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ABSTRACT A theoretical framework is developed to study the dynamics of protein folding. The key insight is that the search for
the native protein conformation is influenced by the rate r at which external parameters, such as temperature, chemical denaturant,
or pH, are adjusted to induce folding. A theory based on this insight predicts that 1), proteins with complex energy landscapes can
fold reliably to their native state; 2), reliable folding can occur as an equilibrium or out-of-equilibrium process; and 3), reliable folding
only occurs when the rate r is below a limiting value, which can be calculated frommeasurements of the free energy.We test these
predictions against numerical simulations of model proteins with a single energy scale.

INTRODUCTION

Under appropriate conditions, proteins spontaneously fold

from a one-dimensional chain of amino acids to a unique

three-dimensional native conformation. How this occurs on

timescales accessible to experiment—and relevant to bio-

logical function—is a question that has intrigued scientists

for the past forty years. Levinthal (1) was the first to recog-

nize the importance of timescales and point out that, as-

suming a random search of conformation space, proteins

would not fold in a person’s lifetime. This argument has

come to be known as Levinthal’s Paradox since proteins must

fold for human life to exist in the first place.

Of course, conformation space is not sampled randomly

and Levinthal’s paradox has been resolved by applying sta-

tistical mechanics to the protein folding problem (2–4). Each

protein conformation has a free energy that determines its

probability to be sampled at temperature T. While the free

energy F generally comprises a sum of many enthalpic and

entropic terms, it is convenient to express it as F¼ E – TSconf,
where Sconf is the conformational entropy of only the protein

degrees of freedom and E is the internal energy that includes

all other contributions to the free energy (from both protein

and solvent). The functional dependence of E on all protein

degrees of freedom is called the energy landscape (5,6),

which, in general, contains many minima. For low temper-

atures, only the energy landscape is relevant and the protein

resides in a local (or global) minimum, corresponding to a

compact conformation. As temperature increases, the con-

formational entropy smoothes out the minima in the energy

landscape and the protein adopts more extended states with

larger Sconf. In the ‘‘new view’’ of protein folding (3,7),

statistical fluctuations on an energy landscape give rise to an

ensemble of folding pathways.

Often associated with the new view is the hypothesis that

energy landscapes have the shape of a multidimensional

funnel (4,8–10). Proponents argue that to fold reliably (tran-

sition to the native state with probability one) the energy

landscape must contain a single low-lying minimum to which

all conformations are channeled. If multiple funnels exist,

separated by large enough energy barriers, then at low tem-

perature or denaturant concentration a protein can become

trapped in a localminimumof energy that does not correspond

to its native conformation. While the existence of a single

funnel is a sufficient condition for reliable protein folding, the

number of proteins with a single funnel is expected to be small

and the observation of kinetic traps (11–15) and glassy be-

havior (16,17) in biologically relevant proteins indicates that

not all proteins fold on smooth funneled landscapes.

Here we address the open question: is a funneled energy

landscape necessary for reliable folding? By formulating a

statistical theory that includes the dynamics of folding, we find

that a funneled landscape is not necessary for reliable folding.

The important insight is that the rate r at which temperature or

chemical denaturant concentration is decreased to induce

folding affects the final conformation of the protein. For suf-

ficiently small r, the protein always folds to its native confor-

mation, whereas for larger r it can become trapped in a

metastable state.This leads to newpredictions that canbe tested

in experiments and simulations: First, proteins with arbitrary

energy landscapes—funneled or not—can fold reliably to their

native state if the rate r is below a limiting value. Second, re-

liable folding can occur as an equilibrium-quasistatic or non-

equilibrium process. Third, in a nonequilibrium folding

process, a protein can reliably fold to a local (instead of global)

minimum of free energy.We conduct off-lattice simulations of

model proteins and verify these predictions.

