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We defme a formula #(lt;#) in a &&-order language L, to be an equation in a category of 
L&n&uresEiff&anyHinK,andset 

p={t#(x;uJ;id,u@f} 

We say that an elementary first+u-der theory T which has the amalgamation property over 
substructures is equational if every quantiGer&ee formula is equivalent in T to a boolean 
fxmhinahn of (qua&&&e) equations in Mod(T), the category of models of T with 
embedd@s for morphisms. 

Thus, we develop a theory of independence with respect to equations in general categories of 
strudures, which is similar to the one introduced in stabiity (and actually identical to it in the 
case of equational theories) but which, in our context, has an algebraic character. 

The motivation for this work comes largely from the work of Shelah on stable 
theories. In his investigation of a stable theory T, Shelah showed the existence of 
an independence relation between the subsets of a model of T which satisfy some 
natural properties (see axioms 1-C below). This notion was crucial for developing 
a dimension theory on structures and the proof of structure theorems. 

However, the notion of a stable theory, and consequently the independence 
relation introduced by Shelah does not take into consideration the ‘algebraic’ 
character of many of the familiar examples of algebra. In particular, it does not 
take into consideration the existence in such theories of distinguished formulas 
which play the same role that algebraic equations play in the theory of fields or 
linear equations in the theory of vector spaces. Our aim in this paper is to show 
that there is a good notion of a distinguished formula, that we call ‘equation’, 
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which is a natural generalization of standard equations in algebra (e.g., algebraic 
equations, linear equations, di&xential equations, etc.). And also that we can 
de&~ (say, in a given class of structures) an independence relation with respect 
to a set of ‘equations’ in very much the same manner algebraic independence is 

in the class of gelds, or linear independence in the class of vector spaces. 
the beginning and assume only a naive understanding of 

relation means. The following are some examples. 

(a) In the category of fields F with field homomorphisms, we have the notion of 
independence. More precisely, given fields &c & Ii; c F, we say that 

independent from I$ over I& if whenever A is a finite set of 
elements in 4 which is algebraically independent over 6, then A remains 

. 
a&bmdly independent over 4. For A, B, C subsets of a Eeld F, write B dam C 
if (AU B) (the field generated by AU B) is algebraically independent from 
(AUC)over(A).LetusalsosaythatBisisomorphictoCoverAifthereisa 
fteld isomorphism from (AU B) onto (AUC) keeping A fixed. Then the 
relation rl, satisfies the fbllowing properties. 

1. (Existence). There exists LEP extending F which contains an isomorphic 
oapy B’ of B over A such that B’ dam C. 

2. (Monotonicity-transitivity). Giien D c C, B &A C itf B rLD C and B &A D. 
3. @cal &aracter). B 4~~ C ifE B 4~~ Co for every finite subset CO of C. 
4. (Symmetry). B &A C iff C~Q B. 
5. (Stability). (i) Th ere exists COc C such that B &,, C aud [CO1 s lB[ + &. 

(ii) Assumhg B unite, there are at most 2% (actually here at most finitely 
many) isomorphic copies B’ of B over A which are non-isomorphic over C and 
such that B’ &A c. 

(b) In the category MR of modules over a f&d ring, we have the notion of direct 
sum over a module. For A, B, C subks of a module M, write B &A C if 
(AU B) fl (AU C) = (A) ((A) the module generated by A), i.e., if the sum 
(A U B) + (A UC) is direct over (A). Again, one verifies that the relation & 
satisks the properties 1-C described above. 

(c) More generally, in an arbitrary category of L-structures (L a tit-order 
language) one has the notion of free amalgamation, which is defined as follows: 
let hi:&+Hi andJ:Hi*H, i=l, 2, be morphisms in Ktithfihl=& Then 
H (in principle, we should say (H,fi,fi)) is a f&e amalgam of HI and H2 if for 
any gi :Hi+ G (i = 1,2) with g,hl =g&z, there exists a homomorphism (i.e., a 
map preserving the atomic formulas) h : H+ G such that I& = gi, i = 1,2. 

Write(H~,~)~II,(Hs,fi)ifthereexistsgi:H~-,G, i=l,2, andg:G-,Hsuch 
that g&l =g&z, ggi =t& and G is a free amalgam of HI and Hz over &. 

e relation & defined above does not satisfy properties 1,2, 3, 5. 
an elementary class with embeddings for morphisms, which has 
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the amalgamation property and which is closed under su ctures and products, 
then rb satisfies 1,2,3,4. 

