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a b s t r a c t

We construct an explicit minimal strong Gröbner basis of the ideal
of vanishing polynomials in the polynomial ring over Z/m for
m ≥ 2. The proof is done in a purely combinatorial way. It is a
remarkable fact that the constructed Gröbner basis is independent
of the monomial order and that the set of leading terms of
the constructed Gröbner basis is unique, up to multiplication
by units. We also present a fast algorithm to compute reduced
normal forms, and furthermore, we give a recursive algorithm
for building a Gröbner basis in Z/m[x1, x2, . . . , xn] along the
prime factorization of m. The obtained results are not only
of mathematical interest but have immediate applications in
formal verification of data paths for microelectronic systems-on-
chip.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Although the basic properties of Gröbner bases in polynomial rings over a ring C are well
known (see Adams and Loustaunau, 2003), they have not been studied very much, mainly because
they were considered as academic, in contrast to the case where the ground ring C is a field.
Recently however, Gröbner basis techniques in polynomial rings over C = Z/m (in particular Z/2k)
have attracted some attention due to their potential applications to proving correctness of data
paths in system-on-chip design (cf. e.g. Greuel et al., 2008; Shekhar et al., 2005; Wienand et al.,
2008).

When the underlying ring C has only finitely many elements, then there exist polynomials in
C[x1, x2, . . . , xn] which evaluate to zero for all (a1, a2, . . . , an) ∈ Cn, called vanishing polynomials.
Thus, any polynomial functionf : Cn

→ C given by an arbitrary element f ∈ C[x1, x2, . . . , xn],
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will have many alternative representations in C[x1, x2, . . . , xn], asf = f + g , for all g that constantly
vanish on Cn. All vanishing polynomials constitute an ideal I0.

In the applications mentioned above, not the polynomials but only the polynomial functions are
of interest. Thus, if we want to apply algebraic methods we need to be able to efficiently compute
normal forms of polynomials with respect to a Gröbner basis of I0. In the presented paper, we set the
theoretical ground and provide fast algorithms for doing these computations.

From a mathematical point of view, I0 ⊂ Z/m[x1, x2, . . . , xn] has some interesting properties. In
this paper, we will give an explicit minimal strong Gröbner basis Gm for I0. As will turn out, Gm is a
Gröbner basiswith respect to every globalmonomial order.Moreover,wewill show for any alternative
minimal strong Gröbner basis G of I0 ⊂ Z/m[x1, x2, . . . , xn] that the sets of leading terms of Gm and
G are the same up to multiplication by units. This is remarkable, since the ring Z/m has zero divisors.
In general, the leading terms of two minimal strong Gröbner bases of an ideal I ⊂ C[x1, x2, . . . , xn]
need not be related by a unit but only by some element of C . We will prove both properties and show
also that in general all minimal strong Gröbner bases of an arbitrary ideal I ⊂ C[x1, x2, . . . , xn] have
the same number of elements.

From a practical point of view, as mentioned above, engineering tasks involving the computation
of Gröbner bases over finite rings will often need to deal with vanishing polynomials. This is due to
the fact that normally the elements of a Gröbner basis G will be used to decide the consistency of a
mathematical model. And typically, such a check involves the question whether the set of zeros of
all polynomials f ∈ G coincides with the set of all feasible input–output vectors of the modelled
artifact; see also Greuel et al. (2008). Our interest was specifically spurred by a cooperation with
the local Electronic Design Automation Group in which we use Gröbner bases to formally verify chip
designs. More precisely, a given verification task is translated into a polynomial ideal in Z/2k, where
typically k = 32 or k = 64; cf. Wienand (in preparation). For the special case of polynomial datapath
verification we also refer to Wienand et al. (2008) in which it was shown that the Gröbner basis
approach proves tractable for industrial applications where standard property checking techniques
failed.

This paper is organized as follows. Section 2 briefly recalls the basic concepts from the theory of
polynomial rings and Gröbner bases needed later. Section 3 starts by presenting canonical members
of the ideal of vanishing polynomials I0 ⊂ Z/m[x1, x2, . . . , xn]. Next we show that the leading
term of any given vanishing polynomial is divisible by the leading term of an appropriate canonical
member. This relation enables us to finally construct an explicit minimal strong Gröbner basis Gm of
I0 ⊂ Z/m[x1, x2, . . . , xn]. We also show that the size of Gm is of polynomial order of degree k in the
number of variables n, when we are in the practically relevant casem = 2k.

