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This data article contains complementary figures related to the
research article entitled, “ A dual epimorphic and compensatory
mode of heart regeneration” ([10], http://dx.doi.org/10.1016/j.
ydbio.2014.12.002), which presents a spatial and temporal char-
acterization of cardiomyocyte proliferation and dedifferentiation
after cryoinjury-induced myocardial infarction. This study demon-
strated that mitotic divisions occur in cardiac cells at distinct
differentiation status, namely in dedifferentiated cells at the injury
border as well as in mature cardiac cells within the remaining
intact myocardium. One of the important aspects supporting our
conclusions is a characterization of proteins that are upregulated
during mitosis in the regenerating hearts. The data presented here
reveal a dynamic change in the expression level and in the
subcellular distribution of γ-tubulin between mitotic and non-
mitotic cardiac cells. We report that in the non-mitotic cells, γ-
tubulin expression is restricted to the centrosome. By contrast,
during the mitosis, γ-tubulin strongly expands its localization
within the spindle apparatus that interacts with the condensed
chromosomes. We demonstrated that the differential distribution
of γ-tubulin in non-mitotic and mitotic cells requires adjusted
image processing for the appropriate visualization of both
expression patterns in the same histological specimens.
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Specifications Table
Subject area
 Biology
More specific
subject area
Regenerative biology
Type of data
 Figure

How data was
acquired
Confocal microscope (Leica Sp5)
Data format
 Raw and processed with Adobe Photoshop

Experimental factors
 Cryoinjuries were performed to induce myocardial infarction in transgenic adult zebrafish expressing

EGFP under a cardiac specific promoter (cmlc2: EGFP). Hearts were collected at 14 days post cryoinjury,
fixed in 2% paraformaldehyde, and sectioned using a cryostat.
Experimental
features
Heart sections were analyzed using immunofluorescence against γ-tubulin, phospho-(Ser10)-histone H3,
GFP and DAPI. The multiple labeling was analyzed using confocal microscopy. γ-tubulin fluorescent
signals were adjusted for the optimal visualization of the subcellular distribution using the levels option
of Adobe Photoshop software.
Data source location
 University of Fribourg, Switzerland

Data accessibility
 The data are supplied with this article
Value of the data
�
 Quadruple immunolabeling with a cardiac transgenic marker, phospho-(Ser10)-histone H3,
γ-tubulin and DAPI allows unambiguous identification of mitotic cardiomyocytes in the
regenerating zebrafish heart.
�
 We analyze a previously uncharacterized distribution of γ-tubulin in the zebrafish adult
cardiomyocytes to provide evidence of a differential expression pattern of γ-tubulin in non-
mitotic and mitotic cardiac cells.
�
 We describe how to adjust the fluorescence signal intensity of the original confocal data in order to
detect γ-tubulin either in the interphase centrosomes or in the mitotic spindle.
γ-tubulin is an evolutionary conserved cytoskeletal protein, which plays essential roles in microtubule
organization and nucleation [4,6]. The subcellular distribution of this protein has been previously analyzed
in a large variety of model organisms ranging from Aspergillus through Drosophila and mammals. In some of
these studies, γ-tubulin was detected only in the centrosomes-related organelles during both the interphase
andmitosis [7,11,12]. Other reports revealed the expansion of γ-tubulin during the mitosis within the nearly
entire mitotic spindle [5]. To our knowledge, the distribution of γ-tubulin has not yet been analyzed in the
zebrafish adult somatic cells. Previous studies revealed that the zebrafish heart regeneration depends on the
proliferation of adult cardiomyocytes [8,9]. Here, to understand the mitotic mechanisms associated with
zebrafish heart regeneration, we analyzed the expression of both γ-tubulin and phosphohistone H3 (PH3),
which demarcates the condensed chromosomes during the nuclear division.