(d) Let K be the category described in (c). By substituting the function symbols 
in L by corresponding relation symbols, we can assume L contains only relation 
symbols. Given H in K, let H* be the IAtructure which has the same underlying 
set as H, but where a relation symbol in L is intcqxeteb by its ne Let 
K* be the category with objects the structures H* and with the 
original morphisms of K. obviously, the same relation & that we deEned in K can 
be defined in IL*, and clearly it s the proper& l-5 according to their 
satisfaction in K. Note however not preserved under products. 

PO analyze the independence relatioti in these ex s, we resort to the 
notion of type: Let L be a tit-order language and K a class of L-structures 
where a certain set A of formulas in L with .A = cl(A), has been fixed. We call 
such a class a A-category. (For instarxe, it is natural to consider the class of fields 
F as a A-category with A the set of quant&r-free formulas.) We wiM deke a 
notion of type generalizing the notion in inodel theory. Since we have not 
assumed that K is the class of models of B complete quantier ehminable theory, 
whenever we speak of the truth of a sentence we must specify an ambient 
structure. 

IfA, BcHEK,thetypeofBsverAinHisdcfmedas 

tp(B, A; H) = M--- ‘1 xbsa :&A,hB, Q~A,Hkt#@;ii)}. 

A collection p of A-foraulac $@; ii j with parameters from &4 c H is realized ouer 
H if for some HI E K, H e H,, and d in H1, p c tp(6, A; hi,). The collection p is 
cons&nt over H, and if so we call p a ppe oser A, if every finite subset of p is 
realized over H. If p is a type over A c H E K and # is a formula with parameters 
in H, we write p k& if for some fSte pocp, fo7 every FE K with H c F, 
Fk/\po-,#. For AcBcH and p a type over A in H we define the 
consequences of p on B 

pB = { tj@; 6) : 6 E B, t/) E A, p )_H #(g; 6)). 

we sometimes restrict pB to the formulas from a subset S of A and write pi. 
Note that the preceding discussion takes place w.ith respect to a category of 

structures K where the morphisms are embeddings. IIowever, modulo a slight 
change of notation we could work with any class of morphisms.] 

Now, in the examples above, the relation CL has been defined in terms of a 
particular set of formulas S: in example (a), S is the set of algebraic equations; in 
(b), S is the set of linear equations; in (c), S is the set of atomic formulas; and in 
(d), S is the set of negated atomic formulas. (Example (d) shows that the syntax 
of the formulas S with respect to which Ik is defined is not essential. If the 



in S are atomic formulas, then we can easily transform them into 
formulas without essentially changing the class of structures.) Let 
the formulas in S ‘equations’. Then, informally speaking, for 

A, B, C c F E K we had B &A C if the ‘equations’ Thea elements of B satisfy over 
C 81& hduced fkom the relations t&3: zns satisfy over A. More 

in examples (b), (c) and (d) one can check that B&, C if 
F)t-P#dB,C;F)--here we usually my that B&C if B does not 
n-trivial equations over C which it did not aheady satisfy over A -and 

thesameholdsin (a) in case (A) is algebraically closed. 
Atthatpointwecan whether, for arbitrary categories K, there is a general 

of formulas which makes them behave like equations. To begin tith, 
a property should be such that if S is a set of ‘equations’ in K, then we 

should be able to define in K an independence relat& & with respect to S which 
conversely if K is a category 

to a particular set of formulas, 
be able to consider these formulas as ‘equations~. In the following 
present a generalization of the notion of independence described 

pies, to an arbitrary category. Subsequently we define the notion of 
an equation and state the theorem which shows that the two notions correspond 
to each other in the sense given above. 

GivenaAxategoryK,AcCcH~K,ScA,patypeoverA,qacomplete 
type over 6, q =>p, q is an e&minimal extension’ of p if for every complete type 
rover C, rap, q&=&$qg= 4. (For instance, in case K = F, one verifies that 
q is an &d.nimal extension of p if the algebraic equations A 4% is an irreducible 
component of l\p& over H.) 

The notion of SH_minimal extension of a type is best appreciated if it is 
compared to the following: Given A c B,C c H: let us say that B and C are 
S amalgamated over A if whenever B’, C’ are subsets of H such that B’, 
C’ aA, @A@; A) c tpi(B’; A), and tpi(C; A) c tpi(C’; A), then for every 
tupks 6, E in B, C respectively, 

We will see that under some conditions -as for instance the case of a complete 
theory with A an elementary submodel of H and S a set of equations (see 
below) - we have that tp(B, C; H) is an &minimal extension of tp(B, A; H) iff 
B and C are S-freely amalgamated over A. 

