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include (for example) an alternative derivation of the complete power-series solutions obtainable usu- 
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K e y w o r d s - - O p e r a t o r s  of fractional calculus, Bessel differential equation, Fuchsian (and non- 
Fuchsian) differential equations, Differintegral equations, (ordinary and partial) Linear differen- 
tial equations, Polynomial coefficients, Frobenius method, Power-series solutions, Bessel functions, 
Trigonometric functions, Integro-differential equations, Hypergeometric representations. 

1. I N T R O D U C T I O N  A N D  D E F I N I T I O N S  

During the past three decades or so, the widely-investigated subject of fractional calculus (that 
is, calculus of derivatives and integrals of any arbitrary real or complex order) has remarkably 
gained importance and popularity due chiefly to its demonstrated applications in numerous seem- 
ingly diverse fields of science and engineering (see, for details, [1-4]). Recently, by applying the 
following definition of a fractional differintegral (that is, fractional derivative and fractional inte- 
gral) of order u E ]~, many authors have explicitly derived particular solutions of a large number 
of families of homogeneous (as well as nonhomogeneous) linear ordinary and partial fractional 
differintegral equations (see, for details, [5-21], and the references cited in each of these earlier 
works). 

DEFINITION (CF. [22--28]). I f  the function f ( z )  is analytic (regular) inside and on C, where 

c := {t - ,c+},  (1.1) 

C- is a contour along the cut joining the points z and -oo  + i3(z), which starts from the point 
at -oo,  encircles the point z once counter-clockwise, and returns to the point at -~o, C + is a 
contour along the cut joining the points z and oo + i3(z), which starts from the point at oc, 
encircles the point z once counter-clockwise, and returns to the point at oc, 

r ( . + l ) / _  f(r 
f~ (z) (f (z))~ := 2~-7-- j~ (r - z)~+ I de 

( . e  ~ \ Z - ;  Z - :=  {-1,-2,-3, . . .})  
(1.2) 

a n d  

where ~ r z, 

f - n  (z) := lim_n {f~ (z)} (n E N := {1, 2 ,3 , . . . } ) ,  (1.3) 

-~r _<_ arg (ff - z) =< 7r for C-,  (1.4) 

0 _<- arg (~ - z) =< 27r for C +, (1.5) 

then f , ( z )  (u > O) is said to be the fractional derivative o f f ( z )  of order u and fv(z)  (u < O) is 
said to be the fractional integral o f f ( z )  of order - u ,  provided that 

IL (z)l < o0 (~ e R).  (1.6) 

Here, as well as in many of the aforecited earlier works, we simply write f .  for f~(z) whenever 
the argument of the differintegrated function f is clearly understood by the surrounding context. 
Moreover, in case f is a many-valued function, we tacitly consider the principal value of f in our 
investigation. For the sake of convenience in dealing with their various (known or new) special 
cases, we choose also to state one of the fundamental results (Theorem 1 below) for homogeneous 
(as well as nonhomogeneous) linear ordinary fractional differintegral equations of a general order 

p E R .  
Some of the recent contributions on the subject of explicit particular solutions of linear ordinary 

and partial fractional differintegral equations with polynomial coefficients are those given by Tu et 
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al. [5] who presented unification and generalization of a significantly large number of widely 
scattered results on this subject (see also the many relevant earlier works cited by Tu et al. [5]). 
For the sake of ready reference, we choose to recall here one of the main results of Tu et al. [5], 
involving a family of linear ordinary fractional differintegral equations, as Theorem 1 below. 
For analogous treatments of some closely related families of integro-differential equations with 
polynomial coefficients, the interested reader may be referred also to the recent works by Ali and 
Kalla [6] (and also by Odibat and Shawagfeh [17]). 