The theoretical results are followed by algorithms for computing reduced normal forms
with respect to the constructed basis, and for recursively computing a Gröbner basis of I0 ⊂

Z/m[x1, x2, . . . , xn] along the prime factorization of m. The normal form algorithm has been
implemented in the computer algebra system SINGULAR (Greuel et al., 2009) and successfully applied,
(Wienand et al., 2008).

2. Preliminaries

Let C be a commutative, noetherian ring with 1, and C[x] := C[x1, x2, . . . , xn] a multivariate
polynomial ring over C , where n ≥ 1. For any multi-index α = (α1, . . . , αn) ∈ {0, 1, 2, . . .}n, a
product of variables xα

:= xα1
1 · · · xαn

n is called a monomial, and a product a · xα with a ∈ C is called a
term.

Given two multi-indices α = (α1, . . . , αn), β = (β1, . . . , βn), we define α ± β := (α1 ±

β1, . . . , αn ± βn). We may compare α and β according to the predicate α ≼ β :⇔ ∀i ∈ {1, . . . , n} :

αi ≤ βi, and similarly α ≺ β :⇔ α ≼ β ∧ α ≠ β . For α = (α1, . . . , αn) ∈ {0, 1, 2, . . .}n, we write
α! := α1! · · · αn!, and |α| := α1 + · · · + αn.

Moreover, we require the polynomial ring C[x] to be equipped with a global monomial order
<, i.e., < is a well-order on the set of monomials and satisfies xα > xβ

⇒ xα+γ > xβ+γ for all
α, β, γ ∈ {0, 1, 2, . . .}n. Then < refines the partial order ≺.
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Sincewe are going toworkwith divisibility inZ/m[x1, x2, . . . , xn], we need to distinguish between
divisibility in Z/m and in Z. We set a|

Z
b :⇔ ∃k ∈ Z : b = a · k and a|

m
b :⇔ ∃ k ∈ Z : m|

Z
(b− a · k),

that is, b and a · k represent the same residue class in Z/m. For two monomials axα, bxβ , we say that
axα divides bxβ , if a|

m
b ∧ α ≼ β . We then write axα

|bxβ , using the ordinary symbol.

Let f = a0 · xα(0)
+ · · · + ak · xα(k)

be a polynomial in C[x1, x2, . . . , xn] with ai ≠ 0 for 0 ≤ i ≤ k,
and xα(0)

> xα(1)
> · · · > xα(k)

. We use the following notation:

deg (f ) = max{
α(i)

 | 0 ≤ i ≤ k} total degree of f ,
LT (f ) = a0 · xα(0)

leading term of f ,
LM (f ) = xα(0)

leading monomial of f ,
LC (f ) = a0 leading coefficient of f ,
L (A) = ⟨LT (f ) | f ∈ A⟩C[x1,x2,...,xn] leading ideal of A,

for A ⊂ C[x1, x2, . . . , xn], A ≠ ∅.

For an ideal I ⊂ C[x1, x2, . . . , xn] a finite set G ⊂ C[x1, x2, . . . , xn] is called a Gröbner basis of I if
G ⊂ I, and L (I) = L (G) .

That is, G is a Gröbner basis, if the leading terms of G generate the leading ideal of I . Note that in
general, all defined objects depend on the chosenmonomial order. Especially, a setGmaybe aGröbner
basis only with respect to a certain monomial order. We also remind the reader that with the given
definition, G already generates I , cf. Adams and Loustaunau (2003).

G is furthermore called a strong Gröbner basis if for any f ∈ I\{0} there exists a polynomial g ∈ G
satisfying LT (g) |LT (f ). A strong Gröbner basis G is called minimal strong if LT (g1) - LT (g2) for all
distinct g1, g2 ∈ G. It is a well known fact that a strong Gröbner basis can always be constructed from
a given Gröbner basis when C is a principal ideal domain, see e.g. Adams and Loustaunau (2003).