Later on we write B&C (for A, B,C~HEK) if tp(B,C;H) is an 
S’minimal extension of tp(B, A; H). In that way, properties 1-5 above translate 
x: @J rqeties of S’minimal extensions of types. For instance, property 1 
becomes: 

(Existence). Given A c Cc H E K and p a type over A, there exists an 
SH+ninimal extension of p to C. 



tn&pen&cncc in categork of dgebmic saucnrres, I 189 

Delinition. A set of formulas R is equational if for any ,H in K and set 
p = {&(x; uJ; i E 2, #i E R, Oi E H}, there is a finite subset po of p such that 
p. kMp; a formula @(x; t) is an eqwth (in K) if {0(x; t)} is equational. 

(Algebraic equations in F and linear equations in MR are equations in the sense 
given above.) 

We show: 

Theorem. (1) If K is rhe A-uategmy of mode& ofaro eknenmyjkst-order theory, 
wirh embeddings for motphisms, A the set of qmantiir-jkee fom&s, such that 
the atomic fomuks are equations and K Bias the atmlgamation property ouer 
substructzms, then the rektion rL indked d#nm an indkpen&nce rek&n in 
&tmtiaUy closed structures sat&fjGng properties l-5. (K has the amalgamation 
property over substructures if whenever A c HI, Hz E K and (HI, A) =A (Hz; A), 
then there exist hi: Hi* H, i = 1,2, such that hl IA = hz! A.) 

(2) Conversely, if K is a category such as in (1) above (but without the 
assumptions on the atomic form&s being equations), which satish) the conclusion 
of (1), then the atomic form&s are equatkms. 

A category K satisfying the hypotheses of the theorem, we have called 
equational. 

As mentioned above the motivation for this work comes largely from the work 
of Shelah on stable theories. For our purpose, we shall say that a A-category K of 
models of an elementary first-order theory with embeddings for morphisms, A the 
set of quantinerfree formulas, -which has the amalgamation property over 
substructures, is stable if every atomic formulas does not have the order property; 
a formula 0(x; #) has the order property in K if there is H in K, (Oi)i<(u, (bi)i<cu in 
H such that H k $(uj, bt) iff j < i. 

Shelah de&xi in such categories the notion of a ‘non-forking’ extension of a 
type which corresponds to our notion of &+ninimal extensions (but is more 
subtle); consequently he defined an independence relation & (e.g., B 4~~ C if 
t&B; C; H) is a non-forking extension of tp(B, A; H)) and showed that it satisfies 
in existentially closed structures the properties l-5 described above (cf. [S] and 
[9]). (To be precise, the results in [8] are not presented in exactly the same 
manner we stated them.) 

It is easy to see that a formula which is an equation in K does not have the 
order property, so that an equational category is in fact stable and Shelah’s results 
apply to our context. However, we are interested here in ‘algebraic’ structures, 
and the assumption of stability alone does not convey the algebraic character of 
many of the familiar examples of algebra. 

Indeed, the non-order property alone of a formula Q, does not establish any 
distinction between #J and T# since, by compactness, it is easily seen that 4 has 
the order property if 19 has, while a crucial aspect of ‘algebraic’ theories is that 
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me formulss are dishgdhed and considered ‘positive’ and their negations are 
also most of the basic notions defined in these theories, 
of independence, mainly depend on these formulas. For 

w, in the theory of &&is, the fundamental formulas are the algebraic 
; &h&rims or results in tbi!s theory are usually stated in twms of 

in this case, we note that an important distinction 
and the inequations is the fact that the varieties 

n in a given field F are the basic closed sets of a 
rian compact topology on F. 

1s our aim to show that the assumption of equational@ (and chain condition 
rties in general) translates well this idea of positiveness. For instance, if R is 

an equational set of formulas in I(;, then the R-definable subsets of a structure M 
in E constitute the basic closed sets of a compact noetherian topology on M, 
which, in the case of gelds with R the set of algebraic equations, is identified to 
the zarisld topology. We do not pretend that the assumptions of equationality are 
all that make one set of formulas more interesting than another. For instance, in 
the case of fields, we work with the set of algebraic equations rather than with the 
set of algebraic equations with in addition the formula x # 1, although the latter 
set satisfy all the chain condition properties that we can think of. But the notion 
of equation gives a natural context in which these considerations can be 
investigated. 

In general, we have attempted to show that the notion of an equation relates in 
a natural way to algebra and that it is possible to attach to it many of the 
properties and definitions that are usually attached to the standard equations in 
algebra (e.g., algebraic equations in F, linear equations in MR). 