Our data provide evidence for the dynamic γ-tubulin expression during the cell cycle. To distinguish
between the interphase/G0 andmitosis, we used phospho-(Ser10)-histone H3 (PH3) immunolabeling that
demarcates the condensed chromosomes. To identify cardiomyocytes among other cell types in the heart,
we used a transgenic fish line expressing EGFP under a cardiac specific promoter (cmlc2::EGFP), and we
performed anti-GFP immunostaining (Fig. 1A-C; Fig. 3). Analysis of multiple heart sections revealed that in
the non-mitotic zebrafish cardiomyocytes, γ-tubulin expression in restricted to a single spot in the vicinity
of each nucleus, which corresponds to the centrosome [4]. By contrast, all of the PH3-positive cardiac cells
were characterized by an expanded and stronger presence of γ-tubulin that was associated with the
condensed chromosomes (n¼17 cells, 5 hearts) (Fig. 1C and E; Fig. 3C and D). Analysis of the red
fluorescence with the same image adjustments revealed that this centrosomal pattern of γ-tubulin
expression does not derive from background enhancement (Fig. 2). Thus, γ-tubulin is not restricted only to
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Fig. 1. γ-tubulin is differentially distributed in mitotic and non-mitotic zebrafish cardiac cells. (A) Heart section of cmlc2::EGFP
transgenic zebrafish at 14 days post cryoinjury (dpci) labeled with antibodies against GFP (cmlc2: EGFP, anti-GFP, cardiac cells,
blue), phospho-(Ser10)-histone H3 (PH3, mitosis, red) and γ-tubulin (centrosomes, spindle apparatus, green). Cryoinjured part is
encircled with a dashed line. (B, C) Higher magnification of the framed area shown in (A) showing a PH3-positive cardiomyocyte
(C). (D–F) The same area as in (C) but contrastained with DAPI (blue), which colocalizes with PH3 (condensed chromosomes) and
γ-tubulin immunolabeling. (E) Original confocal image. (D) The fluorescence signal of γ-tubulin was optimized to display the
localization in the mitotic spindle. Using this setting, γ-tubulin expression in the centrosomes of the non-mitotic cells is
undetectable. (F) Image adjustments according to the non-mitotic cell to detect the dotty pattern of centrosomal expression. Note,
an overexposed γ-tubulin labeling of the mitotic cell. Scale bar (A, B, and C)¼50 μm; S¼ shadows; M¼ midtones; H¼ highlights.
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the duplicated centrosomes of the dividing cells, but it covers other domains of the mitotic spindle. Due to
the high difference in the intensity of γ-tubulin signals between mitotic and non-mitotic cells, it was not
possible to simultaneously display both types of expression patterns on the same image. The original
confocal data had to be adjusted using Adobe Photoshop to visualize both aspects of γ-tubulin expression
in the separate images of the same original specimen (Fig. 1D and F; Fig. 3C0and D0). Our analyses of
mitotic cytoskeletal proteins will be helpful to understand the cellular mechanisms underlying the
proliferative capacity of adult zebrafish cardiomyocytes.
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Fig. 2. Dotty expression of γ-tubulin at the non-mitotic nuclei does not derive from enhanced background. (A) Higher
magnification of the framed area shown in Fig.1 C labeled with PH3, γ-tubulin and DAPI. (B) The simultaneous increase of the
green and red input levels reveals the dotty pattern of only γ-tubulin (green) but not PH3 (red). This demonstrates the
specificity of green immunofluorescence consistent with the centrosomal localization of γ-tubulin. Scale bar (A)¼25 μm;
S¼shadows; M¼midtones; H¼highlights.
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Fig. 3. Additional examples of differential γ-tubulin expression in mitotic and non-mitotic cells. (A) Heart section of cmlc2::
EGFP transgenic zebrafish at 14 days post cryoinjury (dpci) labeled with antibodies against GFP (cmlc2::EGFP, anti-GFP, cardiac
cells, blue), phospho-(Ser10)-histone H3 (PH3, mitosis, red) and γ-tubulin (centrosomes, spindle apparatus, green). Cryoinjured
part is encircled with a dashed line. (B) Higher magnification of the framed area shown in (A). (C, D) Higher magnification of the
framed areas shown in (B) showing different PH3-positive cells. (C0 , D0) The same areas as in (C) and (D) but contrastained with
DAPI (blue). The differential subcellular expression of γ-tubulin in mitotic and non-mitotic cells was observed in several regions
of each heart. N¼5 hearts; Scale bar (A, B, C, C0)¼50 μm; S¼shadows; M¼ midtones; H¼highlights.
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1. Experimental design, materials and methods

1.1. Animal procedures

The present work was performed with adult fish at the age of 18 months (transgenic fishes: cmlc2::
EGFP zebrafish strains [1]. Cryoinjuries were performed as described previously [2,3]. The
experimental research on animals was approved by the cantonal veterinary office of Fribourg.
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1.2. Immunohistochemistry

The hearts were collected and fixed overnight at 4 1C in 2% paraformaldehyde. They were then
rinsed in PBS and equilibrated in 30% sucrose before embedding in Tissue-Tek OCT compound (Sakura
Finetek Europe B.V.) and cryosectioned at a thickness of 16 μm.

The immunohistochemistry procedure was performed as described previously [3]. The following
primary antibodies were used: mouse anti-p-Histone H3 at 1:200 (Clone 3H10, Millipore), rabbit anti-
tubulin-gamma (γ) at 1:2000 (Abcam, ab11321) and chicken anti-GFP at 1:2000 (Aves Labs, GFP-1010).
The Alexa-Fluor-conjugated secondary antibodies (Jackson Immunoresearch) were used at 1:500, and
DAPI was used at 1:2000. A detailed table describing the labeling and imaging settings for each
structure is listed here:
Antigen
 Primary antibody
 Secondary antibody
 Leica confocal excitation/emission filters (nm)

EGFP (cmlc2::EGFP)
 chicken anti-GFP
 anti-chicken alexa 488
 488/ 500–540

γ -tubulin
 rabbit anti-tubulin-gamma
 anti-rabbit Cy5
 633/ 650–700

PH3
 mouse anti-p-Histone H3
 anti-mouse Cy3
 543/ 560–600
1.3. Image analysis and quantification

After antibody staining, cardiac tissue imaging was performed at different magnifications (20�
and 63� ) with a confocal microscope (Leica TCS-SP5). The following Leica image acquisition
parameters were used:
Magnification
 20�
 63�

XY: Format (pixels)
 1024�1024
 1024�1024

XY: Speed (Hz)
 200
 200

Line average
 3
 3

Z-stacks (z-volume and number of steps)
 2.5 μm; 3 steps
 12.5 μm; 15 steps
The fluorescent pictures were then corrected using Adobe Photoshop for level adjustments.
The color balance and tonal range were optimized for each color channel by adjusting the

midtones and highlights. For the green signal (γ-tubulin), the input level (image-4adjustements-
4 levels) was optimized to visualize either the spindle apparatus of mitotic cells (shadow (S): 0;
midtones (M): 0.38; highlights (H): 255) or the centrosomes of non-mitotic cells (S: 0; M: 0.39; H: 44).
The output levels were not changed.
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