
FEBS Letters 582 (2008) 1465–1470
The mammalian Nek1 kinase is involved in primary cilium formation
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Abstract Recent studies implicate primary cilium (PC) proteins
in the etiologies of various polycystic kidney diseases (PKD).
NIMA-related kinases (NRKs) are conserved serine/threonine
kinases, which are usually defined as �mitotic kinases�. Murine
mutants for the NRKs, nek1 (kat mice) suffer from PKD, sug-
gesting that it may be involved in cilium control. We demon-
strated herein that Nek1 is localized to basal body region and
that Nek1 overexpression inhibits ciliogenesis in Madin–Darby
canine kidney epithelial cells. The number of primary cilia is dra-
matically reduced in kat2J mouse embryonic fibroblasts culture.
It is thus hypothesized that Nek1 links cell cycle progression and
the PC cycle.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The cilium is an ancient and highly conserved eukaryotic

organelle projecting from the cell surface. The primary cilium

(PC) is a solitary, usually immotile cilium, found on most of

vertebrate cells. Recent works demonstrated involvement of

the PC in diverse sensory functions including mechano-, che-

mo- and photosensation, and concomitantly PC dysfunction

has been implicated in a plethora of human diseases [1–3].

The most studied �ciliary disease� is polycystic kidney disease

(PKD). PKD is a common human inherited disease, character-

ized by benign polycystic tumors that are produced by abnor-

mal renal epithelial cell overgrowth, eventually obstructing

kidney function. Several studies demonstrated that the pro-

teins mutated in human and murine models of PKD are local-

ized to the cilium, and/or to the basal body [4–8]. Loss of cilia,

disruption of the intraflagellar transport, or mis-regulation of

ciliary signaling, leads to epithelial cell proliferation and cysto-

genesis. The mechanistic connection between the ciliary defects

and the accelerated cell proliferation is still mainly obscure.

The NIMA-related kinase (NRK) family members are com-

monly referred as �mitotic kinases�. In the filamentous fungus

Aspergillus nidulans the founder kinase, never in mitosis, gene

A (NIMA), is indispensable for mitotic entrance. Members of
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the NRK family are found in almost all eukaryotes, including

protists, fungi, plants and animals. The mammalian genome

has 10 NRKs, designated Neks, belonging to five ancestral

NRK clades (Nek1,3,5; Nek2; Nek4,11; Nek6,7; Nek8,9)

[9,10]. Naturally, early research was focused on comparing

the functions of the newly identified kinases to fungal NIMA

documented mitotic roles, yielding remarkable similarities

[9,11,12]. However, recent research, mainly performed in pro-

tists, suggests a conserved involvement of the NRKs in cilio-

genesis. It has been shown that Trypanosoma NRKC is

localized to the basal body and inhibits flagella formation fol-

lowing overexpression [13]. Interestingly, overexpression of a

Chlamydomonas axonemal NRK, Cnk2p, reduces cilium

length, while diminution of its levels produces large cells with

long flagella [14]. Similarly, in the ciliated Tetrahymena differ-

ent NRK members were localized to specific subsets of cilia,

and overexpression of distinct NRKs shortens cilia. It was thus

hypothesized that the unequal size of the cilia in different re-

gions of this ciliate is regulated by the specific NRKs expressed

at each location [15].

Mutant mice for Nek1 kinase (designated kat mice) exhibit

pleiotropic effects including slowly progressing PKD, choroid

plexus cysts, male sterility, facial dysmorphism and runting

[16,17]. The PKD phenotype provides a clue for Nek1 involve-

ment in cilium structure or function. However, no direct con-

nection between Nek1 and the cilium has been reported. In this

study, we demonstrate that Nek1 protein is localized to the ba-

sal body region and that overexpression of Nek1 inhibits cili-

ogenesis. In addition, much lower percentage of kat2J mouse

embryonic fibroblasts (MEF) bear a PC, and frequently a long

and branched cilium-like structure appears on kat2J MEF.

These results thus indicate that the cilium is a major target

of Nek1 activity.
2. Materials and methods

2.1. Cell cultures, infection, and mouse embryonic fibroblasts (MEF)
derivation

Tet-off Madin–Darby canine kidney (MDCK) cells stably express-
ing tet-transactivator were cultured in DMEM medium supple-
mented with 10% fetal calf serum, 2 mM glutamine and
antibiotics. Recombinant tetracycline-regulated adenovirus express-
ing full-length Nek7 protein tagged with myc at its N-terminus
was produced essentially as described before [18]. Nek1 levels were
regulated by the concentration of doxycycline, the amount of virus,
and the length of time after infection, to obtain the minimal expres-
sion that avoids toxic impacts. MEF were isolated from E13.5
kat2J, wt and het embryos, and in all experiments fibroblast derived
from siblings were compared. The MEF were cultured in DMEM
medium supplemented with 10% fetal calf serum 2 mM glutamine
and antibiotics.
blished by Elsevier B.V. All rights reserved.
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2.2. Immunofluorescence staining
For immunofluorescence microscopy, cultures grown on coverslips