Finally, we ought to say a few words on how our notion of an equational 
category relates to the standard notion (or to varieties) in universal algebra. 
Clearly, if we suck to the definitions, the two notions do not-compare. However, 
a comprehensive definition - based on the existence of an independence relation 
with some properties, (excluding S(i)) - that will include both notions is possible. 
We have not done so at least for practical reasons. In any case, the way we 
presented our material, it will be clear in the sequel, if not explicitly stated, 

ther a certain result will hold true for varieties; while on the other hand, 
certain concepts of universal algebra will be seen to extend to our mntext. 

For the convenience of the reader and of publication, we have divided the 
paper in four parts: Basic properties (Sections O-2), S-minimal extensions 
(Sections 34), Equational categories @e&ions 6-7), and the case of a complete 
theory (section 8). These will be published separately. However they will have to 
be read sequentially. 

In Section 0, we 8x some notation, make precise the setting in which we want 
to define the notion of an equational set of formulas. 

n 1, we compare the notion of equational@ to some natural variants 
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as for instance a formula having finite height; then we 
properties of equational formulas. 

In Section 2 we introduce some terminology on types. Then we give two useful 
criteria for equationality using complete types. As an application we prove that 
the set of differential equations iu the category of Merential fields of char&e&- 
tic 0 is equational; and that every quantEer-free formula in the category of 
radical differential fields of characteristic p (p #O) is a boolean combination of 
equations. 

In section 3, we investigate &-minimal extensions of a type, show that such 
extensions always exist (cf. II.2), that they satisfy the monotonicity-transitivity 
property when considering types over &closed subsets of H and that, for S 
equational, a type p over A c B c H has, up to &-equivalence, tlnitely many 
&-minimal extensions to B. 

In Section 4, we define what S-irreducible and S-full types are, as well as 
S-irreducible and Mull structures. We also define what an &-component of a 
type is and investigate their existence. 

In Section 5, we observe that the theory of Sections 3 and 4 goes through in a 
very general abstract context; we then describe such a context. 

In Section 6 we study the case of a A-category K of models of a &t-order 
theory T with the Felementary embeddings for morphisms, where we assume A 
is the set of all formulas in L, r is a boolean-closed set of formulas, S c T, 
S = cl+(S) and K reflects S. We show then, for S a set of equations, that any 
&(r)-closed structure H in K is S-full and that any subset of such a structure is 
&-closed in H; furthermore we prove the local-character property for SIT 
minimal extensions of type over subsets of H. 

In Section 7, we introduce the notion of S-minimal amalgam and relate it to 
S&ninimal extensions. We also define the notion of an equational category and 
prove the symmetry property in such categories. 

In Section 8, we consider the case of the category of models of a complete 
first-order theory T with the elementary embeddings for morphisms. We consider 
thecaseTstableandshowthatifpisacompletetypeoverAc:Bandqisa 
non-forking extension of p to B then Q is an &-minimal extension of p to B 
whenever S is a set of equations in T. We define what an equational theory is. We 
then classify equational theories in terms of equationaMeories having the d.c.c. 
and equational theories having the d.c.c. on irreducible types. We show that 
equational theories with the d.c.c. (resp. with the d.c.c. on irreducible typed) are 
totally+anscendental (resp. superstable) and give (in both cases) criteria for the 
two notions to be equivalent. We also characterize the fundamental order in 
equational theories in terms of equations. 

It is possible to infer some of our results from stability theory (cf* [9] or [7])* 
However, as we believe that the notions and equational categories 
are natural concepts that deserve to be stu for their own sake, we preferred 
to give 8 direct approach which is particular to these notions. We point out here 
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to the fact that we do not have an example of a stable theory which is not 
Also, we attempted to begin our study of S-minimal extensions of 

scratch, starting with arbitrary categories of L-structures and arbitrary 
formulas S. We like to believe that this attempt has not been pursued 
for the sake of generalixation, but that such a presentation describes a 

which is applicable to par&&r situations. (For instance, given a 
ring R and a polynomial P(g) over R, the ring R[z]/P@) can be construed as the 
ring over R generated by a tuple 2 which real&s the $&nimal extension of the 
type {(P(C) =O)}, for s th e *set of algebraic equations in the category of rings. 
Sin&r@, bree-amalgamation of groups can be described using the notion of 
~&nimal extensions of types, for S the set of atomic formulas in the category of 
groups. Note that the two preceding examples fall within the context of example 
(c) above, but, as we have seen in (d), a simple alternation will give us less trivial 
cases.) On the whole we tried to understand what conditions are necessary and 
sufIicient to define a reasonable independence relation in a given category of 
a&&raicstructures. 

