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Abstract

Given a bipartite graphG = (V , W, E), a 2-layered drawing consists of placing nodes in the first
node setV on a straight lineL1 and placing nodes in the second node setWon a parallel lineL2. For
a given ordering of nodes inWon L2, the one-sided crossing minimization problem asks to find an
ordering of nodes inV on L1 so that the number of arc crossings is minimized. A well-known lower
boundLB on the minimum number of crossings is obtained by summing up min{cuv, cvu} over all
node pairsu, v ∈ V , wherecuv denotes the number of crossings generated by arcs incident tou and
v whenu precedesv in an ordering. In this paper, we prove that there always exists a solution whose
crossing number is at most(1.2964+ 12/(� − 4))LB if the minimum degree� of a node inV is at
least 5.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Given a bipartite graphG = (V , W, E), a 2-layered drawing consists of placing nodes
in the first node setV on a straight lineL1 and placing nodes in the second node setW
on a parallel lineL2. The problem of minimizing the number of crossings between arcs
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in a 2-layered drawing was first introduced by Harary and Schwenk[6,7]. The one-sided
crossing minimization problem asks to find an ordering of nodes inV to be placed onL1
so that the number of arc crossings is minimized (while the ordering of the nodes inWon
L2 is given and fixed). Applications of the problem can be found in VLSI layouts[14] and
hierarchical drawings[1].

However, the two-sided and one-sided problems are shown to be NP-hard by Garey
and Johnson[5] and by Eades and Wormald[4], respectively. Muñoz et al.[11] have
proven that the one-sided problem remains to be NP-hard even for sparse graphs such
as forests of 4-stars. Dujmović and Whitesides[3] have given an O(�k · n2) time al-
gorithm to the one-sided problem, wherek is the number of crossings to be checked,
n = |V | + |W | and� = (1 + √

5)/2, thus showing that the problem is Fixed Parameter
Tractable. Recently Dujmović et al.[2] gave an O(1.4656k +k|V |2) time algorithm for this
problem.

There are several heuristics that deliver theoretically or empirically good solutions.
The so-called barycenter heuristic finds an O(

√
n)-approximation solution or a(� − 1)-

approximation solution, where� is the maximum degree of nodes in the free sideV (see
[9] for the analysis). Eades and Wormald[4] proposed a simple and theoretically better
heuristic, the median heuristic which delivers a 3-approximation solution. They have also
proved that the performance guarantee of the median heuristic approaches to 1 as the den-
sity |E|/(|V ||W |) ofG becomes 1. Yamaguchi and Sugimoto[16] gave a 2-approximation
algorithm if ��4. All these algorithms arekey based heuristics, which determine an or-
dering ofV with respect to some key values�(u), u ∈ V , and the performance guar-
antees of these heuristics are based on a conventional lower boundLB that is obtained
by summing up min{cuv, cvu} over all node pairsu, v ∈ V , wherecuv denotes the num-
ber of crossings generated by arcs incident tou and v whenu precedesv in an order-
ing. An extensive computational experiment of several heuristics has been conducted by
Jünger and Mutzel[8] and by Mäkinen[10]. Jünger and Mutzel[8] reported that most
of the heuristics gave good solutions whose crossing numbers are nearly equal to the
lower bound. Recently Nagamochi[12,13] has proposed a randomized key based heuris-
tic, and has proved that there always exists a solution whose crossing number is at most
1.4664LB.

In this paper, we analyze the performance of the randomized key based heuristic[12,13]in
terms of the minimum degree� of nodes inV, and by designing an appropriate probabilistic
distribution for the heuristic, we prove that there always exists a solution whose crossing
number is at most(1.2964+ 12/(� − 4))LB if ��5. Note that the performance guarantee
approaches to 1.2964 as the minimum degree� becomes large (even if graphs remain
sparse).

The paper is organized as follows. In Section 2, we introduce basic definitions on 2-layered
drawing and a geometric representation for crossing numberscuv andcvu for two nodes
u, v ∈ V . In Section 3, we review the probabilistic algorithm for determining a 2-layered
drawing and some basic properties for analyzing the algorithm. In Section 4, we show that
the algorithm can deliver a solution whose crossing number is at most(1.2964+12/(�−4))

times of the lower bound. In Section 5, we, however, show that our approach cannot prove
that the gap between the optimal and the lower bound is less than 1.2698. In Section 6, we
describe some concluding remarks.
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2. Preliminaries

Let G = (V , W, E) be a bipartite graph with a partitionV andWof a node set. Assume
thatG has no isolated node. Let� denote a permutation of{1, 2, . . . , |V |} and� denote a
permutation of{1, 2, . . . , |W |}. A pair of � and� defines a2-layered drawingof G in the
plane in such a way that, for two parallel horizontal linesL1 andL2, the nodes inV (resp.,
inW) are arranged onL1 (resp.,L2) according to� (resp.,�) and each arc is depicted by a
straight line segment joining the end-nodes, where the directions for traversingL1 andL2
are taken as the same one (see Fig.1a). For any choice of coordinates of points for nodes in
V ∪W in a 2-layered drawing ofGdefined by(�, �), two arcs(v, w), (v′, w′) ∈ E intersect
properly (or create acrossing) if and only if (�(v)−�(v′))(�(w)−�(w′)) is negative. So we
simply call a pair(�, �) a 2-layered drawing ofG. In this paper, we consider the following
problem.
One-sided crossing minimization: Given a bipartite graphG = (V , W, E) and a per-

mutation� onW, find a permutation� onV that minimizes the number of crossings in a
2-layered drawing(�, �) of G.

Since the permutation� on W = {1, 2, . . . , |W |} is fixed, we assume throughout the
paper that�(i) = i for all i ∈ W . For each nodeu in G, let �(u) denote the set of nodes
adjacent tou, and letdu = |�(u)|. For two nodesu, v ∈ V , let �uv = |�(u) ∩ �(v)|. The
crossing numbercuv for an ordered pair of two nodesu, v ∈ V is the number of crossing
generated by an arc incident tou and an arc incident tov when�(u) < �(v) holds in a
2-layered drawing(�, �). (Fig.1b shows the crossing numbers in the graph in Fig.1a.) Let
� denote the minimum degree of nodes inV. It is a simple matter to see that for two nodes
u, v ∈ V ,

dudv = cuv + cvu + �uv,

min{cuv, cvu}� �uv(�uv − 1)

2
.

For a permutation� onV, let

cross(u, v;�) :=
{

cuv if �(u) < �(v),
cvu otherwise.

(a) (b)

Fig. 1. (a) A 2-layered drawing of a bipartite graph. (b) Crossing numbers for each pair of nodes in the top layer.
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(a) (b)

Fig. 2. (a) A 2-layered drawing of a bipartite graph. (b) Crossing numbers for each pair of nodes in the top layer.

Define

cross(�) := ∑
u,v∈V :�(u)<�(v)

cuv = ∑
u,v∈V

cross(u, v;�).

The optimal to the problem is denoted byopt = min{cross(�) | permutation� on V }. For
LB = ∑

u,v∈V min{cuv, cvu}, it holds

opt�LB.