Note that if C is a field, any non-zero coefficient of a term is invertible in C , and thus L (A) =

⟨LM (f ) | f ∈ A⟩. It is easy to verify that in this case every Gröbner basis is a strong Gröbner basis. As
the following example shows, this does in general not hold when C is a ring:
Example 2.1. Consider C := Z/6, and the polynomial ring C[x] with one variable. Then G := {2x, 3x}
is a Gröbner basis of the ideal I := ⟨x⟩. But since neither 2x nor 3x divide x, G is not a strong Gröbner
basis.

We shall now capture the central notions of this paper.
Definition 2.2. To any polynomial f ∈ C[x1, x2, . . . , xn] we associate the polynomial functionf :

Cn
→ C , (c1, c2, . . . , cn) → f (c1, c2, . . . , cn). We call f a vanishing polynomial if the functionf is

identically zero.
The set I0 = {f ∈ C[x1, x2, . . . , xn] | f is a vanishing polynomial} is obviously an ideal in

C[x1, x2, . . . , xn], called the ideal of vanishing polynomials.

3. A minimal strong Gröbner basis of the ideal of vanishing polynomials

3.1. The ideal of vanishing polynomials

From now on let the coefficient ring be C = Z/m, where m ≥ 2, except stated otherwise. The
following results were inspired by the work of Singmaster (1974), Kempner (1921), Halbeisen et al.
(1999), and Hungerbühler and Specker (2006). Already in Lemma 5 of Kempner (1921), a univariate
version of the following lemma was proven. Theorem 7 of Halbeisen et al. (1999) restated this result,
andHungerbühler and Specker (2006) came upwith a generalization tomultivariate polynomial rings
over Z/m.
Lemma 3.1. Let a ∈ Z and α = (α1, . . . , αn) ∈ Nn

0 such that m|
Z
aα!. Then

pα,a := a
n∏

i=1

αi∏
l=1

(xi − l) ∈ Z/m[x1, . . . , xn]

is a vanishing polynomial.
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Proof. Fix an arbitrary point (c1, c2, . . . , cn) ∈ Cn. Then pα,a(c1, c2, . . . , cn) contains, for all i, by
definition the αi successive factors ci − 1, ci − 2, . . . , ci − αi. Independent of the value of ci, these
contain all factors from 2 up to αi. Therefore, αi! divides pα,a(c1, c2, . . . , cn), for all i. By combining
these results, it follows immediately that aα1! · · · αn! divides pα,a(c1, c2, . . . , cn). With m|

Z
aα! this

yields pα,a(c1, c2, . . . , cn) = 0 modulom. �

Let us now take a closer look at an arbitrary vanishing polynomial:

Lemma 3.2. Let f ∈ I0 ⊂ Z/m[x1, x2, . . . , xn] be an arbitrary vanishing polynomial with LT (f ) = bxβ .
Then m|

Z
bβ!.

For the proof we use some of the ideas introduced in Hungerbühler and Specker (2006), which are
based on the notion of partial differences in the multivariate setting. Already Carlitz used partial
differences in the univariate case, see Carlitz (1964), to give a necessary and sufficient condition for a
function f over Z/pk to be a polynomial function.1

Proof. Let C[x1, . . . , xn] denote an arbitrary polynomial ring over n ≥ 1 variables, and let h ∈ C[x]
be a polynomial. Then we may define the ith partial difference

∇ih := h(x1, . . . , xi−1, xi + 1, xi+1, . . . , xn) − h(x1, . . . , xi−1, xi, xi+1, . . . , xn),

for 1 ≤ i ≤ n. Note that ∇i is a linear operator.
Now we can define the successive application of the operator by

∇
0
i h := h, and ∇

k+1
i h := ∇i∇

k
i h, for k ≥ 0.

(For n = 1, ∇k
1h coincides with Carlitz’ △kh; see Carlitz, 1964.)

Since obviously, ∇i∇jh = h(x1, . . . , xi + 1, . . . , xj + 1, . . . , xn) − h(x1, . . . , xi + 1, . . . , xn) −

h(x1, . . . , xj +1, . . . , xn)+h(x1, . . . , xn) = ∇j∇ih, for all i, j ∈ {1, . . . , n}, we can extend the operator
to arbitrary multi-indices, that is, with α = (α1, . . . , αn) ∈ {0, 1, 2, . . .}n, the term

∇
αh := ∇

α1
1 ∇

α2
2 . . . ∇αn

n h

is independent from the order of application of the ∇i operators and hence well-defined.
Let us consider the difference (xi + 1)k − xki = k · xk−1

i + g(xi), where g consists of lower terms
only, that is, deg (g) < k−1. A simple induction shows that∇k

i x
k
i = k! and∇

j
ix

k
i = 0, whenever j > k.