Thus, the technical work in the paper is seEcontained. And, for the sake of 
clarity as well as of completeness, although the similarities with stability theory 
are evident throughout the paper, we made almost no reference to this theory 
until Section 8 where in any case we state the facts that are needed. Section 8 is in 
factdevotedto comparisons between the concepts introduced here and the 
concepts of stability theory. Famiharity with stability theory is therefore helpful 
but not necessary. (Useful introductory references to stability theory are [4], [S], 

The arguments used in the proofs are fairly simple-that actually was one of 
our original motivations for writing the paper. However, the new terminology 
and consequently the notation that we have had to introduce might sometimes 
induce a statement to appear more complicated than it really is. We real&e that 
we have not been very imaginative in such cases, but we still hope that the reader 
will reqnixe this tediousness as indeed just a matter of notation which therefore 
hastobedealtwithcarefully. 

Unless expressly stated to the contrary, all the results and concepts in this 
paper are due to the author. The notions of equation and equational theory have 
first been defined in [ll]. 

I must first express my gratitude to Michael Makkai for directing me in the 
larger part of this work and to John Baldwin, for his crucial advice on the 
organixation of the paper. 

I am also indebted to Ahstair Lachlan and Alan Mekler for their generous 
support during my stay as a postdoctoral fellow at Simon Fraser University, and 
to Anand Pillay for sharing with me his knowledge of stability theory. 
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In this section we fix the setting in which we want to work and define the 
notions of equational and strongly equational sets of formulas. We alsogive some 
examples. 

(a) We fix once and for all a first-order language L. 
@,tlr,Xi**a denote formulas in L; H, H’, M, . . . denote Ldructures; 

a, 6, c, . . . denote G&e tuples of elements in given L-structures. 
We do not distinguish between Ldmtures and their underlying sets. 
We divide all variables in L in two classes X and T, and call the variables in X 

types variables, the variables in Tparameter variables. 
Unless stated otherwise, x, y, xl, . . . denote finite tuples of type variables; 
I, u, t1, * . . denote unite tuples of parameter variables. 
A formula in x is a formula of the form #(w; t). 
If S is a set of formulas in L, we let SI’ denote the set of formulas in x which are 

in S. We frequently write # or e(x) for $4(x; t) or 0(x; a), 42 a tuple in some 
given structure, that is, when the context makes it clear which one is meant. 

A set of formulas p in x with parameters in H is realized in H if there is a &rite 
tuple a of elements in H such that H t= @(a) whenever e(r) belongs to p. 

(b) We 6x a category Ic: the objects of K are L-structures and the morphisms of 
K are maps between the underlying sets of objects in K; composition of 
morphisms is then the composition of maps, and, for H in K, the identity 
morphism on H is the identity map from H into H. 

Later on we shall consider additional assumptions on K as for instance that K is 
the category of models of a tit-order theory with embeddings or elementary 
embeddings for morph&s. 

In fact, most of the time, for the sake of clarity, we will assume that the 
morphisms in K are inclusions (or at least one-to-one maps), the arbitrary case 
being an immediate generalixation. The notation that follows below will then 
become just the standard notation and will be used indis&minately as such. 

Thus, although a precise formahxation of the notation is necessary, at least so 
as to make the generalization from inclusions to arbitrary maps possible, once 
taken into consideration it can be readily confused with the standard one. 

To simplify the presentation we extend K to the category K which includes the 
subsets of structures in K as objects and the inclusion maps between subsets of a 
structuz in K as morphisms. Formally speaking:. 

- Object(K) = {(A, H); H E K and A c H}. 
- A morphism f : (A, H)-* (B, F) in P is defined as a morphism, denoted again 

fi f : H+ F in K such that rangecf 1 A) c B. [We mean by that, that f : (4, H)+ 
(B, F) is identified with the triple cf : H-, F; (A, H); (B, F)).] 

Thus, the identity morphism id: (A, H)+ (A, H) is formally defined as the 
identity morphism on H. 



lw G. shmr 

sf f:(A, H)+(B, F) and g:(B, F)+(C, G) are in fir so that f:H+F aud 
g:F+G are in K, then g.f:(A,H)+(C, G) is formaUy de&ted as the 

:(A,H)+(B, F) we let f[(A,H)]=(,f(A),F). So if f:H+H is the 
anHaadAcBcH,thenf:(A,H)-,(B,H)isamorphisminfand 

,H);inthatcase,werefkrtofasanindusinnmap. 
two mo@isms f,g:(A,H)+(B,F) in & are identibd if the 
g:~-+FareeqPalandnotj~iffandgEa)rethesamevalueson 

l LetKbe 
e.g., the category of 

a category 
fkb. 

of htluctures with embeddings for mor@isms, 

Suppose that K has the amalgamation property and is closed under u&us of 
kreaGngchainsofstrudures. LetFbea - in K, e(x) and P(x) 
quanti&x&ee formulas with parameters in F. 