In this paper, we prove the next results.

Theorem 1. For a bipartite graphG = (V , W, E) with ��5 and a given permutation�
onW, there exists a permutation� on V such thatcross(�)�(1.2964+ 12/(� − 4))LB.

Theorem 2. For a bipartite graphG = (V , W, E) such thatdw = 1, w ∈ W and a given
permutation� onW, there exists a permutation� on V such thatcross(�)�1.2964LB.

Fig. 2 shows an example such thatopt = 39 andLB = 33. Hence the maximum ratio
LB/opt over all bipartite graphs is at least 13/11 � 1.1818.

We here review a geometric representation[12,13]that illustrates how two sets�(u) and
�(v) determine crossing numberscuv andcvu in a bipartite graphG. Rectangles that we
treat here are axis-parallel in thexy-coordinate, and they are denoted by the coordinates
of the lower-left corner and the upper-right corner, where thex-coordinate increases in
the right direction and they-coordinate increases in the upward direction. For example,
[(0, 0), (0.5, 1)] represents the square with four corners(0, 0), (0, 1), (0.5, 0) and(0.5, 1).

Let Sdenote a unit square[(0, 0), (1, 1)]. For a connected regionR in S, we may use
R to denote the sets of points in the regionR, and leta(R) denote the area size ofR. For
two pointsb, b′ ∈ S, a line segment connectingb andb′ is denoted bybb′. A part of the
boundary of a regionRmay be called anedgeif it is a line segment. For a line segment (or
an edge)e, its length is denoted by�(e). We say that edgee overlapswith another edgee′
if the intersection ofeande′ is a line segment of a positive length.

For two integersd, d ′ �1, the squareS = [(0, 0), (1, 1)] is called(d, d ′)-sliced if it is
sliced by(d − 1) horizontal line segments and(d ′ − 1) vertical segments so that these line
segments give rise tod × d ′ congruent rectangles (see Fig.3). Each of such rectangles is
called ablock, which has four edges.
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Fig. 3. Illustration for blocks in a(du, dv)-sliced squareS.

We represent the positions of nodes in�(u) and�(v) in the permutation�by using the unit
squareS in thexy-coordinate. Let�(u) = {u′

1, u′
2, . . . , u′

du
} and�(v) = {v′

1, v′
2, . . . , v′

dv
}.

For an ordered pair(u, v) of nodes inV, we considerdudv blocks in the(du, dv)-sliced
squareS. We denote these blocks by

bl(i, j) =
[(

j − 1

dv

,
i − 1

du

)
,

(
j

dv

,
i

du

)]
, 1� i �du and 1�j �dv

(see Fig.3). We letbl(i, j) correspond to a pair of arcs(u, u′
i ) and(v, v′

j ). Note that arcs
(u, u′

i ) and(v, v′
j ) create a crossing in a permutation� with �(u) < �(v) or �(u) > �(v) if

u′
i �= v′

j , but generate no crossing in any permutation� otherwise. We call a blockbl(i, j)

with u′
i �= v′

j anup-blockif arcs (u, u′
i ) and(v, v′

j ) creates a crossing in a permutation
� with �(u) < �(v) and andown-blockotherwise. We call a blockbl(i, j) with u′

i = v′
j

a neutral-block. Observe that the number of up-blocks (resp., down-blocks and neutral-
blocks) is equal tocuv (resp.,cvu and�uv = �vu). We here partition the set of these blocks
into two groupsUP andDWNas follows (where a neutral-block may be split into two half
blocks in the partitioning).

Definition 1. For each nodeu ∈ V , where�(u) = {w1, w2, . . . , wdu} ⊆ {1, 2, . . . , |W |}
(w1 < w2 < · · · < wdu), we define themedian index	(u) of its neighbors by

	(u) :=



w du+1
2

if du is odd,

1
2

(
w du

2
+ w du

2 +1

)
if du is even.

(i) If 	(u) < 	(v), then letUP be the set of all up-blocks, andDWNbe the set of down-
blocks and neutral-blocks (see Fig.4).
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(b)(a)

Fig. 4. (a) Two nodesu andv in the top layer, wherecuv = 3 andcvu = 8. (b) A (u, v)-pathP of a (4, 3)-sliced
squareS in the case of (i).

(a) (b)

Fig. 5. (a) Two nodesu andv in the top layer. (b) A(u, v)-pathP of a (2, 5)-sliced squareS in the case of (ii).

(ii) If 	(u) > 	(v), then letUP be the set of all up-blocks and neutral-blocks, andDWN
be the set of down-blocks (see Fig.5).

(iii) If 	(u) = 	(v), then split each neutral-block[p, q] into two parts by the line segment
pq, and put the upper-left part intoUP and the other inDWN. Then put all up-blocks
in theUP, and all down-blocks in theDWN(see Fig.6).

The set of all points in the blocks inUP forms a connected region, which we denoted by
Rup. Similarly Rdwn is defined byDWN.

A pathP between points(0, 0) and(1, 1) in S is calledmonotoneif none of thex- and
y-coordinates of the point onP decreases when we traverse points onP from (0, 0) to
(1, 1). (In general a monotone path is not necessarily piecewise linear.) From Definition1,
we easily observe the next property.

Lemma 1 (Nagamochi[12,13]). LetRup andRdwn be the regions defined for an ordered
pair of nodes u andv in V. Then there is a monotone path P that separates S intoRup and
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(a) (b)

Fig. 6. (a) Two nodesu andv in the top layer. (b) A(u, v)-pathP of a (5, 3)-sliced squareS in the case of (iii).

Rdwn, and it holds

a(Rup) =




cuv

dudv

if 	(u) < 	(v),

cuv + �uv

2

dudv

if 	(u) = 	(v),

cuv + �uv

dudv

if 	(u) > 	(v).

Moreover, Rup contains point(0.5, 0.5) if 	(u)�	(v).

Such a pathP in the lemma is called the(u, v)-pathwith respect toG and�.

Lemma 2. For two nodeu, v ∈ V such thatdu, dv �3,	(u)�	(v) andcuv �= cvu, it holds
0 < a(Rup)dudv − �uv �cuv.

Proof. By Lemma1, it holds a(Rup)�(cuv + �uv)/(dudv), from which we havedudv

a(Rup) − �uv �cuv. Thus, it suffices to show thatdudva(Rup) − �uv > 0. Again by
Lemma1, Rup contains point(0.5, 0.5), implying that a(Rup)�1/4. Obviously�uv �
min{du, dv}. Note thatdu = dv = �uv cannot occur since otherwisecuv = cvu would
hold. Hence max{du, dv}��uv + 1. Therefore,dudva(Rup)��uv can hold only when
max{du, dv} = 4, �uv = min{du, dv} = 3 anda(Rup) = 1/4. However, this is impos-
sible sincea(Rup)�1/3 if max{du, dv} = 4 and min{du, dv} = 3. �

We close this section by reviewing some technical lemmas.