Let now axα
:= LT (h) denote the leading term. Then, mainly due to the linearity of the ∇i operators,

it is easy to see that the previous facts can be further abstracted to the general statements

∇
αh = aα! and ∇

βh = 0, for all β ≻ α.

We apply the first equation to the vanishing polynomial f over the ring Z/m: With f also ∇
β f = bβ!

must be a vanishing polynomial, by construction. But this implies bβ! = 0 modulom. �

3.2. A minimal strong Gröbner basis of I0

The above lemmas suggest to consider the set of all polynomials pα,a for which neither α nor a can
be replaced by a smaller multi-index or element of Z/m, respectively, without losing the condition
m|

Z
aα!. (This minimality of α has been inspired by the so-called Smarandache function which maps

m to min{k ∈ N | m|
Z
k!}. This function played a role in previous works which studied the univariate

case, and had been named after Smarandache, see Smarandache (1980), although the idea had been
introduced earlier by Kempner in Definition 1 of Kempner (1921).) We thus define

Sm := {(α, a) | 1 ≤ a < m, a|
Z
m, α ∈ Nn

0, m|
Z
aα!,

∀ β ≺ α : m -
Z
aβ!,

∀ b < a, b|
Z
a : m -

Z
bα!},

Gm := {pα,a | (α, a) ∈ Sm}.

1 I.e., f (a) = g(a) mod pk , for all a ∈ Z/pk and some polynomial g ∈ Z/pk[x].
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Note that, according to Lemma 3.1, all polynomials inGm will still be elements of I0. And by Lemma 3.2,
we can hope to have constructed a strong Gröbner basis.

Theorem 3.3. Let m ≥ 2 and n ≥ 1 be arbitrary integers. With the above notations, Gm is a minimal
strong Gröbner basis of the ideal of vanishing polynomials I0 ⊂ Z/m[x1, x2, . . . , xn], independent of the
global monomial order.

Before we prove the theorem, let us take a look at an example.

Example 3.4. Letm = q1 ·q2 · · · qk be a product of k ≥ 1mutually distinct primes, and n ≥ 1 arbitrary.
We assume q1 < q2 < · · · < qk. Then we can immediately write down all elements of Gm:

(xi − 1)(xi − 2) · · · (xi − qk),
qk· (xi − 1)(xi − 2) · · · (xi − qk−1),

qk · qk−1· (xi − 1)(xi − 2) · · · (xi − qk−2),
· · ·

qk · qk−1 · · · q2· (xi − 1)(xi − 2) · · · (xi − q1),

in each row for all i ∈ {1, 2, . . . , n}.

Note that the first type of polynomial is in Gm, as qk! already contains all qj, thus m|
Z
qk!. Also, we

need to have all qk polynomial factors since, for all r < qk, qk -
Z

r!, i.e. m -
Z

r!. For the following
polynomials, the argument is similar. Moreover, it is easy to see that we do not have elements in Gm
involving two or more variables, and the presented polynomials are all elements of Gm.

In this special case |Gm| = k · n, and the maximal degree is qk. This means that the size of the basis
is only linear in the number of variables.

For the case k = 1, Z/q1 is a field, and we obtain only the n polynomials in the top row, which are
well-known for this case.

We now prove the theorem:

Proof. Let us fix m ≥ 2, the number of variables n ≥ 1, and an arbitrary global monomial order.
We first show that Gm is indeed a Gröbner basis of I0. To this end, it suffices to show that (i) Sm and
hence Gm is a finite set, (ii) Gm ⊂ I0, and (iii) L (I0) ⊂ L (Gm), since (ii) implies the other inclusion
L (Gm) ⊂ L (I0).

(i) Since (α, a) ∈ Sm implies α ≼ (m,m, . . . ,m), the set is clearly finite.
(ii) Gm consists of polynomials pα,a with m|

Z
aα!. Then Gm ⊂ I0 by Lemma 3.1.