one easily checks that e(x) l-P v(x) (resp. #(x) is consistent over F) a 
fQrsomeexistentWy-closedQfNcfute E in K containing F we have e(E) c I/J(E) 
(resp. $(x) is ruTabed in E). 

tdi iu L, f:H+F a mo@ism in 



Then 
(i) fis A-eleme~ if r any formula e(r) in A with parameters in Hand u 

a tuple of elements in H, 2 W4~~~f~cfo)* 
(ii) f nepecrS A if for g(x) and v(x) in A U {(g =x), (x+x)} with parameters 

~pl,f~bfi!Whf(r. 
(iii) K is A&men&aq (resp. @kc& A) if every morphism in K is A- 

elementary (resp. reflects A). 

0.2. Rem&. A standard application of the method of diagrams shows that if K 
is the category of models of a first-order theory T with embeddings for morphisms 
A is the set of qantifler-free formulas, then K reflects A ifE T has the 
ama@mation property. (Note that, in general, if K has the amalgamation 
property a&l A is a set of formulas in L such that K is A-elementary, then K 
reflects A.) 

03. Let S be a set of formulas in L, n a natural number. 
(i) S is eqAna# (msp. n~tmngy_cqualionoI) if for any H, x and any set p of 

formulas in SI with parameters in H, there is p. cp, p. finite (resp. card(po) G n) 
and PO bP*- 

S is smng& equational if there is a natural number nt such that S is m-strongly 
equational. 

(ii) *(x; 8) is an eqz4atbn (resp. n-strong eqzdim, sfmag equaZb2) if. {#(x; t)} 
is equational (req. n-strongly equational, strongly equational). 

0.4. Kmupks. (i) Let F be the category of fields with field embeddings for 
morphisms; L = {+, a, 0, 1). Let S be the set of atomic formulas in L. 

Chim. S is equazional. 

Rd. Suppose H E K and p = {&(x; ai); i E I, & E S, ai E H}. Each q+(x; Q) is 
equivalent in K to an algebraic equation (4(x; Q) = 0); where 4 is a polynomial 
in the variables x with coefficients in H. 

Since the ring of polynomials H[x] is noetherian, there is a finite set J c I such 
that for any i E I, Z$ is a linear combination of e’s for j EJ. It follows that for any 
morphism f in K, pi is a linear combination of fpl’s for j EJ. Clearly then, if 
po={~~;j~l},pokH(~(x;q)=O)foreveryi~I, i.e.,pokHpwhichiswhatwe 
wanted. 

(Note that the same as above holds with the category of noetherian rings with 
ring homomorphisms instead of F.) 

(ii) Let R be a fixed ring and let L be the standard language of R-modules. A 
homomorphism of modules f : H+ F, is pure if for any positive primitive formula 
@.p.f. in short) e(x) and u E H, 

HE@(a) a FE #(jia). 

In other words f is pure if f is A-elementary with A the set of p.p.f. 
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Let baR be the category of modules with pure embeddings for morphisms. The 
claim is now part of the folklore. 

Every pad&e prim&e fonndia #(x; f) is u sfmng equdon in l&,R 

for H an R-module, @(H, 0) (O= (3, . . . , 0)) is an additive subgroup of 
HP” (u = length x) and *(H; 48) (& E H), if not empty, is a onset of #(W, 0) in H”. 
It Edkms that fbr a, 6 E H, +(a; a) and #(x; 6) are either equivalent in H or 

K are pure, in fact, either #(rc;u) and #(x; a) are 
a), #(x;6)) is inconsistent in K. The claim follows 

Shihrly, one shows that in MR, the category of modules with embeddings for 
the atomic formulas are strong equations. 
is the category of models of a first-order theory T with elementary 
fior morphisms and E(s; t) is a fkmula which de6nes an equivalence 

relation in models of T, then E(x; t) is a 2-strong-equation. 

By de&&ion, if S is equational and p is a set of formulas in s1 
over H, then p -npo f;or some kite subset p. of p. So if p is consistent over H, 
i.e., if every fmite subset of p is realized over H, then p itself is reahzed. This is a 
oompact~~ess proper& Now we axtld defkte a weaker notion as follows: 

S is kquational’ if for every H in X and p, a set of formulas in Sr over H which 
isre&redovetH, thereisa~itesubsetpoofpsuchthatp~~p~ 

This notion is in general too weak for what follows, but it is worthwhile bearing 
it in mind and checking at different stages what additional conditions on K make 
it sufkient to obtain analogous results. 

. Consider the ring of integers E. Let K be the category with single 
and single morphism the identity on h; L = {+, 9, 0, 1). 