Lemma 3 (Nagamochi[12,13]). Forconstantsa > 0, b, c > 0anddsuch thatad−bc�0,
functionf (x) = (ax + b)(1/(cx + d) − 2) takes the maximum(

√
a − √

2(ad − bc))2/c

over x withcx + d > 0.
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Lemma 4 (Nagamochi[12,13]). For four positive constantsa, b, c and d withb/a <

d �1/
√

2c, functionf (x) = (ax − b)2(1/(cx2) − 2) (b/a < x �d) takes the maximum at

x = min{d, (b/(2ac))
1
3 }.

3. Randomized key based heuristic

In this section, we review a randomized key based heuristic[12,13]. Let 
 : V → (0, 1]
be a function fromV to the set of reals in(0, 1], where
(u) is called thereal keyof nodeu.
Given a real-key function
, we construct a permutation�
 of {1, 2, . . . , |V |} by the next
procedure.

PERMUTE(
;�
):
Step1. For each nodeu ∈ V , computej = �
(u)du�, and define aninteger key�(u) of

u by

�(u) := wj for thej th neighborwj ∈ �(u),

where�(u) = {w1, w2, . . . , wdu} (w1 < w2 < · · · < wdu).
Step2. Sort nodesu ∈ V in the lexicographical order with respect to(�(u), 	(u)), where

the ties among nodesuwith the same key(�(u), 	(u)) are broken randomly. We denote by
�
 the resulting permutation of{1, 2, . . . , |V |}.

We easily observe the following property.

Lemma 5 (Nagamochi[12,13]). For two nodesu, v ∈ V , letRup andRdwn be the regions
in Definition1.Then for a given real-key function
, �
(u) < �
(v) if point (
(u), 
(v)) is
insideRdwn and�
(u) > �
(v) if point (
(u), 
(v)) is insideRup.

A schemebased on which we choose a real-key function
 probabilistically is defined by
a set of tuples of realsS = {(si, ti , pi) | i = 1, 2, . . . , h}, such that 0< si � ti < 1 and
0�pi for i = 1, 2, . . . , h and

∑
1� i �h pi = 1, where we call each(si, ti , pi) asubscheme.

Given a schemeS, we choose a real-key function
 in the following manner.
RANDOM-KEY(S; 
):
Step1. Choose a subscheme(si, ti , pi) ∈ S with probabilitypi .
Step2. For each nodeu ∈ V , choose a real key
(u) from (si, ti] uniformly.
We denote byES [cross(u, v;�
)] andES [cross(�
)] respectively, the expectations of

cross(u, v;�
) andcross(�
) over all real-key functions
 resulting from RANDOM-KEY.
In this paper, we prove the next result.

Theorem 4. For a bipartite graphG = (V , W, E) with ��3 and a permutation� on W,
there is a schemeS such that

ES [cross(�
)]�
(

1.2964+ max
u,v∈V

{
12�uv

dudv − 4�uv

})
LB.

Theorem4 implies Theorem2 since�uv = 0, u, v ∈ V if dw = 1, w ∈ W . Also by
noting that 12�uv/(dudv − 4�uv) = 12/(dudv/�uv − 4)�12/(� − 4) if �uv �= 0, we see
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that Theorem1 follows from Theorem4. As observed in[13], algorithm PERMUTE with
keys generated by RANDOM-KEY can be derandamized, and a permutation� of V with
the bounds stated in Theorems4 and2 can be constructed by a deterministic polynomial
time algorithm.

By the linearity of expectations, if we have a constant��1 such that

ES [cross(u, v;�
)]�� min{cuv, cvu}, u, v ∈ V,

then it holdsES [cross(�
)]��LB.
In the rest of this paper, we fix two nodesu, v ∈ V , and analyzeES [cross(u, v;�
)]

for a given schemeS. Without loss of generality we assume thatcuv �= cvu (the case of
cuv = cvu needs no special consideration to prove Theorem4). Moreover, we can assume
that min{cuv, cvu}�1 since otherwise (i.e., min{cuv, cvu} = 0)�
(u) < �
(v) holds in any
permutation�
 computed by PERMUTE due to the comparison of	(u) and	(v).

For a given schemeS and a regionR ⊆ S, let pS(R) denote the probability that point
(
(u), 
(v)) falls insideR. By Lemma5, we observe the next formula.

Lemma 6 (Nagamochi[12,13]). ES [cross(u, v;�
)] = pS(Rdwn)cuv + pS(Rup)cvu.

We are ready to derive an important inequality.

Lemma 7. Assume thatdu, dv �3 and1� min{cuv, cvu} < max{cuv, cvu} hold. Then it
holds

ES [cross(u, v;�
)]
min{cuv, cvu} �1 + pS(Rup)

(
1

a(Rup)
− 2

)
+ 12�uv

dudv − 4�uv

.

Proof. Let cuv = min{cuv, cvu} without loss of generality. By Lemma6, we get

ES [cross(u, v;�
)]
min{cuv, cvu} = pS(Rdwn)cuv + pS(Rup)cvu

cuv

= (1 − pS(Rup))cuv + pS(Rup)(dudv − cuv − �uv)

cuv

= 1 + pS(Rup)

(
dudv − �uv

cuv

− 2

)
.

First consider the case of	(u) < 	(v). By Lemma1, we havea(Rup) = cuv/(dudv). Hence

dudv − �uv

cuv

− 2= 1

cuv

(
cuv

a(Rup)
− �uv

)
− 2� 1

a(Rup)
− 2.

Next consider the case of	(u)�	(v). By Lemma2, we have 1/cuv �1/(a(Rup)dudv−�uv).
Then

dudv − �uv

cuv

− 2 � dudv − �uv

a(Rup)dudv − �uv

− 2

= 1

a(Rup)
− 2 + dudv − �uv

a(Rup)dudv − �uv

− 1

a(Rup)
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= 1

a(Rup)
− 2 + (1 − a(Rup))�uv

a(Rup)(a(Rup)dudv − �uv)

� 1

a(Rup)
−2+ 12�uv

dudv−4�uv

(sincea(Rup)�1/4 by Lemma1).

Hence bypS(Rup)�1, we have

1 + pS(Rup)

(
dudv − �uv

cuv

− 2

)
�1 + pS(Rup)

(
1

a(Rup)
− 2

)
+ 12�uv

dudv − 4�uv

.

This completes the proof. �

We wish to find an optimal schemeS that minimizes maxu,v∈V ES [cross(u, v;�
)]/
min{cuv, cvu}. For this, we consider an arbitrary monotone pathP between points(0, 0)

and(1, 1) in the unit squareS(not necessarily a(u, v)-path for particular nodesu, v ∈ V ).
DefineRup(P ) andRdwn(P ) be the regions obtained by splittingSwithP, where we assume
thatRup(P ) is aboveRdwn(P ). Let

�(S, P ) := pS(Rup(P ))

(
1

a(Rup(P ))
− 2

)

and�(S) := max{�(S, P ) | monotone pathP }. Given a schemeS, a monotone pathP
from (0, 0) to (1, 1) in the unit squareS is calledS-maximalif �(S, P ) = �(S).

