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A b s t r a c t - - T h i s  paper is devoted to study the existence of positive solutions to the second-order 
semipositone periodic boundary value problem x ' +  a(t)x = f(t,x), x(O) = x(1), xt(0) = xt(1). 
Here, f(t, x) may be singular at x = 0 and may be superlinear at x = +c¢. Our analysis relies on a 
fixed-point theorem in cones. (~) 2006 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In  th is  paper ,  we are devoted  to s t u d y  the  exis tence of posi t ive so lu t ions  to  per iodic  b o u n d a r y  

value problem,  
x"  + a( t )x  = f ( t ,  x), 0 < t < 1, 

(I . I)  
x(0) = x(1),  x ' (0)  = x ' (1) ;  

here, a( t )  E L i[0, 1] satisfies t h e  condi t ions  unde r  which the  co r respond ing  l inear  sys tem,  

x ' + a ( t )  x = 0 ,  0 < t < l ,  
(1.2) 

x (0) = x (1) ,  x ' ( 0 )  = x ' ( 1 ) ;  
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has a Green function G(t, s) > 0 for all (t, s) E [0, 1] × [0, 1]. In particular, our nonlinear term 
f ( t ,  x) may be singular at x = 0 and may be superlinear at x = co. 

Generally speaking, problem (1.1) is called singular if f ( t ,  x) tends to infinity when x --* 0 +. 
This research work was first opened by Lazer and Solimini [1], in which the model equations, 

1 
x" ± - -  = p (t) ,  

Xc~ 

were studied. Since then, many researchers have been devoted to s tudy the existence of periodic 
solutions for this type of problems and there are many papers (see, for instance, [2-6] and their 
references) in literature. 

It  is said tha t  problem (1.1) has an attractive singularity if 

lim f ( t ,  x )  = - o o ,  
x--- ,0 + 

and has a repulsive singularity if 

uniformly for t E [0, 1], 

lim f (t, x) = +oo,  uniformly for t E [0, 1]. 
x - * 0 +  

In some systems like the N-body  problem problem, the singularities are of at tractive type. 
The classical technique for proving existence of periodic solutions is the lower and upper solution 
method for at tractive singularities (see [7]). When the singularities are of repulsive type, for the 

scalar singular equation, 
x" + g ( t , x )  =O, x > 0 ,  (1.3) 

we mention the following results. Let g(t, x) = g(x) - h(t), where h ~ C ( R ,  R)  is T-periodic and 
g E C((0, oe), R)  satisfies the following strong force condition at x = 0, 

lim g (x) = - c o  and lim G (x) = c¢, 
x ~ 0  + x ~ 0  + 

and g is superlinear at x -- co, 

lim - -  g (x) = co; 
X ~ O O  

here, G(x) = f x  g(z) dx, Fonda, Man~sevich and Zanolin [8] used the Poincard-Birkhoff theorem 
to obtain the existence of positive periodic solutions, including all subharmonics. Similarly. 
del Pino and Man~ev ich  proved in [9] the existence of infinitely many periodic solutions to (1.3), 
when g(t, x) is superlinear at x = co and satisfies the following strong force condition at x = 0. 
There are positive constants c, c ' , /z,  such tha t  # > 1 and 

c' x - ~  <_ - g  (t ,  x)  <_ cx  - ~ ,  (1.4) 

for all t and all x sufficiently small. 
When g(t, x) is semilinear at x = c¢, del Pino, Man~ev ich  and Montero [3] proved the existence 

of at least one positive periodic solution of (1.3) if g(t, x) satisfies (1.4) near x = 0 and the 
following nonresonance conditions at  x = oo. There is an integer k > 0 and a small constant 

> 0, such tha t  

+ ~ < g - - - - -  < - e,  (1.5) 
- -  x - T 

for all t and all x >> 1. We note tha t  conditions (1.5) are the s tandard uniform nonresonance 

conditions with respect to the antiperiodic boundary  condition, not with respect to the periodic 

boundary  condition. For example, 

1 
x"  + #x  = ~-~ + h (t) ,  (1.6) 
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where # > 0 and h E C(R,  R) is 2~r-periodic. Nonresonance holds when 