MATERIALS AND METHODS

Here we provide the details of the simulation and numerical methods used to

obtain the results discussed in Simulations of Model Proteins. Simulations

are performed on polymer chains of spherical monomers, each with diameter
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s. We include two types of monomers—attractive (green) and nonattractive

(white). Interactions depend on the separation rij between monomers i and j,

and it is convenient to define the normalized distance �rij [ rij=s: Interactions

between adjacent monomers are chosen to prevent the polymer chain from

breaking, while interactions between nonadjacent monomers are either

purely repulsive (for green-white or white-white interactions) or attractive

(for green-green interactions). More specifically, monomers that are adjacent

on the polymer chain experience a piecewise continuous potentialFccð�rÞ that
is comprised of a purely repulsive Lennard-Jones (LJ) potential (18) for

separations �rij # 1 and a FENE potential (19) for separations �rij $ 1;

Fccð�rijÞ ¼ eð�r�12

ij � 2�r
�6

ij 1 1Þ �rij # 1

�elogð1� q�2ð�rij � 1Þ2Þ �rij . 1
;

(
(1)

where e sets the energy scale and q ¼ 0.1. This potential has a minimum of

zero at �rij ¼ 1 and diverges at �rij ¼ 11q to prevent adjacent monomers from

unbinding. Green-green interactions are described by an LJ potential

Fattð�rijÞ ¼ �eEcð�r�12

ij � 2�r
�6

ij Þ; (2)

with energy depth Ec , 0 at �rij ¼ 1; whereas green-white and white-white

interactions obey a repulsive LJ potential

Frepð�rijÞ ¼ eð�r�12

ij � 2�r
�6

ij 1 1Þ �rij # 1

0 �rij . 1

�
(3)

that provides a repulsive force only when particles overlap.

Thermal fluctuations are included using off-lattice Brownian dynamics

simulations (18). The vector position r~i of each monomer i is determined at

each time-step by the attractive and repulsive forces arising from the po-

tentials in Eqs. 1–3 and random forces arising from thermal fluctuations. The

equation of motion for monomer i is

mi

d
2
r~i

d2t
¼ F~iðtÞ � gv~i � d

dr~i

+
j6¼i

ðFccð�rijÞ1Fattð�rijÞ
�

1Frepð�rijÞ
�
; (4)

where F~iðtÞ is a Gaussian random force, �gv~i a damping force, �gv~i is a

damping force, v~i is the velocity of monomer i, g ¼ hsd�1, h is the solvent

viscosity, and d is the spatial dimension. The Gaussian random force has zero

mean and a standard deviation proportional to T/h. We solve Eq. 4 using

standard numerical integration techniques (18) in the limit that monomer

mass mi ¼ 0.

Folding simulations are conducted by starting with Ec ¼ 0 and decreasing

Ec linearly in time with rate r at constant T¼ 1. SupplementaryMaterial (Data

S1) is included online of two movies that show the folding of a two-dimen-

sional polymer chain with an ordered sequence of green and white monomers

at rhs2/T¼ 10�7 where folding occurs reliably (Movie S1, ‘‘slowrate.mov’’)

and at rhs2/T ¼ 10�5 where a misfold occurs (Movie S2, ‘‘fastrate.mov’’).

We use the simulations to construct energy and free energy landscapes for

model proteins. The energy landscape (see Fig. 2) is obtained by running 20

folding simulations at each of five rates rhs2/T¼ 10�8, 10�7, 10�6, 10�5, and

10�4. Each simulation explores the range 0, c, 0.4 and the energy landscape

is averaged over all observed states. We believe that the landscape is suffi-

ciently sampled since we observe no difference at smallD and Rg between the

energy landscape pictured later in Fig. 2 and ones measured using only data

from the smallest r. The free energies (see Fig. 3) are measured by ramping to

the desired c-value using rhs2/T¼ 53 10�9, and then calculating a histogram

of the probabilityP(E,D) to have energyE and end-to-end distanceD over 108

time-steps for each c-value reported. The free energy F(E, D) is determined

from the probability via the relation F(E, D) ¼ �T log P(E, D).

RESULTS

We consider proteins with complex energy landscapes—not

necessarily funneled—and derive the conditions under which

folding occurs reliably. Generally, energy landscapes contain

multiple minima, possibly separated by large energy barriers.

Thus, folding is not necessarily an equilibrium process and

misfolds can occur. Below we consider the dynamics of the

folding process and its effect on reliable folding.

A kinetic mechanism for folding

Multiple minima in the energy landscape lead to multiple

minima in the free energy. In this case, we argue that there is a

basic kinetic mechanism that determines whether folding is

reliable. We illustrate the kinetic mechanism by considering a

transition from state A to state B on a complex energy

landscape. Although we will assume that the transition is

driven by a reduction of temperature, the same arguments can

be applied when a change of denaturant concentration or

another parameter induces folding.