Since the choice of monotone pathsP is relaxed, we obtainES [cross(�
)]�(1+�(S))LB.
Let �∗ = min{�(S) | schemesS}. Therefore, to prove Theorem4, it suffices to show that
�∗ < 0.2964, i.e., there exists a schemeS such that�(S) < 0.2964.

4. A schemeS

In this section, we present a schemeS that achieves Theorem4. Let

S = {(s1 = 0.014, t1 = 0.221, p1 = 0.087), (s2 = 0.221, t2 = 0.402, p2 = 0.229),

(s3 = 0.402, t3 = 0.598, p3 = 0.368), (s4 = 0.598, t4 = 0.779, p4 = 0.229),

(s5 = 0.779, t5 = 0.986, p5 = 0.087)}
(see Fig.7), where the values forsi, ti , pi have been determined by a computational exper-
iment). We denote the squares in the subschemes inS by

Si = [(si, si), (ti , ti )], i = 1, 2, 3, 4, 5,

where corners of these squares are denoted byA1, . . . , A6, B1, . . . , B5 andC1, . . . , C5 as
shown in Fig.7.

Now consider a pair of arbitrary nodesu andv in V. It is not difficult to see that an
S-maximal monotone pathP consists of axis-parallel line segments, and that the resulting
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0.014

0.221

0.402

0.598

0.779

S2

S3

S4

S5

S1

A1

A2

A3

A4

A5

A6

B1

B2

B3

B4

B5

C1

C2

C3

C4

C5

0.207

0.181

0.196

     = 0.087p1

     = 0.229p2

     = 0.368p3

     = 0.229p4

     = 0.087p5

Fig. 7. A schemeS that attains Theorem4.

regionRup(P ) contains at most one convex corner in each subschemeSi (i = 1, 2, 3, 4, 5).
For simplicity, we consider a single subschemeSi . As shown in Fig.8a, if a monotone path
P does not satisfy these properties, then we can modify the pathP into another monotone
pathP ′ such thata(Si ∩ Rup(P ′)) = a(Si ∩ Rup(P )) anda(Rup(P ′))�a(Rup(P )). Thus
we only have to treat an axis-parallel piecewise linear monotone pathP, which we denote
the sequence of the corner points by

b0 = (0, 0), b1, . . . , bk = (1, 1),

and the sequence of the edges by

e1 = b0b1, e2 = b1b2, . . . , ek = bk−1bk

(see Fig.9). Let ebe an edge on a pathP, whereemay be a partial segment of some edge
ei . Without loss of generality we further assume that anS-maximal monotone pathP is
chosen so that the number of edges of squares in subschemes or of the entire unit square
that are overlapped by the edges inP is maximized among allS-maximal monotone paths.
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Fig. 8. Two monotone pathsP andP ′ that pass through a squareSi such thata(Si ∩Rup(P ′)) = a(Si ∩Rup(P ))

anda(Rup(P ′)) < a(Rup(P )).
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Fig. 9. Illustration of a piecewise linear monotone pathP .

We define thegain of edgee with respect to a subschemeSi = (si, ti , pi) ∈ S as
follows. Consider how much amount ofpS(Rup) changes if we move the line segmente in
its orthogonal direction by an infinitely small amount. The change inpS(Rup) is

�(e ∩ Si)pi

(ti − si)2
,

where�(e ∩ Si) means the length of the intersection ofe andSi . On the other hand, the
change ina(Rup(P )) is

�(e).
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Thegainof edgeewith respect to a subschemeSi is defined by the ratio of these two, i.e.,

g(e; Si) = �(e ∩ Si)pi

(ti − si)2�(e)
.

For a subschemeSi , a vertical line segmenteon a pathP is calledSi-incrementable(resp.,
Si-decrementable) if
• There is a real� > 0 such that gaing(e; Si) remain unchanged after translating it

rightward (resp., leftward) by any amount�′ ∈ [0, �] (i.e.,e remains to be intersecting
Si),

• For the rectangleR formed betweene and the translated edgee′ and the current path
P, there is a monotone pathP ′ such thatRup(P ′) = Rup(P ) ∪ R (resp.,Rup(P ′) =
Rup(P ) − R).
Analogously, theSi-incrementability (resp.,Si-decrementability) of a horizontal line

segmente is defined by replacing “rightward” with “downward” (resp., “leftward” with
“upward”). In Fig.9, for example, edgee4 is S4-incrementable but notS4-decrementable,
ande4 is S5-decrementable but notS5-incrementable.

An edgeei between two corners in a pathP is called afree edgeif it does not overlap
with any edge of squareSi in a subscheme or of the entire unit squareS. A free edge is
Si-incrementable andSi-decrementable for someSi . For example,e2 in Fig. 9 is a free
edge.

By definition, we observe the following.

Lemma 8. For an S-maximal monotone path P, let e and e′ be respectively an
Si-incrementable edge and anSj -decrementable edge. Then if e ande′ are not adjacent,
theng(e; Si) < g(e′; Sj ). If e ande′ are adjacent, theng(e; Si) = g(e′; Sj ).

Proof. Otherwise we would have another monotone pathP ′ such that�(S, P ′) > �(S, P )

or such that�(S, P ′) = �(S, P ) andP ′ overlaps with more edges of the squares thanP
does. �

In particular, there is no pair of non-adjacent free edges in anS-maximal monotone
pathP.

In the sequel,P is assumed to be anS-maximal monotone path. For simplicity, we may
writeRup(P ),pup

S (P ) and�(S, P ) asRup,pup and�, respectively. To prove that��0.2964
holds for our schemeS, we distinguish the following cases:
Case1: Fori = 1 or i = 5, Rup ∩ Si �= ∅, andRup ∩ Sj = ∅, j ∈ {1, 2, 3, 4, 5} − {i}.
Case2: Fori = 2 or i = 4, Rup ∩ Si �= ∅, andRup ∩ Sj = ∅, j ∈ {1, 2, 3, 4, 5} − {i}.
Case3: Rup ∩ S3 �= ∅, andRup ∩ Sj = ∅, j ∈ {1, 2, 4, 5}.
Case4: For{i, i′} = {2, 3} or{i, i′} = {3, 4},Rup∩Si �= ∅ �= Rup∩Si′ , andRup∩Sj = ∅,

j ∈ {1, 2, 3, 4, 5} − {i, i′}.
Case5: Rup ∩ Si �= ∅, i ∈ {2, 4} andRup ∩ Sj = ∅, j ∈ {1, 3, 5}.
Case6: Rup ∩ Si �= ∅, i ∈ {2, 3, 4} andRup ∩ Sj = ∅, j ∈ {1, 5}.
Case7: Rup ∩ Si �= ∅, i ∈ {1, 5}, andRup ∩ Sj = ∅, j ∈ {2, 3, 4}.
We now consider the case whereRup ∩ S1 �= ∅ or Rup ∩ S5 �= ∅ (otherwise one of the

above cases holds). We assume without loss of generality thatRup ∩ S1 �= ∅ and that, in
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Fig. 10. Illustration for Case 1, where (a) indicates the case wheree2 is a free edge, and (b) indicates the case
whereb2 is on edgeA1B1.

addition, ifRup ∩ S5 �= ∅ thena(Rup ∩ S1)�a(Rup ∩ S5) holds.
Case8 : Rup ∩ S1 �= ∅ �= Rup ∩ S2.
Case9 : Rup ∩ S1 �= ∅ �= Rup ∩ S3.
Case10 : Rup ∩ S1 �= ∅ �= Rup ∩ S4.
Each of the above ten cases will be discussed in the following subsections.