# 4  , k = l , 2 , . . . ,  

i.e., # is not an eigenvalue of the antiperiodic boundary value problem. Moreover, the author 
in [5,6] used the coincidence degree theory of Mawhin to study the existence of positive 27r-periodic 
solutions to the following scalar singular semilinear equations, 

x" + f (x) x' + g ( t , x )  = O, 0 < t < 2r, 
(1.7) 

x (0) = x (2~) ,  ~ '  (0) = z '  (2~);  

here, g E C ( R  x (0, c~), R) satisfies the strong force condition at x = 0. 
In the references mentioned above, two most common techniques have frequently been em- 

ployed: 

(1) the obtention of priori bounds for the possible solutions and then the applications of 
topological degree arguments [10] and 

(2) the theory of upper and lower solutions [7]. 

These two techniques have often been interconnected and have proved to be very strong and 
fruitful and became very popular in this research area. However, the above two techniques have 
their own limitations and in fact, for practical purposes, serious difficulties arise frequently in the 
search for priori bounds or upper and lower solutions. 

On the other hand, some fixed-point theorems in a cone for completely continuous operators 
have been extensively employed in the related literature, specially to study several kinds of sep- 
arated boundary value problems (see for instance in [11,12] and their references), while for the 
periodic boundary value problems, it is more difficult to find references, and only very recently, pa- 
pers [13, 14] are known to us. The reason for this contrast may be the fact that  it is more difficult 
to perform a study of the sign of Green's function for the corresponding linear periodic problems. 
In paper [14], the author succeeded in overcoming this difficulty by using a new LP-max imum 
principle developed in [15] and obtained some new existence results to problem (1.1). 

In this paper, we will exploit some results developed in [14], together with a fixed-point theorem 
in cones, to study the existence of positive solutions to problem (1.1). 

REMARK 1.1. By a positive solution of problem (1.1) we understand a function x E C[0, 1], 
x' E AC[O, 1] with x(t) > 0 for all t E [0, 1] and satisfying (1.1) for a.e., t E [0, 1]. 

This paper is organized as follows. In Section 2, some preliminary results will be given, which 
will be used in Section 3. In Section 3, we are devoted to the existence results for the singular 
semipositone case, i.e., f ( t , x )  : [0,1] x (0, oc) ~ R is continuous, f ( t ,  x) ~ +oo when x ~ 0 + 
and there exists a M > 0 such that  f ( t ,  x) + M >_ 0 for all (t, x) E [0, 1] x (0, oo). In this case, we 
prove that  the weak singularity of f ( t ,  x) at x = 0 is allowed, as revealed in [13,14]. In the context 
of repulsive singularities, it is usual to assume some kind of strong force condition, which means 
roughly that  the potential in zero is infinity. Typically, this condition is employed to obtain priori 
bounds of the solutions. In paper [1], it is proved that  the strong singulary condition cannot be 
dropped without further assumptions, and in fact such a condition has become standard in the 
related literature. Recently, Rachunkov£ et al. [13] have obtained for the first t ime existence 
results in the presence of weak singularities, by using topological degree arguments. In our case, 
we are able to deal also with weak singularities because the strong force conditions are not needed 
in Theorem 3.1. 

To conclude this section, we state here a well-known fixed-point theorem in cones [16], which 
will be used in Section 3 and Section 4. 

THEOREM 1.1. Let X be a Banach space, and K(C X) be a cone. Assume ~1, 122 are open 
subsets of X with 0 E 121,~1 C f~2, and let 

T :  K n (fi2 \ ~1) ~ K 
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be a continuous and compact operator such that  either 

(i) IITull > Ilult, u e g n Ofl~ and HTult < [lull, u e K n Of~2; or 

(ii) [[Tuff _< HuH, u • g n 0~1 and [[Tul[ _> Hu H, u • K N 0~2. 

Then, T has a fixed point in K N (~2 \ 121). 

2 .  S O M E  P R E L I M I N A R Y  R E S U L T S  

In this section, we present some preliminary results which will be needed in Sections 3 and 4 
First, we fix some notations to be used in the following: Given a • LI[0, 1], we write a ~ 0 if 

a _> 0 for a.e. t • [0, 1] and it is positive in a subset of positive measure. The  usual L P - n o r m  is 
denoted by [[.[[;, whereas [].[[ is used for the norm of the supermum. 