(iii) Let f ∈ L (I0) be arbitrary. Then there exist some integer N ≥ 1, hi ∈ Z/(m)[x1, x2, . . . , xn] and
fi ∈ I0, 1 ≤ i ≤ N, such that

f =

N−
i=1

hi · LT (fi) .

Writing aixα(i)
:= LT (fi), we obtain m|

Z
aiα(i)

! from Lemma 3.2. Now either (α(i), ai) is already
an element of Sm. Or we can replace ai by some bi|Z

ai and/or α(i) by some β(i)
≼ α(i) such that

(β(i), bi) ∈ Sm. We can subsume both cases in saying that, for each i ∈ {1, 2, . . . ,N}, there is some
(β(i), bi) ∈ Sm such that bixβ(i)

|LT (fi). With appropriate polynomials gi, 1 ≤ i ≤ N, this amounts to

f =

N−
i=1

hi · gi · LT

pβ(i),bi


,

i.e., f ∈ L (Gm).
Next, let f ∈ I0. Then, with the same argument as for the fi above, there exists a pγ ,c ∈ Gm such

that LT

pγ ,c


|LT (f ). This shows that Gm is a strong Gröbner basis.
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It remains to show that Gm is minimal. To this end, pick two pairs (α, a), (β, b) ∈ Sm such that
axα

|bxβ . Then a|
m
b, a|

Z
m, b|

Z
m, and α ≼ β . We need to prove that a = b and α = β . Computing

in Z, take a prime factor q of b and k ≥ 1 maximal such that qk|
Z
b. Suppose qk -

Z
a. Then aα!

would have at least one less factor q in its prime factorization than bα!. But since m|
Z
aα!, we then

had m|
Z
b/q · α!|

Z
b/q · β!, and b would not be minimal in (β, b) ∈ Sm. We conclude that b|

Z
a. We

write this as a = d · b for some d|
Z
m. Now a|

m
b, that is, m|

Z
a · c − b for some c . Putting things

together we get bd = a|
Z
m|

Z
bcd − b = b(cd − 1). Hence d|

Z
(cd − 1) which can only hold for d = 1,

implying a = b. But then we must also have α = β , since otherwise β would not be minimal in
(β, b) ∈ Sm. �

We now show that leading terms of minimal strong Gröbner bases of I0 ⊂ Z/m[x1, x2, . . . , xn] are
unique, up to multiplication by units of Z/m. We prove this result as a consequence of a more general
statement for ideals over arbitrary commutative rings with 1 that has, to our knowledge, not been
stated before. (Note the similar statement in the field case; see e.g. Proposition 1.8.4 in Adams and
Loustaunau (2003).)

Theorem 3.5. (a) Let G, F be two minimal strong Gröbner bases of an arbitrary ideal I ⊂ C[x1,
x2, . . . , xn], where C is any commutative ring with 1. Then |G| = |F |, and the sets of leading terms in
G and F coincide up to multiplication by elements of C, i.e.,

∀ g ∈ G ∃ f ∈ F ∃ c ∈ C LT (g) = c · LT (f ). (*)

(b) In the case of C = Z/m and I = I0, the ring elements c in (*) can be chosen to be units of Z/m.

Note that the second statement holds for any ideal, if the ring C is a domain.

Proof. (a) Starting with the proof of (*), we pick any g ∈ G ⊂ I . Then, by the strength of F , there is
some f ∈ F such that LT (f ) |LT (g). Vice versa, by the strength of G, there must be some g ′

∈ G such
that LT


g ′


|LT (f ). Therefore, LT


g ′


|LT (f ) |LT (g), which implies g = g ′, byminimality ofG. But then

the leading monomials LM (f ) and LM (g) must also coincide, yielding the desired relation between
LT (f ) and LT (g).

