition 3.2, p(A(I)) = 3 or 4. On the other hand, under our assump- 

tion, p(A(I)) is even by [9, Theorem 3.11. Hence p(A(Z)) = 4. 0 

We call the R-module A(I) the Auslander module of I. If dim(R) = 2, the Auslander 

module AR = A(m) of m is called the Auslander module (or the jiindamental module) of 

R [l, 3, 7, 13, 19, 201. 

Remark. (1) Let R be a two-dimensional normal hypersurface. Then p(AR) = 4 by 

Corollary 3.3. 

(2) Let R be a two-dimensional complete normal local domain with R/m E C. 

Then, by [20], AR is decomposable if and only if R is a cyclic quotient singularity. 



(3) Let R be a complex normal surface singularity. If R is quasi-homogeneous, then 

it is well known that AK E Hom,(Hom,(QA, R). R), the module of Zariski differen- 

tials of R. (Hence AR z OH if R is a hypersurface.) Martsinkovsky [13] conjectures 

that the converse is also true. and this conjecture is verified for some classes of 

singularities [3, 131. 

Assume that R is normal. For a finitely generated R-module M of rank r, we define 

the determinant det(M) of M by det(M) = Hom,(Hom,( A*M, R), R). We denote the 

divisor class of a divisorial ideal J of R by cl(J). We say that M is orientable if 

det(M) z R [12]. 

Lemma 3.4. (Yoshino [19, Lemma 1.21). If R is normal, then det(A(I)) E K for any 

Gorenstein ideal I qf R \vitk ht (I) = 2. In particular, if R is Gorenstein. A(1) is 

orientable. 

Proof. From the exact sequence 0 + K -+ A(I) + I + 0, we get cl(det(il(1))) = 

cl(det(K)) + cl(det(Z)) = cl(K). Hence det(A(I)) z K. 0 

Proposition 3.5. For a Gorenstein ideul of keiykt two, the jhllowing conditions ure 

equivalent: 

(1) A(I) is a free module. 

(2) I is a complete intersection, i.e.. I is yerzerated by a regular sequence. 

Moreover, if R is Gorenstein am1 normal, tkrse conditions are also equivalent to the 

,following condition: 

(3) A(Z) has a ,free direct summand. 

Proof. (1) * (2): If A(Z) z R*, then 2 = ht(1) I /I(I) I p(A) = 2. Hence p(Z) = ht(1) 

and I is a complete intersection. 

(2) * (1): If I is generated by a regular sequence x. y, then the Koszul complex 

associated to x, J’ gives a non-split exact sequence 0 + R + R* + I --+ 0. Hence 

A(Z) z R2. 

(3) * (1): Assume that A(Z) z R 0 J, where .I is a divisorial ideal of R. Then, by 

Lemma 3.4, cl(J) = cl(det(A(1))) = cl(R) = 0. Hence J z R and A(I) is a free R- 

module. 0 

Proposition 3.6. Supposr tkat R is a Gorenstein tlormal domain. Then anJ1 orientable 

A&under R-module A is isomorphic to A(I) f or Some Gorenstein ideal I of height 

t,vo. 

Proof. By [S, Proposition 1.8(b)]. there exists an exact sequence 0 + F + A -+ I + 0, 

where F is free and I is a Cohen-Macaulay ideal of height two or I = R. If I = R, A is 

free and the assertion is clear. 
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Otherwise, F z R and we get the exact sequence 

R rr Hom(F, R) + Ext’(I, R) + Ext’(A, R) = 0. 

Hence KR,, z Ext’(R/Z, R) E Ext’ (I, R) is a cyclic and R/I is Gorenstein. 

Proposition 3.7. Suppose that R is Gorenstein normal local domain. Then two Auslander 

R-modules are stably isomorphic if and only lf they are isomorphic. 

Proof. Assume that A and A’ are Auslander R-modules and A @ R” E A’ @ R” with 

m 2 ~1. Then A@ R”-” z A’ by cancellation [16, Proposition 11. If m = n, then 

A z A’. Assume that 111 > n. Then A’ has a free direct summand and A’ is free by 

Proposition 3.5. Hence A is also free and we get A E A’. q 

Theorem 3.8 (Rao correspondence). Suppose that R is Gorenstein and normal. Then 

there is a one-to-one correspondence between the set of isomorphism classes of orient- 

able Auslander R-modules and the set of even linkage classes of Gorenstein ideals of 

heicght two. 

Proof. This follows from [8, Corollary 2.31, Propositions 3.6 and 3.7. 0 

For a finitely generated R-module M, the non--ee locus Nf(M) of M is defined 

by 

Nf(M) = (p E Spec(R)I M, is not a free R,-module} 

Theorem 3.9 (Bruns [S]). Assume that R is a hypersurface which is an integral domain. 

Then for anJ1 MCM R-module M. we have 

codim(Nf(M)) I 2 rank(M) + 1. 