Now let us consider the linear periodic boundary value problem, 

x"  + a ( t )  x =O, O < t < l, 
(2.1) 

x (0) = x (1) ,  x'  (0) = x' (1) .  

Throughout  this paper, we assume the conditions under which the only solution of problem (2.1) 
is the trivial one. As a consequence of Fredholm's alternative, we have the following result. 

LEMMA 2.1. Suppose h : [0, 1] --* [0, oo) is continuous. Then, the boundary value problem. 

• " + a ( t ) = = h ( ~ ) ,  0 < t < l ,  
(2.2) 

(0) = x (1) ,  ~' (0) = x' (1) ; 

has a unique solution that  can be written as 

x (t) = a (t, s) h (s) ds, (2.3) 

where G(t, s) is the Green's function of  problem (2.1). 

In order to state the next result, the following best Sobolev constants will be used, 

{ 27r (2__~q)1-2/q ( F ( 1 / q )  ,~2 
K ( q ) =  q r ( 1 / 2 + l / q ) ) '  i f l _ < q < o o ,  (2.4) 

4, i fq  = oo, 

where F is the Gamma function. For a given p, let us define 

P i f l < p <  c~, 
p* = p - l '  - 

1, i f p  = co. 

Now, the following result follows immediately from [14]. 

LEMMA 2.2. Assume  that a(t) ~- 0 and a ~ LP[0, 1] for some 1 <_ p <_ oo. I f  

[[aJlp < K (2p*), (2.5) 

then a(t, s) > 0 for a11 (t, s) • [0, 1] × [0, 1]. 

REMARK 2.1. If p -- +c~, then hypothesis (2.5) is equivalent to Ha[Ioo < zr 2, which is a well- 
known criterion for the maximum principle yet used in the related literature. 

In order to present our results briefly, let us define the set of functions, 

A = { a • L l [ 0 , 1 ] : a ~ - 0 ,  [[a[[ p < K ( 2 p * )  for some l <_ p _< co } . 
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It  follows from Lemma 2.2 that  problem (2.1) has a Green's function G(t,s) > 0, for all 
(t, s) E [0, 1] x [0, 1] if a E A. In particular, if A = min0_<s,t_<l G(t, s) and B = max0<_s,t_<l G(t, s). 
t h e n B > A > 0  for a E A .  

R E M A R K  2.2. As we all know, we can compute the maximum B and the minimum A of the 
Green's function G(t, s) when a(t) = m2(0 < m < ~), obtaining 

1 ( 2  ) 1 A ( 2 )  A = ~mm cot , B = 2m sin ( m / 2 ) '  and a = ~ = cos . 

These explicit values will be employed in Sections 3 and 4. 
Let X = C[0, 1] and define 

K =  ~x E X :x ( t )  > O and min x(t)  > a l [ x H ~ ,  (2.6) 
( - o < _ t _ < 1  - J 

here a = A / B  and Ilxll = max0__t___l Iz(t)l. 
One may readily verify tha t  K is a cone in X.  Finally, we define an operator  T : X ~ K by 

P 1 

(Tx)(t) = Jo G(t, s)F(s, x(s)) ds (2.7) 

for x E X and t E [0, 1], where F : [0, 1] x R -~ [0,¢¢) is continuous and G(t,s) is the Green 
function to problem (2.1). 

LEMMA 2.3. T : X --* K is well defined. 

PROOF. Let x E X,  then we have 

Ilrzll < B F (s, x (s)) ds 

Therefore, 

and 

A 
(Tx) (t) > -~ IITxll, 

This completes the proof. 

Finally, it is easy to prove the following. 

LEMMA 2.4. T : 

1 

(Tx) (t) > A fo F (s, x (s)) ds. 

i.e., Tx  E K. 

X ~ K is continuous and completely continuous. 

3.  S E M I P O S I T O N E  C A S E  

In this section, we establish the existence of positive solutions to the periodic boundary  value 
problem, 

x" + a ( t ) x =  f ( t , x ) ,  O < t  < l, 
(4.1) 

x(O) = x ( 1 ) ,  x '  (0) = x '  (1); 

here, a(t) E A and f ( t ,  x) may be singular at x = 0. In particular, our nonlinear term f ( t ,  x) may 
be superlinear at x = +co  and may take on negative values. We are interested in working out 
what  weak force conditions of f ( t ,  x) at x = 0 and what  superlinear growth conditions of f ( t ,  x) 
at x = +co  are needed to obtain the existence of positive solutions to problem (3.1). Throughout  

this section, we assume the following conditions hold. 