THEOREM 1. (See [5 Theorem 1, p. 295; Theorem 2, p. 296].) Let P(z;p) and Q(z;q) be 
polynomials in z of degrees p and q, respectively, defined by 

and 

P P 
P ( z ; p ) : = ~ - ~ a k z P - k = a o H ( z - - z j )  (a0 # 0; p C N )  (1.7) 

k=O j = l  

q 
Q (z;q):  = E b k z q - k  (bo ~ O; q C N). (1.8) 

k=O 

Suppose also that f_~(~  O) exists for a given function f .  
Then, the following nonhomogeneous linear ordinary fractional differintegrM equation: 

[ k  (~)Pk(z;P) ~- ~ (k~ 1)Qk-1 (z;q)] ~9~*-k k=l 

t) + q!bor (z) = f (z) 
q 

(p ,u �9  p , q � 9  

�9 e-H(z;P'q)l t,-/~+l 

P (z; p) r (z) + 

has a particular solution of the form: 

((j_. (z) 
r = \ ~  ) _ ,  

where, for convenience, 

g ( z ; p , q )  := - -  Q ((; q) d( 
P ((; p) 

provided that the second member of (1.10) exists. 

(1.9) 

(Z E C \ {Zl .... , Zp}), (1,10) 

( z � 9  . . . .  ,zp}), (1.11) 

Furthermore, the following homogeneous linear ordinary fractional differintegral equation: 

[ i ] lP(z;p)~,u(Z) * ~ Pk(z;P)* ~-~ k-1 Qk-1 (z;q) r (Z) 
k=1 k=l 

+ q[bor (Z) = 0 
q 

( # , u E ~ ;  p , q � 9  

(1.12) 

has solutions of the form: 
r (z) = K (e -"(z;p'q)) , (1.13) k lu--#+l 

where K is an arbitrary constant and H(z;p,  q) is given by (1.11), it being provided that the 
second member of (i.13) exists. 
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REMARK 1. As already pointed out in conclusion by 2-h et al. [5, p. 301], it is fairly straightfor- 
ward to observe that  either or both of the polynomials P(z; p) and Q(z; q), involved in Theorem 1, 
can be of degree 0 as well. Thus, in the definitions (1.7) and (1.8), and in analogous situations 
appearing elsewhere in this paper, N may easily be replaced (if and where needed) by No. The 
definitions (1.7) and (1.8) do serve the main purpose in most (if not all) situations including (for 
example) those occurring in recent works to which this paper is essentially a sequel. 

For various interesting applications of Theorem 1, we choose to refer the interested reader to 
the earlier works [7-16] and also [5,6,17-21], in each of which numerous further references on this 
subject can be found. The main object of the present paper is to continue our investigations of 
the solutions of some general families of second-order linear ordinary differential equations, which 
arc associated with the familiar Bessel differential equation of general order u (cf. [29, Chapter 
7; 30; 31, Chapter 17]) 

2 d2w dw 
z + + ( z  2 - w = o,  ( 1 . 1 4 )  

which is named after Friedrich Wilheim Bessel (1784-1846). More precisely, just as in the earlier 
work [8], we aim here at demonstrating how the underlying simple fractional-calculus approach 
to the solutions of the classical differential equation (1.14) would lead us naturally to several 
interesting consequences including (for example) an alternative investigation of the power-series 
solutions of (1.14) in terms of the familiar Bessel function J ,  (z) defined by 

oo (_ l )k  (z/2)~+2k 
J (z) := 1) 

k=0 

_ _ _  ( 1  ) 
(z/2)" exp (+ iz ) lF1  u + 2 ; 2 u + 1 ; ~ - 2 i z  , 

r (u+l)  

which are derived usually by appealing to the standard method attributed to Ferdinand Georg 
Probenius (1849-1917) (cf., e.g., [32, Chapter 16]). 

The last hypergeometric 1Ft representation in (1.15) follows readily from the usual hyper- 
geometric 0F1 representation by means of a familiar hypergeometric transformation which is 
popularily known as Kummer's second theorem (see, for example, [33]). 

REMARK 2. It  is fairly obvious that  the Bessel differential equation (1.14) remains unaltered 
when z is replaced by - z  (and also when u is replaced by - u ) ,  so the functions J•  are 
solutions of the equation (1.14) satisfied by J+~(z). 