Let #(x, f) = 3s (x = s l t). * says ‘x is a multiple of P. 
# is not an equation: take p = {#(x; k); k E h}; p says ‘x is a multiple of all 

integers’, and clearly there is no finite Set & of integers such that ‘x is a multiple 
of all integers’ i@ ‘x is a multiple of all integers in Z& 

However, if p = {#(x; a); i E I, ui E Z} is realized in E, then p is equivalent to a 
finite subset: for let k realize p. Then uj divides k for any i E 1. Since k has finitely 
many di,visors it follows that there are at most fmitely many distinct ai’S* The 
assertion has now become obvious. 

Note here that the formula #(r;x) = 3s (t =IPX) is an equation. 

Let G be a free non-abelian group tid let K be the category with 
single object G and single morphism the identity on G; L= {a, ‘, e}. Let #(x; t) 
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(resp. @(x; t)) be an atomic formula in a single variable x (resp. in a tuple of 
variables x). 

Is #(x; t) (resp. #(x; t)) an equation in K? (Question 0.6 is of course related to 
the open question of whether a free group is stable.) 

1. Bask sombinator&I properties 

We consider some variations on the notion of an equation which come 
immediately to mind and then work out their basic properties. Many of the 
assertions below will be presented as matters of fact and their proofs will be left 
to the reader. This section could presently be skipped and returned to later on. 

Throughout this section, S denotes a set of formulas in L closed under 
substitution of parameter variables. 

If A is a set of formulas in L we let cl+(A) denote the closure of A under finite 
conjunctions, finite disjunctions and substitution of parameter variables; cl(A) 
denotes the closure of A under boolean combinations and substitution of 
parameter variables. 

For every H in K we let KH denote the category consisting of the single object 
H and the identity morphism on H. 

1.0. DeMtbn. Let n be a positive integer. 
(i) S bus height less than n if there is no structure H in K, x and sequence 

(40 i ccl8 of formulas in Sx with parameters in H such that the formulas 
l\i<k (#i A +) for 0 < k < n 8~ well a~ l\i<n #i are consistent over H. 

(ii) @he letter l italicized will stand for ‘local’.) S is l-eq~~rional (resp. is 
l-n-strongly equational, hm l-height -less than n) in K iff for every HE K, S is 
equational (resp. n-strongly equational, has height less than n) in KH. 

S has finite l-height (req. height) if there is a natural number m such that S has 
l-height (resp. height) less than m; S has infinite l-height (resp. height) otherwise. 

Thus, S has l-height less than 1 if for any H in K and 4~ in S with parameters in 
H, # is inconsistent in H; 0(x, t) has height 1 if any two instances of # (in some 
H) are either equivalent or contradictory over H. The latter type of formulas 
have been called normal by Pillay (cf. [6]). 

1.1. Lerr;-ma. (i) S is not l-equational (resp. equational) in K iff there is a 
structure H iha K, and a countable sequence (&,)nca, of formulas in Sx with 
parameters in H such that for any k c CO, AiGk #i A _&+I is consistent in H (reap. 
in K over H). 

(ii) S is not l-n-strongly equational (resp. n-strongly equational) iff either S is 
not l-equatiod (resp. equational) or there is a structure H in K, x and a finite set q 
of form&s in S with parameters in H such that q has cardinal@ n + I and q is 
not logically equivalent in H (resp. in K over H) to any proper subset. 



wdaw?~fdlowing (best-k) diiqgmm of implkatiw: 

StkQk@&? + Sissbw@yequational --, sis~~t4&mal 

I I I 

1.4 and 1.5 below should read in view of Proposition 1.6. 

morpirientf:H-,FiroKondp,aSCfoffonnulacin 
p is etms&nt ovet H i#@ is consistent over F. 

Let us say that K is (u-come, if fbr any sequence of morphisms 
(fs:&+H~+&~ in K there is a s&uctu~ H and morph&s gg:HBdH 
(B<~)~fhafgg+l’fs=g~~r~YB<cu. 

is similar to closure under unions of countable chains, but 
herewedonotrequireHtobealin&tothechain. 

(SimiMy, one defks m-nservativeness for arbitrary ordinals cu, and 
conse~tiveness as aruutservativeness for every cu.) 

S closed wuktjinite conjd.w, K q&cis Sand K i.v 

(i) kheight(S) =k @height(S) = m. 
(ii) Ifin ad&t&t K is cwonsetvative, then 

(a) S is kepa&~ flS & eqtutihal. 
(b) S is I-mdtongly equutiod iff S is m-strongly equatihal. 