were fixed in 4% paraformaldehyde for 20 min, blocked with 20%
FBS/0.5% Triton X-100 in PBS, and incubated overnight with primary
antibodies at 4 �C. The generation of affinity purified Nek1 polyclonal
antibodies was described before [19]. Other primary antibodies were
purchased from: b-tubulin monoclonal antibodies (DSHB), acetylated
a-tubulin monoclonal antibodies and anti-c-tubulin polyclonal anti-
bodies (Sigma), and myc (Delta Biolabs). Secondary fluorescein isothi-
ocyanate (FITC)-conjugated and rhodamin conjugated antibodies
were purchased from Jackson ImmunoResearch. Staining was ana-
lyzed using an ApoTome microscope (Zeiss) or a LSM 510 Zeiss laser
scanning confocal microscope.

2.3. Western blotting
Cells or tissues were lysed in HNTG buffer (20 mM Hepes at pH 7.5,

150 mM sodium chloride, 10% glycerol, 1% Triton-X, 1 mM EDTA
and 1 mM EGTA) for protein extraction. Proteins were run on 8%
acrylamide gels, transferred to nitrocellulose membranes and visual-
ized by immunoblotting with anti-Nek1 diluted 1:150 anti-myc diluted
1:500 (DSHB) and anti-actin diluted 1:500 (DSHB).
3. Results

3.1. Nek1 overexpression inhibits ciliogenesis

To explore possible influences of Nek1 on ciliogenesis, we

overexpressed Nek1 in MDCK cells. MDCK epithelial cells
Fig. 1. Nek1 overexpression reduces cilium number. (A) Infection of MDCK
days following confluency for 16 h (II) or 48 h (III). (B) Western blot analysis
ml of doxycycline. (C–E) Confluent MDCK cells were grown for additional 5
and stained with anti-acetylated-tubulin Ab (green), and anti-myc (red). Nucle
by LSM 510 Zeiss laser scanning confocal microscope. Flattening of all the l
view is presented on the upper and right side of each picture. (C) No infecti
doxycycline.
are commonly used as a model for polarized cells bearing

PC. Confluent MDCK cells grow cilia within several days of

further culturing. To enable efficient and controlled overex-

pression, we generated adenovirus vector expressing full length

Nek1 downstream of a tetracycline operon (designated myc-

Nek1-Ad). The virus was used to infect Tet-off MDCK cells,

thus enabling tetracycline-dependent Nek1 expression. Nek1

overexpression (in the absence of tetracycline-analogue) in

Tet-off MDCK cells that have just become confluent (before ci-

lia growth) prevented almost entirely cilia formation. The per-

cent of cells bearing a cilium was dropped from 14.6% in

uninfected cells to 2.9% in the infected cells (Fig. 1AI). In

the presence of doxycycline, the cells did not express detectable

levels of Nek1 (Fig. 1B), and the infection had no influence on

cilia number (Fig. 1AI), suggesting that the viral infection per-

se did not influence ciliogenesis. To examine whether Nek1

overexpression affect existing cilia, Tet-off MDCK cells which

already express cilia on their surface were infected with myc-

Nek1-Ad for either 16 or 48 h. Nek1 overexpression, but not

viral infection by itself, reduced the percentage of cells bearing

cilia (Fig. 1AII, III and C–E). As can be seen in Fig. 1D, Nek1

overexpression usually stained a single spot within the over-

expressing cells, presumably the centrosome/basal body (see

below). It should be noted that cells overexpressing detectable

levels of Nek1 (stained by the myc-tag epitope) rarely pre-
cells that have just become confluent for 5 days (I), infection of cells 5
of MDCK cells infected for 24 h with or without the addition of 100 ng/
days (for cilium assembly), infected with Myc-Nek1-Ad for 48 h, fixed
i were stained by Hoechst 3342 (blue). Vertical serial photos were taken

ayers was performed using Carl Zeiss AxioVision LE software. Lateral
on. (D) Infection without doxycycline. (E) Infection in the presence of



Fig. 2. Nek1 is localized to the basal body. Confluent MDCK cells were grown for additional four days and infected with Myc-Nek1-Ad. Cells were
grown for 18 h post-infection, followed by fixation and staining. (A) Red – Ac-tubulin, green – Myc-Nek1, blue – Hoechst nuclear staining. (B–C)
Red – Myc-Nek1, green – Ac-tubulin, blue – Hoechst nuclear staining. (D) Uninfected cells stained with secondary Ab only.