2. A F A M I L Y  O F  G E N E R A L I Z E D  

B E S S E L  D I F F E R E N T I A L  E Q U A T I O N S  

Motivated essentially by the celebrated Bessel differential equation (1.14), Lin et al. [9] pre- 
sented a systematic investigation of the following general family of second-order nonhomogeneous 

non-Fuchsian linear ordinary differential equations: 

2d2~ 
(Dz 2 Ez  F) (z) f ( z )  (2.1) Az ~ + ( B z + C )  + + + ~ = , 

which obviously corresponds to (1.14) when the parameters A ~ 0, B, C, D ~ 0, E, and F are 
specialized as follows: 

A = B = D = 1, C = E = 0, and F = - u  2. (2.2) 
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Indeed, by applying Theorem 1 in order to find (explicit) particular solutions of the nonhomo- 
geneous non-Fuchsian differential equation (2.1), Lin et al. [9] deduced the following result. 

THEOREM 2. (See [9, Theorem 3, p. 39].) If  the given function f satisfies the constraint (1.6) 
and f - v  ~ O, then, the following nonhomogeneous linear ordinary differential equation: 

A 2 d2~ ~zz z ~z 2 + B z  + ( D z  2 + E z + F )  9 ( z ) = f ( z )  ( A # O ; D # O ) ,  (2.3) 

has a particular solution in the form: 

~(Z) : zPeAZ ((A-lz-U-I+(2Ap+B)/A ,e2Az (z-P-1 ,e-AZ �9 f (z) )_V)_l  
(2.4) \ 

�9 Z u-(2Ap+B)/A e -2Az) (A # 0; D # 0; z �9 C \ {0}), 
" / v - - 1  

where p and A are given by 

A -  B + v / ( A -  B) 2 - 4 A F  / D  
P = 2A and A = •  (2.5) 

and 
(2Ap + B) A + E (2.6) 

v = 2AA ' 

it being provided that the second member of (2.4) exists. 
Furthermore, the following homogeneous linear ordinary differential equation: 

Az  2d2~ + Bz  d~dz + (Dz2 + Ez  + F) ~ ( z )  = 0 (2.7) 

has solutions of the form: 

(z) = K z  pe xz (z  ~-(2Ap+B)/A. e -2~z) (A # 0;D ~ 0;z C C \ {0}), (2.8) 
v--1 

where K is an arbitrary constant, p and A are given by (2.5), and v is given by (2.6), it being 
provided that the second member of (2.8) exists. 

REMARK 3. By first setting u * ) v + (1/2) and then specializing the involved parameters A, B, 
D, E, and F as in (2.2), Theorem 2 would immediately yield the following special case involving 
the Bessel differential equation (1.14). 

THEOREM 3. (See Nishimoto [34, Theorem 1, p. 27, Theorem 2, p. 29]; see also [9, Corollary 
1, p. 40].) Under the hypotheses of Theorem 2, the following nonhomogeneous linear ordinary 
differential equation: 

2 d2 ~a ~z z ~ + z  + ( z  2 - v  2 ) ~ ( z ) = f ( z )  (2.9) 

has a particular solution in the form: 

~(Z) : zVeAz ((zU-(1/2) ,e2Az (z-V-l .e-AZ.f(z))_v_(1/2)) .z-V-(i~2) .e-2Az~ 
- / ~ - ( 1 / 2 )  

( ,  e R;A = •  e C \ {0}), 
(2.10) 

provided that the second member of (2.10) exists. 
Furthermore, the following homogeneous linear ordinary differential equation: 

2 d2~ _~ (2.11) 
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has solutions of the form: 

K z U e  Az ( z  - v - ( I / 2 ) .  e -2Azx} (/2 E ]I~; ,,~ : -l-i; Z C C \ { 0 } ) ,  (z) 
\ / ~--(1/2) 

(2.12) 

where K is an arbitrary constant, it being provided that the second member of (2.12) exists. 

3. S O L U T I O N S  OF T H E  
B E S S E L  D I F F E R E N T I A L  E Q U A T I O N  (1 .14)  

W H E N  u = n ( n E Z )  

In their aforementioned earlier work, Lin et al. [8, Sections 3 and 4] applied the assertions of 
Theorem 3 in order to provide the complete solutions of the Bessel differential equation (1.14) in 
the two cases when 

1 
v = n + - ~  (nEN0) and u ~ Z .  