Similar to the previous argument, it is easy to see that no two distinct leading terms in F can fulfil
a relation (*) with the same leading term in G, and vice versa. This implies the equality |{LT (g) | g ∈

G}| = |{LT (f ) | f ∈ F}| which clearly amounts to |G| = |F |, by the minimality of G and F .
(b) We first choose G = Gm to be the explicitly given Gröbner basis, and F any other minimal strong
Gröbner basis of I0 ⊂ Z/m[x1, x2, . . . , xn]. Consider a relation as in (*), i.e., b · xβ

= c · a · xα , where
(β, b) ∈ Sm and a · xα denotes the leading term of some f ∈ F . Then b = a · c mod m, in other words
m|

Z
ac − b. Now let ã := gcd (a,m) be the maximum portion of a that divides m, that is, a = ã · u,

where gcd (u,m) = 1 which is equivalent to u being a unit in Z/m. Since ã|
Z
m|

Z
ac − b, we obtain

ã|
Z
b.
We want to show ã = b, so for a contradiction let us assume ã < b. f ∈ F ⊂ I0 implies m|

Z
aα!

by Lemma 3.2, hence m|
Z
ãα! = ãβ!, as the factors in a/ã do not affect divisibility by m and since

obviously α = β . But this means that we could replace b by the smaller ã and still preserve the
conditionm|

Z
ãβ!. This contradicts the minimality of b in (β, b) ∈ Sm. Hence ã = b.

We thus arrive at the claimed relation u · bxβ
= axα , and c can be replaced by the unit u−1

∈

(Z/m)∗.
We have shown that we can relate the leading terms of any minimal strong Gröbner basis F of

I0 ⊂ Z/m[x1, x2, . . . , xn] to the leading terms in Gm by units. By transitivity, we can now clearly
also relate the leading terms of any two minimal strong Gröbner bases by units. This concludes the
proof. �

Note that an arbitrary factor c , relating two leading terms, need not necessarily be a unit. For example,
consider the polynomial f (x, y) = 3(x − 1)(x − 2) · (y − 1)(y − 2) ∈ G12. We may switch to
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another minimal strong Gröbner basis of I0 ⊂ Z/12[x, y], simply by replacing f (x, y) by f ′(x, y) = 9
(x−1)(x−2)·(y−1)(y−2). Note that overZ/12 the ideals ⟨f ⟩ and


f ′


are identical. Thus,Gm\{f }∪{f ′

}

must still be a minimal strong Gröbner basis. Now obviously LT

f ′


= 3 · LT (f ), but 3 is not a unit in

Z/12.
We point out that minimal strong Gröbner bases are in general not unique. This is due to the

fact that we only consider leading terms and do not require tail reduction here. For example, in the
case of the ideal I0, we can easily modify the basis Gm and still obtain a minimal strong Gröbner
basis. To this end, we may pick two elements f , g ∈ Gm with LM (g) < LM (f ) and replace f by
f + g .

Let us once again take a look at the complexity of Gm, that is, the size |Gm| as a function of the
number of variables n. The discussion that followed Example 3.4 already made it clear that |Gm|

is only linear in n, when all prime factors of m are mutually distinct. In the general case when
m = qe11 · qe22 · · · qekk with some ej > 1, the construction is combinatorially more complex. However,
based on the following investigation for the practically relevant casem = qk, we conjecture that for a
fixedm the size of Gm is always of polynomial order in n.

Since we are interested in the asymptotic behaviour of |Gm| for a large n, we may assume that n is
much larger thanm = qk. We can decompose Gm into the disjoint union

Gm =


0≤j<k

G(j)
m , where

G(j)
m := {qj · (xi − 1) · · · (xi − (k − j)q) | 1 ≤ i ≤ n}

∪{qj · (xi1 − 1) · · · (xi1 − s1q)(xi2 − 1) · · · (xi2 − s2q) |

1 ≤ i1, i2 ≤ n; i1 ≠ i2; 1 ≤ s1, s2; s1 + s2 = k − j}

· · ·

∪{qj · (xi1 − 1) · · · (xi1 − q)(xi2 − 1) · · · (xi2 − q) · · ·

(xik−j − 1) · · · (xik−j − q) | 1 ≤ iu ≤ n; iu ≠ iv for u ≠ v},

that is, in G(j)
m we have the constant coefficient qj, and we have polynomials in 1 up to k − j variables.

With hj := |G(j)
m |, we obtain the very rough estimates

hj ≤ n +


n
2


· k1 + · · · +


n

k − j


· kk−j−1

=

k−j−
l=1


n
l


· kl−1

≤


n
k


· kk,

hj ≥


n

k − j


.