Fig. 3. kat2J MEF cells have reduced number of cilia and possess ‘‘cilia-like’’ structure. (A) Genotyping of embryos. Heterozygotes for nek1
mutation were crossed, and at 13.5 days of embryogenesis MEF were isolated from the trunk, and extracts from the heads were blotted and incubated
with affinity-purified antibodies against Nek1. To asses loading, the membrane was blotted with anti-actin antibodies. (B-G) Immunofluorescence
detection of cilia. Forty-eight hours post-starvation wt MEF cells (B, D) and kat2J fibroblasts (C, E–G) were fixed and immunostained with anti-
acetylated-tubulin (green) and anti-c-tubulin (red). Hoechst 3342 counterstained nuclei (blue). (H–I) Number of �normal� cilia (H) and cilia-like (I) in
wt/het and kat2J fibroblast following 48 h serum starvation (time 0), and 1 and 2 h post-serum addition. (J) Number of normal and cilia-like
projections in non-starved proliferating cultures of wt/het and kat2J fibroblasts. Data are based on two independent experiments of three wt/het and
three mut cultures of MEF.
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sented a cilium (Fig. 1D). The results thus suggest that Nek1 is

a negative regulator of ciliogenesis in MDCK cells (at least at

high levels of expression).

3.2. Nek1 is localized to the basal body region

Nek1 has been localized previously to the centrosome of an

inner medullary collecting duct (IMCD-3) cell line [20]. In

agreement with this report Nek1 was localized to the centro-

some of proliferating MDCK cells infected with myc-Nek1-

Ad (not shown). To explore possible association of Nek1

protein with the cilium, the sub-cellular localization of myc-

Nek1 was observed in MDCK cells already expressing cilia

on their surface following infection with myc-Nek1-Ad for

18 h. As described above, in most infected cells no cilium

was apparent. However, in the cases in which both Nek1

and acetylated tubulin were seen within the same cell, Nek1

was localized to an area proximal, adjacent, but distinct from

the region stained by the acetylated a-tubulin, indicating local-

ization to the basal body region (Fig. 2).

3.3. MEF from kat2J mice have reduced number of normal cilia

and harbor long and branched cilium-like structures

The overexpression experiments suggest that Nek1 inhibits

ciliogenesis. To test this supposition, MEFs were produced

from E13.5 kat2J embryos and their wt and heterozygote

(het) littermates, and genotyped by Western analysis using

polyclonal antibodies against Nek1 protein (Fig. 3A). kat2J

mice have a null mutation in Nek1 kinase [16]. Mammalian

fibroblasts tend to grow cilia at the G0 phase, usually triggered

by serum starvation. Following 48 h of serum starvation the

percentage of cells bearing cilia was dramatically lower in
Fig. 4. Microtubule stability is not affected by nek1 deficiency. MEF were st
serum-starved cells were treated with 33 lM nocodozole for 3 hours (B, C, E,
E) and acetylated tubulin (C, F), both in green. The nuclei were counterstain
Nek1 mutants� fibroblasts (20%, compared to 75% in the wt/

het) (Fig. 3B, C, and H). Intriguingly, using staining for acet-

ylated tubulin, in about 30% of the starved kat2J fibroblasts

typical long and thick extensions, emanating from a c-tubulin

center, were seen (Fig. 3D–G and I). The extensions usually

split into several branches stained by the acetylated tubulin

marker, suggesting that they do not serve as functional cilia.

Such long structures were very rarely seen in serum-starved

wt MEF (in less than 1% of the cells; Fig. 3I). In proliferating

MEF cultures from kat2J mice, the percentage of the cells

bearing this extension was much reduced (about 7%)

(Fig. 3J), probably representing cells which withdraw from

the cell cycle. Similarly, proliferating wt/het cultures had about

13% of cells bearing seemingly normal cilia (Fig. 3J).

3.4. Dynamics of cilia disappearance following re-incubation

with serum

The acquisition of cilia by mammalian fibroblasts in serum-

starved culture is reversible and serum addition results in cilia

disappearance. To examine whether cilia absorption pace is af-

fected in the mutants we observed �normal� cilia loss following

serum addition. Cilia loss in the mutants� MEF was faster com-

pared to the wt MEF cells. Following 1 h incubation with ser-

um the number of the wt cilia was reduced by 20%, and

following 2 h incubation by additional 38% (compared to 1 h

incubation). In the mutants, 1 h incubation with serum reduced

the number of cilia by 50% of the initial number, and 2 h incu-

bation reduced the number by additional 50% (Fig. 3H). The

presence of the stabilized cilium-like extensions in kat2J MEF

was also affected by serum addition and by 2 h their percentage

was reduced from 30% to 20% of the cells (Fig. 3I).
arved for 48 h, and stained with anti-b-tubulin antibodies (A, D). The
and F), fixed and immunostained with antibodies against b-tubulin (B,
ed with Hoechst 3342 (blue). (A–C): wt/het MEF, (D–F): kat2J MEF.
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Several observations suggest that the NRKs are involved in

microtubule stability and dynamics (see for reviews [9,12]).