In Fig. 1, schematic illustrations of the free energy are

plotted at four temperatures T1 . T2 . T3 . T4. We will

assume that a transition from A / B is induced by de-

creasing the temperature at a constant rate r, such that T(t) ¼
T1(1 – rt) as a function of time t. Initially at T1 the protein

resides in state A. As temperature is reduced to T2, an equi-

librium transition to state B can occur with folding time equal

to exp(DF/T2)/r*, where r*, which depends on temperature

and other physical parameters, is the microscopic rate at

which conformations are sampled and DF is the free energy

barrier between states A and B. At T3, a third stateM has free

energy equal to that ofA. As temperature is further reduced to

T4, the minimum corresponding to state A no longer exists

and the activation barrier DF9 between statesM and B grows.

Dynamics are important in determining transitions from

A / B. If the time that it takes for the temperature to de-

crease from T2 to T3 is less than the folding time, the protein

can fall into the metastable stateM. This sets a bound on r: if

r. r
f [

ðT2 � T3Þr�
T1

exp
�DF

T2

� �
; (5)

then the protein is likely to populate the stateM. The limiting

rate rf is inversely proportional to the equilibrium folding

time exp(DF/T2)/r* and proportional to (T2 – T3), where T2
(T3) is the temperature at which states B (M) and A have the

same free energy. Note that we use units where Boltzmann’s

constant kB ¼ 1.

For a misfold to occur, the escape probability from the

metastable state must be sufficiently small. If the protein

populates state M at time t3, the probability that it has not

escaped at time t is given by

PðtÞ ¼ exp �
Z t

t3

dt r
�
expð�DF9ðTÞ=TÞ

� �
[ expð�gðtÞÞ:

(6)

For a maximum waiting time t, the protein always escapes

the metastable state for g(t) � 1 and rarely escapes for
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g(t) � 1. The crossover between frequently escaping from

and being trapped in state M occurs when g(t) � 1. Using

T(t) ¼ T1(1 – rt), we find that when the rate is

r. r
s[

Z T3

0

r
�
exp

��DF9ðTÞ
T

�
dT

T1

; (7)

the probability to become trapped in the metastable stateM is

significant and misfolds occur. (Since we use a waiting time t
that satisfies T(t)¼ 0, the lower limit of the integral in Eq. 3 is

zero. Note that the limiting rates rf and rs can be determined

for any functional form T(t) and maximum waiting time t. In
the case that the final temperature is nonzero, rs includes a
term that grows linearly with waiting time and reliable

folding at time t only occurs if r , rf or r , rs.)
From these basic considerations, it is apparent that protein

folding transitions are influenced by multiple minima in the

free energy and the rate r at which external parameters are

varied to induce folding. To determine whether reliable

folding occurs, we must address two important questions:

1. Can the protein conformation reside in a metastable local

minimum?

2. Is it likely that the protein conformation becomes trapped

in that local minimum?

The answers to these questions define the limiting rates rf

and rs. The transitionA/ B occurs reliably if r obeys one of
the inequalities, r , rf or r , rs. In the case that r , rs, the
protein is given sufficient time to sample all states and

the transition A / B occurs reliably as an equilibrium pro-

cess. If rs, r, rf, the protein conformation becomes trapped

in the state B without fully exploring phase space and the

transition occurs reliably, but out of equilibrium. If r. rf and

r . rs, then the protein does not transition between A and B
reliably.

The free energy reaction path

In the previous section we identified a kinetic mechanism that

influences conformational transitions on complex energy

landscapes. In this section we use this mechanism to for-

mulate a general framework for understanding folding. We

begin by partitioning the energy landscape into basins asso-

ciated with particular protein topologies, proceed to define

the free energy reaction path that describes how the protein

transitions from one topology to another, and then use the

kinetic mechanism described above to determine whether

folding is reliable.

As a way to understand complex folding dynamics, the

energy landscape of an arbitrary protein can be partitioned

into basins surrounding each local minimum, analogous to

the inherent structure formalism for liquids and glasses (20).