4.1. Case 1

Assume without loss of generality thatRup ∩S1 �= ∅, andRup ∩Sj = ∅, j ∈ {2, 3, 4, 5}.
Consider edgese2 = b1b2 and e3 = b2b3 in P. Let x = �(e2) ∈ (0.014, 0.221] and
ȳ = �(e3) ∈ (0.779, 0.986]. We consider the following two subcases (a) and (b).
(a) Edgee2 does not overlap withA1B1, i.e.,e2 is a free edge (see Fig.10a): Then

g(e2; S1) = 0.087

(0.207)2
× x − 0.014

x
, g(e3; S1) = 0.087

(0.207)2
× ȳ − 0.779

ȳ
.

SinceP is S-maximal, it must holdg(e2; S1) = g(e3; S1) for two free edges. Thus
we haveȳ = 0.779x/0.014, from whichȳ − 0.779 = 0.779x/0.014 − 0.779 =
0.779(x − 0.014)/0.014. By ȳ �0.986,x < �1, where�1 = 0.986× 0.014/0.779 <

0.018. We havea(Rup) = xȳ and

pup = 0.087× (x − 0.014)(ȳ − 0.779)

(0.207)2
= 0.087× 0.779

(0.207)2 × 0.014
(x − 0.014)2.

Then

� = pup

(
1

a(Rup)
− 2

)
= 0.087× 0.779

(0.207)2 × 0.014
(x − 0.014)2

(
1

0.779
0.014x2

− 2

)
.
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Fig. 11. Illustration for Case 2, where (a) indicates the case wheree2 is a free edge, and (b) indicates the case
whereb2 is on edgeA2B2.

By Lemma4 with a = 1, b = 0.014 andc = 0.779/0.014, the function�(x), x ∈
(0.014, �1] takes the maximum at

x = min


�1,

(
0.014

2 × 0.779
0.014

)1/3

 = �1.

Since the maximum is attained atx = �1, we only have to consider the second case (b)
whereb2 is on edgeA1B1.

(b) b2 is on edgeA1B1 (see Fig.10b): Then a(Rup) = 0.986x, pup = 0.087(x −
0.014)/0.207, and

� = pup

(
1

a(Rup)
− 2

)
= 0.087

0.207
(x − 0.014)

(
1

0.986x
− 2

)
.

By Lemma3 with a = 1, b = −0.014,c = 0.986 andd = 0, we have

�� 0.087

0.207
× 1

c

(√
a −√

2(ad − bc)
)2

< 0.2964.

4.2. Case 2

Assume without loss of generality thatRup ∩S2 �= ∅, andRup ∩Sj = ∅, j ∈ {1, 3, 4, 5}.
Consider edgese2 = b1b2 and e3 = b2b3 in P. Let x = �(e2) ∈ (0.598, 0.779] and
ȳ = �(e3) ∈ (0.779, 0.986]. We consider the following two subcases (a) and (b).
(a) Edgee2 does not overlap withA1B1, i.e.,e2 is a free edge (see Fig.11a). Then

g(e1; S2) = 0.229

(0.181)2
× x − 0.221

x
, g(e2; S2) = 0.229

(0.181)2
× ȳ − 0.598

ȳ
.
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SinceP is S-maximal, it must holdg(e2; S2) = g(e3; S2) for two free edges. Thus we
haveȳ = 0.598x/0.221, from which

ȳ − 0.598= 0.598

0.221
(x − 0.221).

By ȳ �0.779,x < �2, where�2 = 0.779×0.221/0.598< 0.29. We havea(Rup) = xȳ

and

pup = 0.229× (x − 0.221)(ȳ − 0.598)

(0.181)2
= 0.229× 0.598

(0.181)2 × 0.221
(x − 0.221)2.

Then

� = pup

(
1

a(Rup)
− 2

)
= 0.229× 0.598

(0.181)2 × 0.221
(x − 0.221)2

(
1

0.598
0.221x2

− 2

)
.

By Lemma4 with a = 1, b = 0.221 andc = 0.598/0.221, the function�(x), x ∈
(0.221, �2] takes the maximum at

x = min


�2,

(
0.221

2 × 0.598
0.221

) 1
3


 = �2.

Since the maximum is attained atx = �2, we only have to consider the second case (b)
whereb2 is on edgeA2B2.

(b) b2 is on edgeA2B2 (see Fig.11b): Thena(Rup) = 0.779x, pup = 0.229(x − 0.221)/
0.181, and

� = pup

(
1

a(Rup)
− 2

)
= 0.229

0.181
(x − 0.221)

(
1

0.779x
− 2

)
.

By Lemma3 with a = 1, b = −0.221,c = 0.779 andd = 0, we have

�� 0.229

0.181
× 1

c

(√
a −√

2(ad − bc)
)2

< 0.28.

4.3. Case 3

Consider edgese2 = b1b2 ande3 = b2b3 in P. Let x = �(e2) ∈ (0.402, 0.598] and
ȳ = �(e3) ∈ (0.402, 0.598]. SinceP is S-maximal, it must holdg(e2; S3) = g(e3; S3) for
two free edges. Thus̄y = x by symmetry (see Fig.12). We havea(Rup) = x2,

pup = 0.368× (x − 0.402)2

(0.196)2
, � = 0.368

(0.196)2
(x − 0.402)2

(
1

x2
− 2

)
.

By Lemma4 with a = 1, b = 0.402 andc = 1, this takes the maximum atx = �3, where
�3 = (0.402/2)1/3 ∈ (0.402, 0.598). For thex = �3, we have

� = 0.368

(0.196)2
(x − 0.402)2

(
1

x2
− 2

)
< 0.296.
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Fig. 12. Illustration for Case 3.

4.4. Case 4

Assume without loss of generality thatRup ∩ S2 �= ∅ �= Rup ∩ S3, andRup ∩ Sj = ∅,
j ∈ {1, 4, 5}. Note that edgee2 overlaps with edgeA2B2 or edgee5 overlaps with edge
B3A4 (otherwise both would be free edges). We consider the following five subcases (a)–(e).
(a) Edgee5 overlaps with edgeB3A4, and b2 is on edgeA2B2 (but b2 �= B2): (see

Fig. 13a.) Since

g(e3; S2)�g(B2C3; S2) = 0.229

(0.181)2
× 0.181

0.181+ 0.196
> 3.14

and

g(e5; S3)� 0.368

(0.196)2
× 0.196

0.598
< 3.14,

it holdsg(e3; S2) > g(e5; S3) for S2-incrementable edgee3 andS3-decrementable edge
e5, contradicting theS-maximality ofP.