(B1) a(t) E A. 
(B2) f : [0, 1] × (0, co) --* R is continuous and there exists a constant M > 0 with f ( t ,  x ) + M  >_ 0 

for all t E [0, 1] and x E (0, co). 
(B3) F(t, x) = f ( t ,  x) + M <_ g(x) + h(x) for (t, x) E [0, 1] × (0, co) with g > 0 continuous and 

nonincreasing on (0, co), h _> 0 continuous on (0, co) and h/g nondecreasing on (0, co). 
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(B4) There  exists 

such t ha t  

MII~]I 

r 
~> IIwII, 

g(~r  - MII~II){1 + h(r)/g(r)} 
here a = A / B ,  II~ll = max0<_t_<l I~(t)l, and w(t)  is a unique solution to problem, 

x"  + a ( t )  x = 1, 

z (0) = z (1) ,  z '  (0) = z '  (1) .  
(3.2) 

(Bh) F ( t ,  x )  = f ( t ,  x )  + M > gl(X) + h i ( x )  for all (t, x) 6 [0, 1] × (0, c~) with gl > 0 continuous 
and nonincreasing on (0, c~), hi > 0 continuous on (0, oc) and hi~g1 nondecreasing on 
(0, ~ ) .  

(B6) There  exists R > r, such tha t  

R 
< II~ll 

agl  (R) {1 + (hi ( aR  - U I[wIt)) / (gl ( a R  - M IlwlI))} - ' 

here, a and w(t)  are the same as in (Ba). 

TrlEOrtnM 3.1. Suppose  Condi t ions  (B1) - (B~)  hold, then  prob lem (3.1) has  a solut ion  x E C[O, 1], 
x '  6 AC[O, 1] with x ( t )  > 0 for t 6 [0, 1] and  r <_ II x + Mwll < R. 

PROOF. To show (3.1) has a positive solution, we will show 

x "  + a ( t )  x = F ( t , x ( t )  - M w ( t ) ) ,  0 < t < 1, 
(3.3) 

z (0 )  = x ( 1 ) ,  x ' ( 0 )  = z '  (1); 

has a solution x 6 C[0, 1], x '  6 AC[O, 1] with x ( t )  > M w ( t )  for t 6 [0, 1] and r < Iixl] -< R. 
If this is true,  then u(t )  = x ( t )  - Mw(t)  is a positive solution of (3.1) and r <_ Ilu + Mwl] <_ R,  

since 
u"  (t) + a (t) u (t) = x "  (t) - M w "  (t) + a (t) x (t) - M a  (t) w (t) 

= f (t, x (t) - M w  (t)) - M 

= f (t, x (t) - M w  (t)) 

= f (t, u ( t ) ) ,  

for all t 6 [0, 1]. 
As a result, we will only concentrate our s tudy on (3.3). 
Let X = C[0, 1] and K be a cone in X defined by (2.6). Let  

a~  = {~ e x :  IIzll < r } ,  a R  = {x e x :  IIxll < a } ,  

and define the  opera tor  T : K fq ( ~ n  \ 12r) ~ K by 

f0 
1 

( T x )  (t) = G (t, s) F (s, x (s) - M w  (s))  ds, 0 < t < 1, (3.4) 

where G(t ,  s) is the Green function to problem (2.1). 
Since r < ]txl[ _< R for any z 6 KCI(~R\flr), thus, 0 < a r - M i i w l l  < x ( s )  - M w ( s )  < R.  Since 

F : [0, 1] x [ar - MI]~II , R] ~ [0, oo) is continuous, it follows from L e m m a  2.3 and Lemma  2.4 
tha t  the opera tor  T : K N (~R \ fir)  ~ K is well defined and is continuous and completely 
continuous. 
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First, we show 
[[Txl[ <_ tlxt[, for z E g n 0fir.  (3.5) 

In fact, if x E K N 0f~r, then Ilxl[ = r and x(t) >_ ar > MHw][ for 0 < t < 1. So, we have 