In particular, the infinite number of protein conformations

can be uniquely associated with a finite number of topologies,

defined as protein conformations that are local minima of

the internal energy. We denote a topology as tn, where n is

an index that contains sufficient information to fully describe

the conformation (e.g., number, type, and arrangement of

bonds). The set of conformations BðtnÞ associated with each

topology tn is the basin of attraction for that topology. The

basin of attraction is defined such that all conformations that

belong to BðtnÞ relax to the topology tn when thermal fluc-

tuations of the protein are suppressed. Thus the infinite

number of possible protein conformations is represented by a

finite number of topologies and a free energy F(tn) can be

FIGURE 1 Schematic plots of the free energy versus an

arbitrary reaction coordinate at four temperatures where

T1 . T2 . T3 . T4. At T1 only the state A is accessible. At

T2, transitions to state B occur with activation barrier DF. T3
is defined as the largest temperature at which a new stateM
exists with free energy equal to that of state A. If the protein
has not transitioned to state B by T3, misfolds can occur. At

T4 the free energy barrier DF9(T) separating M and B
becomes larger than it was at T3.

2694 Lois et al.
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defined for the set of protein conformations BðtnÞ: Formally

the partition function Z(tn) for conformations constrained to

lie in BðtnÞ is given by

ZðtnÞ ¼
Z
BðtnÞ

expð�E=TÞ dG; (8)

where integration is over all coordinates G in the basin BðtnÞ
and E is the internal energy as a function of G. The free

energy for a protein constrained to BðtnÞ can then be written

in terms of the topology tn as

Fðtn; TÞ ¼ Eðtn; TÞ � TSconfðtn; TÞ; (9)

where E(tn, T) is the internal energy of topology tn and

Sconf(t
n, T) is its associated entropy (20), given by

Sconfðtn; TÞ ¼ log

Z
BðtnÞ

exp � E� Eðtn; TÞ½ �=Tð Þ dG: (10)

The random coil state t0 with zero internal energy has the

largest entropy and is therefore the global minimum of free

energy at sufficiently large temperature.

Given a protein energy landscape that has been partitioned

into a finite number of basins of attraction, master-equation

approaches (21) can be used to predict the probabilities at

which all topologies are sampled at temperature T. Hetero-
geneity in folding, i.e., multiple folding pathways for a single

protein, occurs because statistical fluctuations determine the

sampling probabilities (22). However, at each T there is a

topology that is sampled most frequently, which is the to-

pology with the lowest free energy. While master-equation

approaches treat constant T, reliable folding depends on how
the protein samples the energy landscape, which changes as

external parameters are varied. Using the kinetic mechanism

introduced in the previous section, we focus here on how the

most-likely topology changes as T is reduced and make no

assumptions about the transition pathways between the most-

likely topologies (we find that reliable folding can be pre-

dicted by only including information about the most-likely

topologies).

We define the free energy reaction path as the ordered

sequence of most-likely topologies that the protein adopts as

temperature is reduced in the equilibrium limit. That is, if the

rate r is sufficiently small, the protein will come to equilib-

rium at all temperatures and proceed through the basins of

attraction for a reproducible set of most-likely topologies

t0/tn1/tn2/ � � �/tnN : Each transition occurs at the

temperature where the free energy of two topologies is equal,

e.g., the transition t0/tn1 occurs at the temperature T* where
Fðt0; T�Þ ¼ Fðtn1 ; T�Þ: Note that free energy barriers be-

tween topologies are not relevant in the equilibrium limit

since the protein explores its conformation space ergodically.

Thus, for any energy landscape, the free energy reaction path

is defined as the path taken through conformation space when

folding occurs as an equilibrium-quasistatic process.

To determine whether folding is reliable, we apply the

analysis introduced in the previous section to each transition

in the free energy reaction path. If we label the transitions by

i¼ 1, 2, . . ., N, then limiting rates rfi and r
s
i can be determined

for each transition by measuring properties of the free energy.

There are then three distinct folding scenarios:

1. If r, rsi for all i, then the protein does not become

trapped in metastable conformations and folding occurs

reliably in equilibrium.

2. If rsi , r , rfi for a single transition i, then the protein

falls out of equilibrium at transition i, but reliably folds to

the topology tni (since the condition r, rfi guarantees that
the protein does not fall into a different metastable state).

Note that if there exist multiple transitions with rsi , r , rfi ;
then the protein will reliably fold to the topology with the

smallest value of i for which this condition holds. Finally,

3. If r . rsi and r . rfi for any i, and condition 2 does not

hold for a smaller value of i, then the protein will not fold

reliably.