(b) Edgee5 overlaps with edgeB3A4, andb2 is not on edgeA2B2 or B2A3 (see Fig.13b):
Sincee2 is a free edge,e4 must overlap withA3B3 (otherwise we would have two
nonadjacent free edgese2 ande4). We have

g(e3; S2) = 0.229

(0.181)2
> 3.14 andg(e5; S3) = 0.368

(0.196)2
× 0.196

0.598
< 3.14.

Then it holdsg(e3; S2) > g(e5; S3) for S2-incrementable edgee3 andS3-decrementable
edgee5, contradicting theS-maximality ofP.
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Fig. 13. Illustration for five subcases (a)–(e) in Case 4.
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the case wheree5 overlaps with edgeB4A5.
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(c) Edgee5 overlaps with edgeB3A4, andb2 is on edgeB2A3 (see Fig.13c): Since

g(e2; S2) = 0.229

(0.181)2
× 0.181

0.402
> 3.14 andg(e5; S3) = 0.368

(0.196)2
× 0.196

0.598
< 3.14,

it holdsg(e2; S2) > g(e5; S3) for S2-incrementable edgee2 andS3-decrementable edge
e5, contradicting theS-maximality ofP.

(d) Edgee2 overlaps with edgeA2B2, andb4 is not on edgeA2B2 or B2A3 (see Fig.13d):
Sincee4 is a free edge,e3 must overlap withB2A3. We have

g(e4; S3) = 0.368

(0.196)2
> 9 andg(e2; S2) = 0.229

(0.181)2
× 0.181

0.402
< 3.15.

Then it holdsg(e4; S3) > g(e2; S2) for S3-incrementable edgee4 andS2-decrementable
edgee2, contradicting theS-maximality ofP.

(e) Edgee2 overlaps with edgeA2B2, and b4 is on edgeA3B3 (see Fig.13e): Then
a(Rup) = 0.598x + 0.402× 0.779,

pup = 0.368× x

0.196
+ 0.229,

� =
(

0.368x

0.196
+ 0.229

)(
1

0.598x + 0.402× 0.779
− 2

)
.

By Lemma3 with a = 0.368/0.196, b = 0.229,c = 0.598 andd = 0.402× 0.779,
we have� = (

√
a − √

2(ad − bc))2/c < 0.296.

4.5. Case 5

Note that edgee2 overlaps with edgeA2B2 or edgee5 overlaps with edgeB4A5 (otherwise
both would be free edges); we assume without loss of generality thate2 overlaps with edge
A2B2. Similarly edgee3 overlaps with edgeA3B2 or edgee5 overlaps with edgeA5B4. We
consider the following two subcases (a) and (b).
(a) Edgee3 overlaps with edgeA3B2, i.e.,b2 = B2 (see Fig.14a): ForS3-incrementable

edgeA3b3 andS2-decrementable edgee2, we haveg(A3b3; S3) > g(e2; S2), since

g(A3b3; S3)� 0.368

(0.196)2
× 0.196

0.196+ 0.181
> 4

and

g(e2; S2) = 0.229

(0.181)2
× 0.181

0.402
< 3.15.

This, however, contradicts thatP is S-maximal.
(b) Edgee5 overlaps with edgeB4A5 (see Fig.14b): Letx = �(e2) ∈ [0.221, 0.402]. Then

g(e4; S4) = 0.229

(0.181)2
× 0.181

0.779− x
, g(e2; S2) = 0.229

(0.181)2
× x − 0.221

x
,
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a(Rup) = (0.779)2−(0.779−x)2 andpup = 2×0.229×(x−0.221)/0.181. SinceRup

contains no interior point from otherSi thanS2 andS4, we havepup �0.229+0.229=
0.458. From this, we see that ifa(Rup)�(0.2963/0.458+ 2)−1(�0.378) then

� = pup

(
1

a(Rup)
− 2

)
�0.2963.

Hence assumea(Rup) < 0.378. Froma(Rup) = (0.779)2 − (0.779− x)2 < 0.378, we
havex ∈ [0.221, 0.3006]. For suchx, 0.181/(0.779− x) > (x − 0.221)/x holds, and
henceg(e4; S4) > g(e2; S2) for S4-incrementable edgee4 andS2-decrementable edge
e2. This contradicts theS-maximality ofP.

4.6. Case 6

Observe that one ofB2, B3 andB4 is a convex corner ofRup (otherwiseP would have
two nonadjacent free edges). We consider the following three subcases (a)–(c).
(a) At least two ofB2, B3 andB4 are convex corners ofRup at the same time (see Fig.15a):

In this case,pup �1− 0.087× 2 anda(Rup)�0.779× 0.598− 0.181× 0.196> 0.43
hold. From this,

� = pup

(
1

a(Rup)
− 2

)
< 0.269.

(b) B3 is a convex corner ofRup, and neitherB2 nor B4 is a convex corner ofRup (see
Fig. 15b): In this case, we have two free edges each fromS2 andS4, a contradiction to
theS-maximality ofP.

(c) B2 is a convex corner ofRup, neitherB3 norB4 is a convex corner ofRup (the case where
B4 is a convex corner ofRup can be treated symmetrically): (see Fig.15c) There must be
at least (hence exactly two) free edges, which must be adjacent edgese5 ande6. However,
g(e5; S3) > g(e2; S2) holds forS3-incrementable edgee5 andS2-decrementable edge
e2, since

g(e5; S3)� 0.368

(0.196)2
× 0.196

0.196+ 0.181
> 4

and

g(e2; S2)� = 0.229

(0.181)2
× 0.181

0.402
< 3.15,

contradicting theS-maximality ofP.

4.7. Case 7

Note that edgee2 overlaps with edgeA1B1 or edgee5 overlaps with edgeB5A6 (otherwise
both would be free edges); we assume without loss of generality thate2 overlaps with edge
A1B1. We consider the following two subcases (a) and (b).
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Fig. 15. Illustration for three subcases (a)–(c) in Case 6.

(a) b2 = B1 (see Fig.16a): In this case, we have

g(e4; S5)� 0.087

(0.207)2
× 0.207

0.765
< 0.55

and

g(A2b3; S2)� 0.229

(0.181)2
× 0.181

0.765
> 1.65.
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Fig. 16. Illustration for Case 7, where (a) indicates the case whereb2 = B1, and (b) indicates the case where none
of B1 andB5 is a convex corner ofR.

Hence it holdsg(A2b3; S2) > g(e4; S5) for S2-incrementable edgeA2b3 and S5-
decrementable edgee4, contradicting theS-maximality ofP.

(b) None ofB1 and B5 is a convex corner ofRup (see Fig.16b): Sincee3 and e4 are
free edges,e5 is not a free edge and overlaps withB5A6. Theng(e3; S1) = g(e4; S5)

must hold, implying�(e3) = �(e4). Let x = �(e4) ∈ (0.765, 0.973). Thena(Rup) =
(0.986)2 − x2, and

pup = 2 × 0.087

0.207
× (0.972− x) (�2 × 0.087).