In particular, when u r Z, by appealing appropriately to some known fractional differintegral 
formulas, Lin et al. [8, Section 4] deduced two linearly independent solutions of (1.14) as follows: 

2"+1 [ ( 1 1 ) ~176 F ( u + 2 k + ( 1 / 2 ) )  (2z)-2k 
W, (U (z) = K ~ z  z cos z + ~uzr-  ~rr . E ( - 1 )  k ( 2 ~ - - - ~  + (1/2)) 

k=O 

- sin z + --lJTr -- (2Z)  - 2 k - 1  
2 U ~ (-1)~ (2k + 1)!r ( .  - 2k - (1/2)) 

k=O 

(3.1) 

and 

2v+l [ ( 1 1 ) ~ F(/2 2k+(1/2))  
w~ 2) (z) = K - ~ z  cos z - ~ , ~  - U ~ (-1)~ + 

k=0 

- s in  z -  ~ . ~ -  U " Z (-1)k (2k ~7~!~(- ; - -2-~--g/2))  ( 2 z ) - ~ -  " 
k=O 

(3.2) 

Thus, by comparing (3.1) and (3.2) with the following known results [30, Equations 7.21 (1) and 
7.21 (3), p. 1991: 

j~(z) ~ z  [ ( 1 1 ) ~-~ F ( v + 2 k + ( 1 / 2 ) )  (2Z)-2k 
cos z - ~ u .  - ~ �9 ( - 1 ) k  ( 2 k ) ! r  (u  - 2k + (1/2)) 

k=0 

( 1 
- s i n  z -  ~uzr- ~7r �9 (-1)k ( 2 k + 1 ) ! [ ' ( u - 2 k - ( 1 / 2 ) )  

k=0 

(3.3) 

and 

V ~ z  [ oo r ( u + 2 k + ( 1 / 2 ) )  
J_, (z) ~ 2 cos (z + (1/2) uzr - (1/4) zr). E (-1)k (2k)!F ( u -  2k + (1/2)) 

k=0 

- s i n  z + ~ u l r - ~ T r  �9 (-1)k ( 2 k + l ) I F ( u - 2 k - ( 1 / 2 ) )  
k=0 

(2z)  -~k 

(3.4) 

each of which is valid for large values of Izl provided that 

larg(z)I ~ - E  ( O < c < ~ ) ,  (3.5) 
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Line t  al. [8] eventually arrived at the following general solution of (1.14): 

w (z) = K1J -u  (z) + K2Jv (z) (r' r Z) (3.6) 

at least for large values of [z I under the constraint (3.5). 
With a view to complementing the work by Lin et af. [8] by providing a second linearly inde- 

pendent solution of the Bessel differential equation (1.14) also in the exceptional ease when u = n 
(u e Z), we first set 

0 
{W(J' (z) } ( j =  1,2), (3.7) n(2) (z):= 

where w(~J)(z) (j = 1,2) are given by (3.1) and (3.2), respectively. In terms of the Psi (or 
Digamma) function O(z) defined by 

d { l o g r  (~)} - r '  (z) 
V (~) := ~ r (z) fl z or log F (z) = ~b (t) dt, (3.8) 

we thus find from (3.1) and (3.2) that 

k=O 

r (u + 2k + (1/2)) 
(2k)!r (~ - 2k + ( i / 2 ) )  