From our analysis, we deduce that there are two types of

reliable folding: equilibrium and nonequilibrium. While re-

liable equilibrium folding brings the protein to the global

minimum of free energy, reliable nonequilibrium folding can

target local minima. The free energy reaction path provides a

useful framework to classify the relevant transitions since,

depending on the rate r, a protein will do one of three things:
pass through all topologies on the free energy reaction path

and arrive at the topology with the smallest free energy; target

an intermediate topology along the free energy reaction path

and reliably fold to a local minimum of free energy; or

misfold and deviate from the free energy reaction path.

Simulations of model proteins

To test the predictions of the previous section we perform off-

lattice Brownian dynamics simulations of model proteins

with a single attractive energy scale. We model a protein as a

polymer chain containing both attractive (green) and non-

attractive (white) spherical monomers of size s. Interactions
between nonadjacent green monomers are attractive with

energy depth Ec, 0, while interactions between nonadjacent

pairs of green-white or white-white monomers are purely

repulsive. This model is a variant of the HP model (23).

Thermal fluctuations of the protein at temperature T are in-

cluded using Brownian dynamics simulations with solvent

viscosity h. We observe that as the parameter c ¼ jEcj/T
increases from zero, the polymer chain transitions from a

random coil to a folded conformation.

Simulations in two dimensions

To test the predictions of the theory we begin with a two-

dimensional protein to simplify identification of the multiple

topologies that are adopted. We consider a three-dimensional

protein in the following section. In two dimensions, we
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simulate several sequences of green and white monomers,

both random and ordered, but focus the discussion on the

specific sequence pictured in Fig. 2.

In Fig. 2, we plot the energy landscape of the polymer

chain as a function of two reaction coordinates: the radius of

gyration Rg and the end-to-end distance D, each normalized

by the monomer diameter s. In terms of these two reaction

coordinates, three energy minima exist and are separated by

energy barriers. The minima correspond to three distinct to-

pologies that are pictured in Fig. 2. We find a total of four

relevant topologies for this simple system, containing either

zero t0, three t3, four t4, or five t5 bonds between attractive

green monomers. Energy barriers exist among t3, t4, and t5

because, to transition between the topologies, it is necessary

to first break a bond and then rearrange the chain confor-

mation. Note that four green particles is the minimum number

needed to ensure multiple energy minima in two dimensions,

while seven are required in three dimensions. Including ad-

ditional green particles introduces additional minima and

more complex energy landscapes—we treat only the simplest

case here.

The energy landscape of the simulated protein contains

multiple low-lying minima separated by energy barriers, as is

the case for many realistic proteins. We now determine the

associated free energy reaction path. Measurements of free

energy F/T, normalized by temperature, as a function of

E/jEcj and end-to-end distance D are shown in Fig. 3 for a

sequence of c-values that corresponds to the sequence of

schematic plots in Fig. 1. In Fig. 3 a, we plot F/T for a small

value of c ¼ 0.0040 and observe that the random coil state t0

is the only free energy minimum. In Fig. 3 b, the value c is
increased to c2 ¼ 0.0085 and there are multiple local minima

in the free energy, including the topologies t0, t1, t3, and t5.
The free energies of t0 and t5 are equal in Fig. 3 b. At a
slightly higher value c ¼ c3 ¼ 0.0100, Fig. 3 c exhibits three
minima and the free energy of t0 and t3 are equal. Finally at

c¼ 0.0145, the free energy plotted in Fig. 3 d exhibits a deep
minimum at topology t5.
From the plots in Fig. 3, we conclude that the first and only

transition in the free energy reaction path is t0 / t5. Since
there are only two topologies in the free energy reaction path,

the protein will either fold reliably to t5 or fold unreliably to

one of the three free energy minima t3, t4, and t5. Reliable
folding to one of the local free energy minima t3 or t4 is not
possible in this case since they are not a part of the free energy

reaction path. In the Appendix, we calculate the limiting rates

rfhs2/T ¼ 1.8 3 10�7 and rshs2/T ¼ 3.0 3 10�8 for the

single transition on the free energy reaction path, where hs2/T
is the simulation time-unit.

Now that we have determined the free energy reaction path

and calculated the limiting rates, we conduct simulations in

which external parameters are varied in time to induce

folding. We increase the energy scale c linearly in time at rate

r (c ¼ rt), starting from the topology t0 at c ¼ 0. In Fig. 4 a,
the energy of the polymer chain is plotted as a function of c
for three different values of r, with the final state labeled by

its topology. From this figure we clearly see that small r
targets the native state t5 whereas larger r leads to misfolding.