We can see that� = pup(1/a(Rup) − 2) < 0.2963 holds forx ∈ (0.765, 0.973).
(for example, to see this, we repeat the following computation after initializingp :=
2 × 0.087:

R := 1
0.2963

p
+ 2

, x :=
√

(0.986)2 − R, p := 2 × 0.087

0.207
× (0.972− x)

After a finite number of iterations,x becomes greater than 0.973, which implies that
there is nox ∈ (0.765, 0.973) such that��0.2963.)

4.8. Case 8

Observe that ifa(Rup)�0.43806 then� = p
up

S (1/a(Rup)−2)�(1/a(Rup)−2)�0.2964
holds. Hence we assume thata(Rup) < 0.43806. From this, we see thatB2, B3 andB4
cannot be convex corners ofR at the same time sincea(Rup) in such a case is at least
0.7792 − 0.3772 + 0.1962 > 0.43806. Note that edgee2 overlaps with edgeA1B1 or
edgee5 overlaps with edgeB2A3 (otherwise both would be free edges). We consider the
following subcases (1) and (2).



H. Nagamochi / Theoretical Computer Science 332 (2005) 417–446 439

b0

b1 b2

S1

p1=0.087

B1A1

A2 B2

A3

b3
b4

S2

p
2
=0.229

e1

e5
e4

e3
e2

b0

b1 b2

S1

p1=0.087

B1A1

A2 B2

A3

b3

b4

S2

p2=0.229

e1

e5

e4

e3

e2

S3

p3=0.368

B3

A4

b6

b5

b0

b1 b2

S1

p1=0.087

B1A1

A2 B2

A3

b3
b4

S2

p2=0.229

e1

e5
e4

e3
e2

S3

B3
b6

b5

A4

S4

p4=0.229

B4

A5

b8

b7

e7

e6

b5

x

(a) (b)

(c)

Fig. 17. Illustration for Case 8.

(1) Edgee5 overlaps with edgeB2A3 (see Fig.17a): ForS1-decrementable edgee2,

g(e2; S1)� 0.087

(0.207)2
× 0.207

0.221
< 2.

We show thatP has anSi-incrementable edgee′ with g(e′; Si) > g(e2; S1), which
contradicts theS-maximality ofP.

If b4 �= B2, then e′ = e4 is S2-incrementable andg(e′; S2) > g(e2; S1). Then
assumeb4 = B2. If b5 �= A3 (resp.,b5 = A3 andb6 �= B3), thene′ = A3b5 (resp.,
e′ = e7 = b6b7) is anS3-incrementable edge ofPwith

g(e′; S3)� 0.368

(0.196)2
× 0.196

0.598
> 3 > g(e2; S1).

Finally assumeb5 = A3 andb6 = B3 (see Fig.17b). SinceB2, B3 andB4 cannot be
convex corners ofRat the same time, eitherb7 �= A4 or b7 = A4 andb8 �= B4 holds.
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If b7 �= A4 (resp.,b7 = A4 andb8 �= B4), thene′ = A4b7 (resp.,e′ = e9 = b8b9) is an
S4-incrementable edge ofPwith

g(e′; S4)� 0.229

(0.181)2
× 0.181

0.402
> 3 > g(e2; S1).

(2) Edgee2 overlaps with edgeA1B1 but edgee5 does not overlap with edgeB2A3 (see
Fig. 17c). Thene5 is a free edge. Hencee3 must overlap withB1A2 (i.e., b2 = B1).
If Rup ∩ Si �= ∅ for somei ∈ {3, 4, 5}, then�(e5)�0.181+ 0.196+ 0.181 = 0.558
(since ifRup ∩ S5 �= ∅ thenS5 ⊆ Rup by the assumptiona(Rup ∩ S1)�a(Rup ∩ S5)),
implying

g(e5; S2)� 0.229

(0.181)2
× 0.181

0.558
> 2.2.

By g(e2; S1) < 1.9, we haveg(e5; S2) > g(e2; S1) for S2-incrementable edgee5 and
S1-decrementable edgee2, contradicting theS-maximality ofP.

Assume thatRup ∩ Si = ∅ (i �= 1, 2), that is,�(e5) = 0.779. Letx = �(e4).
Then a(Rup) = 0.779x + 0.221 × 0.986, andpup = 0.229x/0.181 + 0.087. By
Lemma3 with a = 1.26519337,b = 0.087,c = 0.779 andd = 0.217906, we have
��(

√
a − √

2(ad − bc))2/c < 0.296.

4.9. Case 9

We can assume thatRup ∩ S2 = ∅ (otherwise such a case is treated in Case 8). Then
pup �1 − 0.229 = 0.771. Assumea(Rup)�1/(0.2963/p + 2) < 0.42 (otherwise� <

0.2963). Note thatB3 andB4 cannot be convex corners ofRat the same time sincea(Rup)

in such a case is at least 0.779×0.598−0.196×0.181> 0.42 contradicting the assumption
a(Rup) < 0.42 onRup. Observe that edgee2 overlaps with edgeA1B1 or edgee5 overlaps
with edgeB3A4 (otherwise both would be free edges). We consider the following two
subcases (a) and (b).
(a) Edgee5 overlaps with edgeB3A4 (see Fig.18a):

For S1-decrementable edgee2,

g(e2; S1)� 0.087

(0.207)2
× 0.207

0.221
< 2.

We show thatP has anSi-incrementable edgee′ with g(e′; Si) > g(e2; S1), which
contradicts theS-maximality ofP.

If b4 �= B3, thene′ = e4 is S3-incrementable and

g(e′; S3)� 0.368

(0.196)2
× 0.196

0.598− 0.014
> 3.

Then assumeb4 = B3. SinceB3 andB4 cannot be convex corners ofRup at the same
time, eitherb5 �= A4 holds orb5 = A4 andb6 �= B4 hold. If b5 �= A4 (resp.,b5 =
A4 andb6 �= B4), thene′ = A4b5 (resp.,e′ = e7 = b6b7) is anS4-incrementable
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Fig. 18. Illustration for Case 9, where (a) indicates the case wheree5 overlaps with edgeB3A4, and (b) indicates
the case wheree2 overlaps with edgeA1B1 but e5 does not overlap with edgeB2A3.

edge ofPwith

g(e′; S4)� 0.229

(0.181)2
× 0.181

0.402
> 3.

(b) Edgee2 overlaps with edgeA1B1 but edgee5 does not overlap with edgeB2A3 (see
Fig. 18b): Thenb2 = B1 (otherwisee3 ande5 are free edges). Hencee′ = A2b3 is an
S2-incrementable edge with

g(e′; S2)� 0.229

(0.181)2
× 0.181

0.377
> 4.

Note thate2 is an S1-decrementable edge withg(e2; S1) < 2. Hence,g(e′; S2) >

g(e2; S1), a contradiction to theS-maximality ofP.