( T ~ )  (t)  = a (t ,  s )  F (~, x ( s )  - M ~  (~))  a s  

fo 1 { h(x(s) - Mw(s)) } ds < G(t,s) g ( x ( s ) - U w ( s ) )  1+ 
- g ( x ( s )  U w ( s ) )  

/o I { <_ e(t,s)g(ar-Mi]wI[) 1+o--- ~ ds 
{ h(T)  

=w(t )g(ar-Ml iwII  ) l + g ( r )  j 

{1 h(r) ~ 
< Ilwll g (ar - M Iiwil) + g (r) J 

<_ r = IIz l l  , 

for t E [0, 1], since aT - MIIwll <_ x(s) - Mw(s) < r. 
This implies ]]TxiI < Iixll, i.e., (3.5) holds. 
Next, we show 

IITzll _> Ilxll, for x E K n OftR. (3.6) 

To see this, let x E KNOftR, then [[xl[ = R and x(t) > aR > Mllw[I for 0 < t < 1. As a result, 
it follows from (B5) and (B6) that ,  for 0 < t < 1, 

( T ~ )  (t)  = a (t, s)  F (s,  • (s)  - M~o (s) )  ds  

fo 1 { hl (X(s ) -  Mw(s)) } ds > G( t , s ) g l ( x ( s ) - Mw(s ) )  1 + ~-~1 ~ - ~  _--~ww ~- ~ 

fo x { hl ( a R -  M llw]l) } ds >_ G(t,s)gl(R) 1 +  ~ ( - ~ - -  M i1~11 ) 

{ hl(~R-Mllwll)} 
= w (t)gl  (R) 1 + ~ ( - ~ - R - - M  II~ll) 

{ h l (an -Ml lw l ] ) }  
_> ~ Ilwll gl (R) 1 + gx (~R - M I1~11) 

> R = II~tt, 

s i n c e  e r r  - MII~II -< z(s) - Mw(s) < R. 
T h i s  implies IITxll >_ Ilxll, i.e., (3.6) holds. 
Now, (3.5), (3.6), and Theorem 1.1 guarantee tha t  T has a fixed point x E K n (~R \ fir) with 

r _< Ilxll _< R. Clearly, this x is a positive solution of (3.3). II 

EXAMPLE 3.1. Let us consider the following periodic boundary  value problem, 

• " + a (t) x = t '  (x  - ~  + z ~ + k ( t ) ) ,  0 < t < 1, (3.7) 
x(0)  = x ( 1 ) ,  x '  (0) = x '  (1); 

where a(t) E A, a* = ess sup a(t) < oo, a > 0, f~ > 1, and k : [0, 1] ~ P~ is continuous, /z  > 0 is 
chosen such tha t  

< sup  x ( a x  - M Ilwll) ~ (3 .8)  
xE((MHwll)/a, oo ) I1~11 {1 + 2nx a + x~+~} ' 

here H = Ilkll. Then, problem (3.7) has a positive solution x E C[0, 1], x' E AC[0, 1]. 
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T ( r )  = 

This implies that there exists 

To see this, we will apply Theorem 3.1 with M -- # H  and 

g (x) = gl (x) = #x  -a ,  h (x) = # (x ~ + 2 H ) ,  hi (x) = ~ z  ~. 

Clearly, (B1)-(B3) and (Bs) are satisfied. 
Set 

• 

T ( z )  = Ilwll {1 + 2 H x  c' + x a + ~ }  ' x E , + o o  . 

Since T( ( MIIwII ) / a ) = O, T (  oo ) = O, then there exists r E ( ( Milwll ) / a, oo) ,  such that 

x ( a x  - M [[wl[) ~ 
sup 

=e((Mi]~ll)/a,eo) [Iw[I {1 + 2 H x  a + x~+X~}" 

r E  ,oo  , 

such that 
r (a t  - M Ilwll) ~ 

# <  
II~ll {1 + r~'+~} ' 

so (B4) is satisfied. 
Finally notice (Be) is satisfied for R large enough since 

R 

agl (R) {1 + (hi (aR  - M [[w[I)) / (gl ( aR  - M Ilwll)} ) 
R a +  1 

= , , --* 0 ( a s  R --* oo )  
a# (1 + (aR  - M Ilwl[) a+X3) 

% 

since/3 > 1. Thus, all the conditions of Theorem 3.1 are satisfied, so the existence is guaranteed. 
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