In Fig. 4 b, we plot the probability to fold to the native state t5

as a function of rhs2/T, averaged over many folding trajec-

tories studied for each r. The protein folds reliably for small

rates. We have also conducted simulations on model proteins

with random sequences of the same number of green and

white monomers. Reliable folding also occurs at low rates for

these random sequences, although the critical rates vary with

sequence.

The modern theory of protein folding requires funneled

energy landscapes for reliable folding (4,8–10). The simple

protein model we consider here provides a contradiction to

this viewpoint since there are multiple minima, none of

which is especially deep, and it nevertheless folds reliably at

small r. The free energy reaction path theory predicts that

reliable folding can occur on arbitrary energy landscapes and

FIGURE 2 Contour plot of the energy landscape and pictures of the

relevant topologies for a model protein in two dimensions. The fully

extended conformation is shown at the top of the figure. The inset displays

the full energy landscape and the main figure contains a magnified view of

the compact states. The landscape is plotted as a function of the radius of

gyration Rg and end-to-end distance D, each normalized by the monomer

diameter. The color bar gives the total internal energy of the protein divided

by the attraction strength jEcj. There are three distinct energy minima

separated by barriers and the associated topologies are pictured. Open

regions correspond to protein conformations that are never sampled in the

simulations.
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provides a means to quantitatively determine the limiting rate

below which folding is reliable. Given the values of rf and rs

quoted above, the free energy reaction path theory predicts

reliable folding for rhs2/T, 1.83 10�7. In Fig. 4 b, we have
measured that reliable folding occurs for normalized rates

&10�7. The theory therefore makes a correct quantitative

prediction of the simulation results. Additionally, the values

of rf and rs indicate that there is a range of rates rs , r , rf

where reliable folding to t5 occurs out of equilibrium. We test

this prediction by measuring energy fluctuations for rates at

which folding is reliable, as plotted in Fig. 4 c. For r # rs

fluctuations are large at the transition point c ¼ 0.0085, be-

cause the protein is sampling both folded and unfolded

conformations as it remains in equilibrium. For r . rs,
fluctuations remain small near the transition point since the

protein becomes trapped in the folded state and reliable

folding is a nonequilibrium process.

Simulations in three dimensions

We have also tested the predictions of the free energy reac-

tion path theory in three dimensions and find similar results.

We study the model protein with the ordered sequence pic-

tured in Fig. 5 that consists of 25 monomers, seven of which

are attractive. In Fig. 5, we plot the protein energy landscape

as a function of the radius of gyration Rg and end-to-end

distance D, each normalized by the monomer diameter s.
There are twominima at small Rg andD, corresponding to the
topologies t15 and t16 pictured in the figure.

The limiting rate below which folding is reliable can be

predicted by measurements of free energy. In Fig. 6, we plot

the free energy as a function of end-to-end distance D and

normalized energy E/jEcj for many different values of c. In
Fig. 6 a, the random coil state t0 is the only minimum in the

free energy. For c ¼ 0.0067, Fig. 6 b demonstrates that t16

and t0 have equal free energies. In Fig. 6 c, the random coil t0,
native state t16, and metastable state t15 basins of attraction
are present. At this value of c ¼ 0.0072, topology t15 has a
free energy equal to that of t0. For larger c, Fig. 6 d dem-

onstrates that the protein has an increasing probability to

populate the basin of attraction for t16, although the basin of

attraction for t15 is still visible. From this series of free energy

plots, it is apparent that the simulated protein possesses a

single equilibrium transition at c ¼ c2 from t0 to t16, and
misfolds to t15 are possible for c . c3.
Given the data in Fig. 6, we conclude that the first and only

transition in the free energy reaction path is t0 / t16, where
the protein folds to its native conformation. In the Appendix,

we calculate the limiting rates rfhs3/T ¼ 2.7 3 10�7 and

rshs3/T ¼ 2.3 3 10�6 for the single transition on the free

energy reaction path, where hs3/T is the simulation time-unit

in three dimensions.

Given the values of rf and rs, we expect this protein to fold
reliably for rhs3/T , 2.3 3 10�6, which is consistent with

the data in Fig. 7 b. In contrast to the two-dimensional sim-

ulations, we find rf , rs and thus this particular protein can

only fold in equilibrium. Generally we believe that the or-

dering of rf and rs can depend on the length, sequence, and

energy scales of the protein.