For h := |Gm| =
∑

0≤j<k hj we thus get


n
k


≤

k−1−
j=0


n

k − j


≤ h ≤ k ·


n
k


· kk =


n
k


· kk+1,

and h = |Gm| is of polynomial order of degree k in the number of variables n.

3.3. Computing the reduced normal form of a polynomial

After we have given a minimal strong Gröbner basis of I0 ⊂ Z/m[x1, x2, . . . , xn], we shall now
turn to computing representatives of the residue classes in (Z/m[x1, x2, . . . , xn]) /I0.Whenwe impose
certain bounds on the coefficients of all monomials, these representatives are unique:
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Proposition 3.6. Every residue class f̄ ∈ (Z/m[x1, x2, . . . , xn]) /I0 has a unique representative f ∈

Z/m[x1, x2, . . . , xn] of the form

f =

−
α∈{0,1,...,m−1}n

aαxα, where 0 ≤ aα <
m

gcd (m, α!)
, for all α.

Note that, wheneverm|
Z
α!, the given bound forces aα to be zero.

Proof. Let f ∈ Z/m[x1, x2, . . . , xn] be an arbitrary polynomial. Suppose f contains a monomial axα

for which a ≥ c :=
m

gcd(m,α!)
. Due to division with remainder of a by c in Z, we obtain a = k · c + r

for some k ∈ {1, 2, . . .}, and 0 ≤ r < c . Now, m|
Z

mα!

gcd(m,α!)
. In other words, m|

Z
cα!, and pα,c ∈ I0 by

Lemma 3.1.
As a consequence, f and f ′

:= f − k · pα,c lie in the same residue class. Moreover, the coefficient
of xα in f ′ is a − k · c = r , for which the claimed bound holds. Since we have a global order on the
monomials, we need only finitely many repetitions of the presented reduction step, in order to arrive
at a polynomial g which also lies in the residue class of f , and the coefficients of which all satisfy the
required bound condition.

To prove the uniqueness of the constructed representative, assume we have two representatives
f1, f2 of the residue class of f , realising all coefficient bounds. Then, by defining either g := f1 − f2 or
g := f2 − f1, we obtain a polynomial g ∈ I0 with LT (g) = axα and 0 ≤ a < m

gcd(m,α!)
. By Lemma 3.2,

we know thatm|
Z
aα!.

We need to show that a = 0; so for a contradiction, let us assume that a > 0. With b := gcd (m, a)
we still have m|

Z
bα!, i.e., m

b |
Z
α!. Then also m

b |
Z
gcd (m, α!) which implies m|

Z
b · gcd (m, α!). But

b · gcd (m, α!) ≤ a · gcd (m, α!) < m, yielding the desired contradiction. �

As an immediate consequence, we can count the number of polynomial functions which is the same
as the number of residue classes in (Z/m[x1, x2, . . . , xn]) /I0:

Corollary 3.7. The number of polynomial functions (Z/m)n → Z/m is given by

N =

∏
α∈{0,1,...,m−1}n

m
gcd (m, α!)

.

In comparison, the number of all functions (Z/m)n → Z/m equals

m(mn) =

∏
α∈{0,1,...,m−1}n

m = N ·

∏
α∈{0,1,...,m−1}n

gcd (m, α!) .

Z/m −→ Z/m No. of functions No. of polynomial functions

m = 22 256 64

m = 28 10616 1016

m = 216 10315652 1052

m = 232 1041373247567 10184

Hence, if m is not prime, there are much fewer polynomial functions (Z/m)n → Z/m than
functions. This has the consequence that not every problem which can be modelled by functions, like
problems coming from formal verification, can be modelled by polynomials over Z/m (cf. Wienand
et al. (2008) where, nevertheless, polynomial ideals over Z/2k have been used successfully).