- sin z + ~uTr - ~Tr �9 E (-1)k (2k + ~)).vF(u----2-k---(-i/2)) (2z)-2k-1 
k=0 

+ K ~ z  z cos z + ~ . ~  - ~ -  �9 ~ (-1) k + 0 / 2 ) )  
(2k)!r (u - 2k + (1 /2) )  

k=0 

1 1 ) ~ r (u + 2k + (3/2)) 
- sin z + ~un - ~lr �9 E (-1)k (2k ~ .1F( -~- - -2~- - -~ /2) )  

k=0  

�9 [r (u + 2k + (3/2)) - r (u - 2k - (1/2)) 1 (2z)-2k-11 

_K2~+lTr [ ( 1 1 ) cc F ( v + 2 k + ( 1 / 2 ) )  (2z)-2k 
x / ~ 2  sin z + ~ u T r - ~ T r  . E  (-1)k ( 2 k ) ! F ( u - 2 k + ( 1 / 2 ) )  

k=O 

( 1  1 ) ~176 r ( u + 2 k + ( 3 / 2 ) )  ] 
+cos z + -~uzr - -~rr �9 E (-1)~ (2k + 1)!F(u - 2k - (1/2)) (2z)-2k-1 

k=O 

(2z)-2k 

(3.9) 

and 

II (2)(z) = K ~ z  z (log2) cos z -  ~u~r-  ~Tr . E ( - - 1 ) k  ( 2 k ) ! V ( u - 2 k + ( 1 / 2 ) )  
k=0 

1 1 ) oo 
--sin z - -~IJTr-  ~ r  " E  (-1)k 

k=0 

r (u + 2k + (3/2)) ] 
(2k - 7 - @ V ~ - - ~ :  (i/2)) (2~)-~-~ 

(3.1o) 
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+ K - ~  cos z - ~ - ~ �9 ~ ( - 1 )  k ( 2 ~ } ~ = ~ ;  ~) )  
k=O 

( - s i n  z -  ~uTr-~Tr �9 (-1)k ( 2 k + l ) ! F ( u - 2 k - ( 1 / 2 ) )  
k=O 

2-+1 7f 

- =" ' (2k)!r(~ 2k + (1/2)) 
+ K - - -  sin z - -uTr  

v~-z2 2 
k=0  

+cos z - ~ - ~ . ~ ( - 1 )  k ( 2 k +  1 ) ! r ( u  - 2 k  - ( 1 / 2 ) )  (2z)-2k-1 
k=0  

Now, since the function emerging from 

( ( -  1)" rI(2) (z) - II~1) (z)) , - ~  ( n e Z )  

is easily seen to be a solution of the Bessel differential equation (1.14) of order ~, = n (n E Z), 
upon taking the limit as u ~ n (n E ~), we deduce from (3.9) and (3.10) that 

YI~ (z):= li~n [(-1)" H(2) ( z ) -  1] (1) (z)] 

v-~2~+' [ ( lz_.~n~r_.~Tr 1 ) ~ (2k)W(n-2k+(1/2))F(n+2k+(1/2)) (2z)-2k (3.11) = K - ~ -  sin . (-1) k 
k=0  

( 1 1 ) ~-~ F ( n + 2 k + ( 3 / 2 ) )  ] 
+cos z--~nTr--~Tr �9 (-1) k (2k~l~.FC~-__--2-~--~l/2))(2z) -2k-1 ( n e E ) .  

k=0  

Finally, for the Bessel function of the second kind, it is known that [30, Equation 3.54 (2), 
p. 64, Equation 7.21 (5), p. 199] 

Y'~ (z) := lim [ c~ J~ (z) - J-~ (z) s i - ~ )  

= ~ ~ {&(z)} - ( - 1 )  n ~ { J - -  (z)} 
(3.12) 

~ [  ( 1 1 ) ~ F ( n + Z k + ( X / 2 ) ) ( 2 z ) _ 2 k  
2 sin z - - ~ n ~ r - ~ .  �9 (-1)k (2k)!r(n-2k+ (1/2)) 

k=0  

+cos z ~ n ~ - ~  . ~ ( - 1 )  ~ ( 2 k ; ~ . , ~ - ( ~ - - - 2 - ~ - ~ / 2 ) )  (2z) -~-~  ( n ~ Z ) ,  
k=0  

which evidently provides a second linearly independent solution in (3.6) in the exceptional case 
when u = n (n E Z) by means of our simple fractional-calculus approach, that is, without 
using the classical Frobenius method for finding power-series solutions of the Bessel differential 
equation (1.14) of a general order u. 

(3.10) (cont.) 
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