Proof. By [9, Lemma 1.11, M is isomorphic to its second syzygy module. Hence our 

assertion follows from [S, Corollary 23. 0 

Corollary 3.10. Let R be an isolated hypersurface singularity. Then any MCM R- 

module with rank(M) < (d - 1)/2 is free. 

Proof. Suppose that M is not free. Then by Theorem 3.9, we have 

d = codim(Nf(M)) I 2 rank(M) + 1. This contradicts our hypothesis. 0 

As is well known, by Serre, any Gorenstein ideal of height two of a regular local ring 

is a complete intersection. Using our previous results, we are able to show a slight 

generalization of this theorem: 



Theorem 3.11. Let R he (I I~~~ptwrfirce .singularit~- l\hich is rrgulur in cdimension I 5 

(e.g., an isolated hypersurfircc singularity with dim(R) 2 6). Then an2 Gorenstein ideal 

of height two of’ R is n complete intcwection. 

Proof. Let I be a Gorenstein ideal of height two of R. If R is not a complete 

intersection, then M := A (I) does not have a free direct summand by Proposition 3.5. 

Hence by Theorem 3.9, we get 6 I codim(Nf(M)) I 2 rank(M) + 1 = 5, which is 

a contradiction. (The authors would like to thank Professor K. Kurano for comments 

on Theorem 3.11. In particular, he showed by an example that the same conclusion in 

Theorem 3.11 does not necessarily hold for local rings with dimension less than or 

equal to five.) 0 

References 

[l] M. Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Sot. 293 (1986) 

51 l-531. 

[Z] H. Bass, On the ubiquity of Gorcnstcin rings. Math. Z. 82 (1963) X-28. 

[3] K. Behnkc. On Auslandcr mod&s of normal surface singularities, Manuscripta Math. 66 (1989) 

205-223. 

[4] J.P. Brennan, J. Herzog and 9. Ulrlch, MaxImally gcncrated Cohen Macaulay modules, Math. 

Stand. 61 (1987) 181-203. 

[S] W. Bruns. The Eisenbud Evans generalized principal ideal theorem and determintal ideals. Proc. 

Amer. Math. Sot. 83 (1981) 19-74. 

[6] E.G. Evans, Jr.. Krull~Schmidt and cancellation ovcf- local rings, Pacific. J. Math. 46 (1973) I 15-I 21. 

[7] G. Gonzalez-Sprinberg and J.-L. Vel-diet-. Structure multiplicative de modules rkflexifs sur Its points 

doubles rationnels. in: Gtom&trie AlgChrique et Applications. Travaux en tours 22 (Hermann, Paris, 

1987) 79%100. 

[X] J. Herzog and M. Kiihl. Maximal Cohen~Macaulay modules over Gorenstein rings and Bourbaki- 

sequences, in: Commutative Algebra and Combmatorics. Advances in Pure Mathematics. Vol. I I 
(Kinokuniya. Tokyo, 1987) 65-92. 

[9] J. Herzog and E. Kunz. Dcr kanomschc Modul emcs Cohen-Macaulay-Rings, Lecture Notes in 

Mathematics, Vol. 238 (Springer. Berlin, 1971). 
[lo] D. Kirby, Hilhert function and the extension functor. Math. Proc. Cambridge Philos. Sot. 105 (1989) 

441-446. 
[1 l] L.S. Levy and R. Wiegand, Dedekind-like behavior of trings with 2-generated ideals. J. Pure Appl. 

Algebra 37 (1985) 41-58. 
1121 J. Lipman. Rational singularities. with applications to algebraic surfaces and unique factorization. 

I.H.E.S. Puhl. Math. 36 (1969) 195 27Y. 
1131 A. Martsinkovsky. Almost split sequences and Zariski differentials, Trans. Amer. Math. Sot. 319 

(1990) 285-307. 
[I41 A. Ooishi, Maths duality and the width of a module. Hiroshima Math. J. 6 (1967) 573-587. 
[ 157 A. Ooishi, Stable ideals in Gorenstein local rings. J. Pure Appl. Algebra 69 (1990) I85 19 I. 

[16] A. Ooishi, On the associated graded modules of canonical modules, J. Algebra 141 (1991) 143 157. 
[17] U. Starch, Fastfaktoricllc Ringe, Schriftenreihe Math. Inst. Univ. Miinster, 1967. 
[IS] S. Wiegand, Ranks of indecomposable modules over one-dimensional rings, J. Pure Appl. Algebra 55 

(1988) 303-314. 
[l9] Y. Yoshino, Cohen~Macaulay modules over Cohen Macaulay rmgs, London Mathematical Society 

Lecture Note Series 146 (Cambridge University Press. Cambridge. 1990). 
[ZO] Y. Yoshino and T. Kawamoto. The fundamental module of a normal local domain of dimension 2, 

Trans. Amer. Math. Sot. 309 (1988) 425 431. 