Following the idea in the proof of Proposition 3.6, we are able to present a very fast algorithm for
computing the reduced normal form, that is, the unique representative of a residue class in the ring
Z/m[x1, x2, . . . , xn] module I0. (see Shekhar et al. (2005) for Z/2k):



G.-M. Greuel et al. / Journal of Symbolic Computation 46 (2011) 561–570 569

Algorithm 1 Reduced normal form in Z/m[x1, x2, . . . , xn] with respect to I0
Input: f ∈ Z/m[x1, x2, . . . , xn] a polynomial, > any monomial order on Z/m[x1, x2, . . . , xn]
Output: h the reduced normal form of f with respect to I0

h := 0
while f ≠ 0 do
axα

:= LT (f )
c :=

m
gcd(m,α!)

solve a = k · c + r with k ∈ N and 0 ≤ r < c
h := h + rxα

f := f − k · pα,c − rxα

end while
return h

Note that the algorithm makes sure that f + h will always represent the same residue class, as
pα,c ∈ I0. Since initially h = 0, this class must be the residue class of f . After termination, which is
ensured by the global order, h consists only of terms with appropriate coefficient bound, i.e., h must
be the unique representative as given in Proposition 3.6.

3.4. Computing minimal strong Gröbner bases over different rings Z/m

The simple structure of minimal strong Gröbner bases provides us with a recursive means to
construct Gm from bases for smaller m. We are especially interested in computing GM from the
elements of the already computed set Gm, where M = q · m with q a prime number. The following
pairwise disjoint decomposition of GM is easy to verify:

GM = {pα,a | pα,a ∈ Gm, (α, a) ∈ SM}

∪ {pα,aq | pα,a ∈ Gm, (α, aq) ∈ SM}

∪ {pα+β,b | pα,a ∈ Gm, ∃ β ∈ B(α, a, q) ∃ b|
Z
M : (α + β, b) ∈ SM},

where B(α, a, q) denotes the set of all β ≻ (0, 0, . . . , 0) such that (α + β)! contains one more prime
factor q than aα!.

This decomposition says that we may already directly find elements of GM in Gm. Or, secondly, we
may build an element of GM by multiplying an element of Gm by q. Besides altering the coefficient
only, we can also try to enlarge the exponent vector of some pα,a ∈ Gm such that the new exponent
factorial (α + β)! contains one more prime factor q than aα!. However, enlarging the exponent may
introduce many more divisors of M , so that in general we need to adjust the coefficient. It is easy to
see that once a suitable β is found, we can set b =

M
gcd(M,(α+β)!)

. The search for suitable β can obviously
be limited to the set defined by the condition β ≼ (q, q, . . . , q), that is, we know a finite superset of
B(α, a, q).

In practice, all three casesmay occur. The following examples are numbered according to the order
in the above decomposition. (The number of variables, n, equals 2.)

Example 3.8. 1. G3 ⊂ G6, since 3! = 6 already contains all necessary factors; see Example 3.4 (and
the remark regarding k = 1) to recall the elements of G3.

2. With q any prime, we have p(3,0),2 ∈ G12 and p(3,0),2·q ∈ G12·q.
3. We have 6(x− 1)(x− 2)(y− 1)(y− 2) ∈ G24. We try to construct an element in G24·3 by enlarging

the product of x and y terms. Since 6 · 2! · 2! contains one prime factor 3, we try to move to the
target product (x−1)(x−2)(x−3)(y−1)(y−2)(y−3)which realizes onemore factor 3 because
32

|
Z
3! ·3!. Now b =

72
gcd(72,3!·3!) = 2 and hence 2(x−1)(x−2) · (x−3)(y−1)(y−2)(y−3) ∈ G72.

The above decomposition of GM , and the structure of Gq for a prime q as discussed in Example 3.4, give
rise to the following algorithm.
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Algorithm 2 RecComp(M), Recursive computation of GM

Input: M ∈ {2, 3, . . .}
Output: GM
pick any prime factor q ofM
ifM = q then

A := {q · ei | 1 ≤ i ≤ n}, where the ei are the unit vectors in Nn

G := {pα,1 | α ∈ A}

else
m := M/q
H :=RecComp(m)
G := { }

for all pα,a ∈ H do
if (α, a) ∈ SM then

G := G ∪ {pα,a}

else
G := G ∪ {pα,a·q}

for all β ∈ B(α, a, q) ⊂ {β | (0, 0, . . . , 0) ≺ β ≼ (q, q, . . . , q)} do
b :=

M
gcd(M,(α+β)!)

G := G ∪ {pα+β,b}

end for
end if

end for
end if
return G
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