In both two and three dimensions we have demonstrated

that the folding of model proteins (with both ordered and

random sequences) is dependent on the rate that external

parameters are adjusted to induce folding. The free energy

reaction path theory allows us to calculate the limiting rate

below which folding is reliable, and we find quantitative

agreement with the results of simulations. Since rate depen-

dence is important for the simple model proteins we consider

here, we expect that it will also play an important role in

proteins of biological importance.

DISCUSSION

Levinthal was the first to realize that the exponential number

of collapsed conformations preclude a protein from finding

its native state via random sampling. The experimental ob-

servation that proteins fold reliably to a reproducible native

state therefore requires an explanation. The modern view is

that protein sequences have evolved to favor energy land-

scapes with a single funnel and can therefore fold reliably.

We have demonstrated that proteins with complex energy

landscapes can also fold reliably, as long as the external

FIGURE 3 Contour plots of the free energy F/T normalized by temperature for the two-dimensional protein pictured in Fig. 2 as a function of E/jEcj
(horizontal axis) and end-to-end distanceD (vertical axis) for a sequence of c-values. The free energy is calculated from the probability for the protein to be in a

conformation with given E/jEcj and D. Open regions correspond to protein conformations that are never sampled in the simulations.
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parameters that induce folding are adjusted slowly enough.

Thus the properties of the energy landscape are not sufficient

to determine whether a protein will fold reliably. Instead, one

must consider both dynamical effects and properties of the

landscape to predict whether folding is reliable. In the limit

that rf /N, reliable folding is ensured for all rates at which

external parameters are adjusted to induce folding. This limit

provides a natural definition for a funneled energy landscape

since it is the only case where reliable folding is independent

of rate.

Our predictions can be tested in experiments by studying

folding over a range of rates, using methods such as ultrafast

mixing or laser pulsing (24,25). Since the critical rates rf and
rs depend on the underlying energy landscape, measuring

their values provides a relatively simple means to extract

information about the landscapes of proteins. This informa-

tion can be used as a tool to further characterize folding

processes in different proteins. Some progress has been made

FIGURE 4 Results from folding simulations of the two-dimensional

protein pictured in Fig. 2. (a) Folding trajectories from simulations with

identical initial conditions at three different rates. The normalized energy

E/jEcj is plotted as a function of c and the final state is labeled by its

topology. Slow rates r# 5rf lead to the native state t5 whereas fast rates lead

to unreliable folding. (b) The probability of folding to the native state Pc as a

function of rate r. Error bars are from sampling statistics. For rhs2/T &

10�7, the protein folds reliably to the topology t5. Vertical lines indicate the

values of rf and rs calculated in the text. (c) Energy fluctuations dE2 ¼
(ÆE2æ� ÆEæ2)=E2

c as a function of c for folding simulations at different rates

r. For r # rs, the fluctuation curves appear to collapse and reliable folding

occurs in equilibrium. For rs , r , rf, fluctuations depend on r and reliable

folding occurs out of equilibrium. (Inset) Energy fluctuations at the equi-

librium transition point c ¼ c2 ¼ 0.0085 as a function of r/rs.

FIGURE 5 Energy landscape and relevant topologies for a three-dimen-

sional model protein, pictured in an extended state with no bonds at the top

of the figure. The inset is the full energy landscape, and the main figure

contains a magnified view of the compact states. The color bar gives the total

energy of the system normalized by the magnitude of the attraction strength

jEcj. There are two distinct energy minima separated by barriers and the

topologies of each minima are pictured and labeled. Open regions corre-

spond to protein conformations that are never sampled in the simulations.
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in this direction (26–28), and the observation of non-

exponential relaxation (29) after rapid temperature jumps is

consistent with our predictions. In three dimensions, the

limiting rates are proportional to r* ; T=hR3
H, where RH is

the hydrodynamic radius and h is the viscosity. This implies

that investigations of folding in solvents with varying vis-

cosities can greatly increase the range of experimentally ac-

cessible rates. Even in water, we estimate rf& 104 s�1, which

is easily accessible in current laser pulsing experiments (24).

Moreover, due to the dependence on T, folding by changing

temperature will give different limiting rates than folding by

reducing denaturant concentration.