4.10. Case 10

We can assume thatRup ∩S2 = Rup ∩S3 = ∅ (otherwise such a case is treated in Case 8
or Case 9). Thenpup �1−0.229−0.368= 0.403. Assumea(Rup)�1/(0.2963/p +2) <

0.37 (otherwise� < 0.2963). Note thatA2 andB4 cannot be on the pathP at the same
time sincea(Rup) in that case is at least 0.779× 0.402+ 0.221× (0.196+ 0.181) > 0.37,
contradicting the assumptiona(Rup)�0.37 onRup. Observe that edgee2 overlaps with
edgeA1B1 or edgee5 overlaps with edgeB4A5 (otherwise both would be free edges). We
consider the following subcases (1) and (2).
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Fig. 19. Illustration for Case 10.

(1) Edgee5 overlaps with edgeB4A5. If b4 �= B4, i.e.,A4 is not onP (see Fig.19a), then
e4 is anS4-incrementable edge ande3 is anS1-decrementable edge such that

g(e4; S4)� 0.229

(0.181)2
× 0.181

0.765
> 1.6

and

g(e3; S1)� 0.087

(0.207)2
× 0.207

0.207+ 0.181+ 0.196
< 0.72,

a contradiction to theS-maximality ofP.
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Assumeb4 = B4, i.e., A4 is on P (see Fig.19b). Thene′ = b3A4 is an S3-
incrementable edge ande2 is anS1-decrementable edge such that

g(e′; S3)� 0.368

(0.196)2
× 0.196

0.584
> 3.2

and

g(e2; S1)� 0.087

(0.207)2
× 0.207

0.221
< 2,

again a contradiction to theS-maximality ofP.
(2) Edgee2 overlaps with edgeA1B1 but edgee5 does not overlap with edgeB4A5 (see

Fig. 19c). Thenb2 = B1 (otherwisee3 ande5 are free edges). Hencee′ = A2b3 is
S2-incrementable, and

g(e′; S2)� 0.229

(0.181)2
× 0.181

0.181+ 0.196+ 0.181
= 2.267371631> g(e2; S1).

Sincee2 is S1-decrementable, this contradicts theS-maximality ofP.
From the arguments in this section, we have shown that�(S) < 0.294 and thereby
Theorem4 holds.

5. Lower bound on�∗

One may consider whether there is a schemeS ′ that has�(S ′) smaller than 0.2964. In
this section, we, however, show that there is no schemeS ′ with �(S ′) < 0.2698. That is,
we prove the next result.

Theorem 5. 0.2698< �∗ < 0.2964.

Since we have shown�∗ �0.2964 in the previous section, we now estimate�∗ from
below. LetS be an arbitrary scheme. Forx1 = y1 = 0.22183,x2 = y2 = 0.41285,
x3 = y3 = 1 − x2, and x4 = y4 = 1 − x1, we partition the unit squareS into 25
blocks by three vertical lines withx-coordinatesx1, x2, x3 andx4 and three horizontal lines
with y-coordinatesy1, y2, y3 andy4 (see Fig.20). We consider the following 10 monotone
piecewise linear paths:

P1 = 〈(0, 0), (0, y2), (x3, y2), (x3, 1), (1, 1)〉, P ′
1 = 〈(0, 0), (x2, 0), (x2, y3),

(1, y3), (1, 1)〉,
P2 = 〈(0, 0), (0, y1), (x2, y1), (x2, 1), (1, 1)〉, P ′

2 = 〈(0, 0), (x3, 0), (x3, y4),

(1, y4), (1, 1)〉,
P3 = 〈(0, 0), (0, y3), (x4, y3), (x4, 1), (1, 1)〉, P ′

3 = 〈(0, 0), (x1, 0), (x1, y2),

(1, y2), (1, 1)〉,
P4 = 〈(0, 0), (0, y4), (1, y4), (1, 1)〉, P ′

4 = 〈(0, 0), (0, y1), (1, y1), (1, 1)〉,
P5 = 〈(0, 0), (x1, 0), (x1, 1), (1, 1)〉, P ′

5 = 〈(0, 0), (x4, 0), (x4, 1), (1, 1)〉.
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Fig. 20. A partition of a unit squareS.

Let a1 = (1 − 0.412849) × (1 − 0.412849), a2 = 0.412849× (1 − 0.22183), anda3 =
0.22183. Then we have

a(Rup(P1)) = a(Rdwn(P ′
1)) = a1,

a(Rup(P2)) = a(Rdwn(P ′
2)) = a(Rup(P3)) = a(Rdwn(P ′

3)) = a2,

a(Rup(P4)) = a(Rdwn(P ′
4)) = a(Rup(P5)) = a(Rdwn(P ′

5)) = a3.

Observe that each block inSis contained in at least two regions from{Rup(P1), . . . , Rup(P5),
Rdwn(P ′

1), . . . , Rdwn(P ′
5)}. Therefore, it holds

5∑
i=1

p
up

S (Pi) +
5∑

i=1
pdwn

S (P ′
i )�2. (1)

By definition,�∗ satisfies

p
up

S (Pi)

(
1

a(Rup(Pi))
− 2

)
��∗ (i = 1, 2, 3, 4, 5).

Similarly, by considering pathP ′
i as a monotone path from(1, 1) to (0, 0), we have

pdwn
S (P ′

i )

(
1

a(Rdwn(P ′
i ))

− 2

)
��∗ (i = 1, 2, 3, 4, 5).

Hence it holds
5∑

i=1
p

up

S (Pi) +
5∑

i=1
pdwn

S (P ′
i ) � �∗ 5∑

i=1

1

1/[a(Rup(Pi))] − 2

+�∗ 5∑
i=1

1

1/[a(Rdwn(P ′
i ))] − 2

= �∗
(

2

1/a1 − 2
+ 4

1/a2 − 2
+ 4

1/a3 − 2

)
.
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From this and (1), we have

�∗ �
∑5

i=1 p
up

S (Pi) +∑5
i=1 pdwn

S (P ′
i )

2
1/a1−2 + 4

1/a2−2 + 4
1/a3−2

� 2
2

1/a1−2 + 4
1/a2−2 + 4

1/a3−2

> 0.2698,

as required. The current choice of 5× 5 blocks over the unit squareSand the values for
a1, a2 anda3 is based on some limited computer experiment, and there may exist a better
choice of blocks inSfor evaluating a lower bound on�∗.

6. Concluding remarks

In this paper, we have analyzed the performance of the randomized key based heuristic
due to Nagamochi[12,13]in terms of the minimum degree� of nodes inV, and have proved
that, for the schemeS in Section 4, the heuristic delivers a solution whose average crossing
number is at most(1.2964+12/(�−4))LB. For graphs with large�, this is an improvement
over the previous best bound 1.4664[12,13]. On the other hand, we have shown in Section
5 that no schemeS ′ can achieve any better ratio than 1.2698. Note that this does not imply
that the gap between the optimal and the lower bound is actually 1.2698. The currently
known gap is 13/11 � 1.1818, as shown in Fig.2. Determining maxG{opt(G)/LB(G)} is
left for the future research.
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[2] V. Dujmović, H. Fernau, M. Kaufmann, Fixed parameter algorithms for one-sided crossing minimization
revisited, (GD2003), Lecture Notes in Computer Science, Vol. 2912, Springer, Berlin, 2004, pp. 332–344.
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