Inspection of untreated MEF from kat2J and wt/het mice

did not reveal substantial difference in the microtubule organi-

zation in interphase cells (Fig. 4A and D). In addition, wt and

mutant cells treated with the depolymerizing drug nocodazole,

exhibited similar disappearance of microtubles and stabilized

microtubules as revealed by staining with anti-b-tubulin and

anti-acetylated-tubulin antibodies, respectively (Fig. 4B, E

and C, F).
4. Discussion

A major phenotype of mice devoid of Nek1 is PKD, and a

variety of genes mutated in PKD models were implicated in cil-

ium structure and function. However, Nek1 has not been

implicated in cilium structure or function. We reported herein

that Nek1 is localized to the cilium basal body region, and that

in kat2J MEF the number of cilia is dramatically reduced.

Nek1 has been localized previously to the centrosome [20],

and the common usage of the centriole for both centrosome

and basal body construction could give a clue for centriolar

localization. However, within the centrosome, Nek1 site of res-

idence was localized outside the centriole and the pericentriolar

region, and it was suggested to reside in the pericentriolar sa-

tellite region of the centrosome [20]. Further work will be nec-

essary to determine the precise localization of Nek1 within the

PC.

Interestingly, both Nek1 overexpression (in MDCK cells)

and absence of functional Nek1 (in kat2J MEF cells) result

in reduction in cilia number. One possible explanation is that

Nek1 overexpression in MDCK cells perturbed the cell cycle

and that the infected cells were stuck in G1/S or G2/M. As cilia

are preferably made by G0 arrested cells, cilium number could

be affected. However, as Nek1 overexpression was performed

in stationary MDCK cells which already withdraw from the

cell cycle this option is implausible. To the other side, kat2J

MEF cells proliferate continuously in culture precluding the

option that Nek1 kinase activity reduces ciliogenesis by block-

ing the cells at a certain phase of the cell cycle. It is thus prob-

able that the ciliogenesis process requires a delicate

spatiotemporal activity of Nek1, which is disturbed by robust

Nek1 overexpression, as well as by its absence.

In addition to PC loss, kat MEF frequently display long,

thick and usually branched structures stained by acetylated

tubulin antibodies. These structures very rarely appear in wt/

het MEF, and their frequency correlate with the frequency

of normal cilia, namely in association with serum starvation

conditions. Overexpression of several NRK members in pro-

tists induced shortening of the (motile) flagella [14,15] whereas

their knockdown produces long flagella [14]. These observa-

tions indicate a role for this kinase family in the control of cil-

iary length or disassembly rate, possibly by affecting axonemal

microtubule dynamics and stabilization. The long cilia-like

protrusions observed in the mutants� MEF are in line with this

hypothesis. Nek1 has been shown to bind to the microtubule-

dependent motor protein, Kif3A, strengthening the possibility

that it influences microtubule-dependent processes.

In vertebrates, cilia are formed on differentiated cells resid-

ing at G0, and re-entrance to the cell cycle is preceded by decil-
iation. A mechanistic explanation is the usage of the

centrosomal elder centriole to assemble the basal body, and

vice versa: the need to release the basal centriole in order to

establish the mitotic spindle. The localization of Nek1 to the

centrosome and to the basal body region and Nek1 effect on

cilium formation, combined with the documented involvement

of the NRKs in cell cycle control may suggest that Nek1 is in-

volved in the coordination between the cilium and the cell cy-

cle. In addition, the recent recognition that the PC serves as an

antenna sensing the extracellular environment makes it an

excellent candidate for transmitting information related to cell

cycle entrance. As PKD etiologies include disturbances to var-

ious structural and sensory ciliary functions, it emphasizes the

intimate connection between the cilium and the (uncontrolled)

cell cycle, and its utility as a model for dissecting the connec-

tions.

Mutant mice for an additional mammalian Nek family

member, Nek8, suffer from polycystic kidney (designated jck)

[21]. Nek8 was localized to the proximal region of the PC

[21,22], and lengthening of the cilia in jck cystic kidney cells

was demonstrated [22]. These characteristics are reminiscence

of the Nek1 features represented here. Recent phylogenetic

analysis indicates that Nek1 and Nek8 belong to two different

ancient clades within the NRK family [10]. Thus, the similar

ciliary and PKD phenotypes of Nek1 and Nek8 strengthen

the notion that cilium-related functions are ancestral and con-

served functions of the Nek kinases.
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