We have identified two distinct types of reliable folding:

equilibrium and nonequilibrium. Even if the rate at which

thermodynamic parameters are varied to induce folding is

too large to access the equilibrium limit in some biological

settings, reliable folding can occur out of equilibrium. If this

is the case, the native state should be regarded as a reliably

targeted local minimum on the free energy reaction path that

remains metastable over timescales sufficient for biological

function.

The importance of the free energy reaction path and the

necessity of using small rates to vary external parameters

presents challenges for protein folding simulations. Reliable

protein folding is especially difficult to study in all-atom

simulations where, due to the long timescales and large

number of atoms, extremely rapid rates are used to induce

folding (30,31). From our results, reliable folding depends on

rate; thus, simulation studies that argue that funneled energy

landscapes are necessary for reliable folding (32,33) must be

carefully interpreted if only large rates are considered.

Finally, it is intriguing to speculate about folding in vivo.

Given that the folded state of a protein is dependent on rate at

which external parameters are varied to induce folding, and

that local minima in free energy can be targeted by adjusting

this rate, it is possible that protein sequence has evolved

along with the biological environment in which it folds. Since

the folding process is determined by protein sequence and

rate, both are likely used in nature to ensure robust folding.

APPENDIX

In this Appendix we calculate the values rf and rs quoted in Simulations of

Model Proteins, above. The limiting rates can be determined using equations

similar to those in Eqs. 5 and 7,

FIGURE 6 Contour plots of the free energy F/T normalized by the temperature for the three-dimensional protein pictured in Fig. 5, as a function of the

normalized energy E/jEcj (horizontal axis) and end-to-end distanceD (vertical axis) for four values of c. Open regions correspond to protein conformations that

are never sampled in the simulations.

FIGURE 7 Results from folding simulations of the three-dimensional

protein pictured in Fig. 5. (a) Folding trajectories for the three-dimensional

protein in simulations with identical initial conditions at four different rates.

The normalized energy E/jEcj is plotted as a function of c and the final state

is labeled by its topology. Slow rates r # 0.5rs find the native state t16

reliably whereas fast rates give rise to unreliable folding. (b) The probability
Pc of folding to the native state t

16 as a function of rate r. Error bars are from

sampling statistics. For rhs3/T & 2 3 10�6, the system folds reliably.

Vertical lines indicate the values of rf and rs calculated in the text.
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r
f ¼ ðc3 � c2Þr�exp �DF

T

� �
; (11)

r
s ¼

Z N

c3

r
�
exp

�DF9ðcÞ
T

� �
dc: (12)

These equations are derived for the simulation protocol where jEcj ¼ cT

increases linearly in time to induce folding, with T constant. The maximum

waiting time is taken to infinity.

Two-dimensional proteins

Here we calculate the critical rates for the ordered sequence pictured in Fig. 2.

We first calculate rf. Data in Fig. 3 gives c2 ¼ 0.0085 and c3 ¼ 0.01. The free

energy barrierDF/T is measured by preparing the protein in topology t5 at c¼
c2 and measuring the amount of time tf required to transition to t0, averaged
over 100 trials. The free energy barrier is related to the transition time by tf ¼
exp(DF/T)/r*. We measure tfT/hs

2 ¼ 8400, where hs2/T is the simulation

time-unit. Inserting these numbers into Eq. 11 yields rfhs2/T ¼ 1.83 10�7.

The rate rs is determined by preparing the protein in topology t3 and

measuring the average time ts(c) required to transition to the native topology
t5. We average ts(c) over 100 trials for each c-value and it is plotted in Fig. 8.

Since ts(c)¼ exp(DF9(c)/T)/r*, we calculate rshs2/T¼ 3.03 10�8 by direct

integration of ts(c)
�1, according to Eq. 12. Contributions to the value of rs

from c . 0.02 are negligible.

Three-dimensional proteins

Here we calculate the critical rates for the ordered sequence pictured in Fig. 5.

The rate rf is calculated using the values c2 ¼ 0.0067 and c3 ¼ 0.0072

determined from Fig. 6, along with the transition time tf from t16 to t0 at c ¼
0.0067. We measure tfT/hs

3 ¼ 1850, averaged over 100 trials. Given these

values, we calculate rfhs3/T ¼ 2.7 3 10�7.

The rate rs is calculated by measuring the transition time ts(c) between
topologies t16 and t15, which is shown in Fig. 9. Directly integrating this data
for c . c3 yields r

shs3/T ¼ 2.3 3 10�6.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this
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