Let /\S denote the closure of S under fkite conjunctions. For IC a positive 
mteger, let 



Indcpcndcnce in categories of dgebmic aructum, I 199 

1.7. Ikymitbn. (i) height(F) = height(/\ (S”)). 
(ii) If S has height less than m - 1, then, for n 23 2, cl,(s”) has height less than 

nm-(&or any given w). 
(iii) S is equational iff cl+(S) is equational. 

(1.7’. RO~~MWML The analogue of Proposition 1.7 with the mtims of Height 
and I-equanbnality.) 

Roof of Pmpositio~~ 1.7. For # and q/~, formulas with parameters in H, write 
~~tyifWHIP~dIWH@* 

(i) Clearly, if height(F) am, then height(A (s”)) 2 m. To show the converse 
we need first the following: 

(*) for i < m, let ryi = &tit #j where J1 is a finite set and #j (j E 4) is a formula 
in S1 with parameters in H; and SUPPOSE l\iek+l qi c /\i<k ty, for UIY k Cm - 1. 
Then, we can find a sequence (j&cm such that ji EJ~ and for any k < m - 1, 

Moreover jO can be arbitrarily chosen. 

Pnrof of ($). We choose ji by induction on i Cm. Take j0 to be any element of .I0 
and suppose jO, . . . , ji have been chosen. We have 

hence l\kei (@ii A lqi+J is Wnsktent in K It fOUOWS that l\ksi (#jk A l#j) k 
consistent in K for some j ~Ji+l; let then I;-+1 = j. Obviously l\k<i+l @jk c 
l\kci #jk. That PfoveS (*). 

Now, if height(/\ (s”)) am, then by definition, a sequence (+i)i<m as above 
does exist with in addition the property that /\Mm Jli is consistent. 

But then the SeQUenCe (&,)i<m @en by (*) is such that Ai<k+l @ii c l\dr& #jd 
and furthermore l\i<m & is consistent in K, S~IMX /\i<m qiFH/\i<mejie That 
implies height(P) & m. 

(ii) We can assume S = Sx and by (i) TTde can assume A S = S. We East show 
the following. 

(+) For i c nm, let qi = VieA #ji where card Ji = n ilI1cI #j is a formula in Sx 
with parameters in H. Suppose that 

then there is a sequence (ji)i<m, such that ji EJ~ and 
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0. By induction on m. 
0 the assertion is trivial. 
the assertion holds for m - 1, and (q&, is given as above. 

F’or any kS O<k<n”, thereisjltEJOsuchthat 

i-e-, vo A A-4 fvi “H qo A A-e-1 qi; Which h@kS A-e @c -H l\ibL-a &. 
For O<i, ken” write i-k if ji=jk We ptitbn in &is way the St 

{i, O< i en”) into n subsets. Since n 3 2, one such subset I must have cardinal@ 
at n =--l. Let j. denote the common value of the j& for i E I. 

IfiEI~dk<i,thenQli,A~~~~cQlioh~*~~;~r 

By (*) (see the proof of (i)) it follows there is a sequence (h&,+, 
irt <hk+, s ik+l and & = 0 such that 

for any k <n”‘? Cody IIOW, the fOZIIlUhS #j. A I/& I slLm”, Can be 

cc&M as formulas in cl,@); thus the induction hypothesis applies to the 
=Pen= (?I& A 4%Jw~- I. In other words there is a sequence (ir)ocrun such 
thatj&,and 

ib+, (*jo A #ji) c IJ (#jo A Qii,) fOr O< k < m - l* i 

n observing that 

at Enishes the proof of (-I-). 
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Now if cl,(r) has height greater or equal to P, then a sequence (fli)i<nm such 
as given in (+) does exist; let #j be the sequence of formulas in Sv with 
parameters in H given by (+). 

We have that AiGlt (& A l&+J is consistent for any k cm - 1; in particular, 
AdGr (& A lQiit+,) is consistent for any k < m - 2 and ArunB1 & is consistent. 

But that implies height(S) a m - 1, which is what we wanted. 
(iii) gee Corollary 2.3. (One could prove (iii) by using a direct pigeon-hole 

argument. Cf. [7] or [ll].) 0 

Remark. Although cl,&) preserves equational@, it does not preserve strong- 
equationality. More precisely there are strongly equational sets S with c&(S) not 
strongly equational. Indeed, let L = {R}, R a 2-ary relation. Let IHI be an infinite 
set and (R&co, (Q&, two sequences of chains of subsets of IHI such that: 

(i) For n < O, P, = (Cy)ie, Qn = (D& with Cf, Df c IHI, 

GsiG+11 WC@+1 (i C n - l), C& D; # 0. 

(ii) Ifn#m, then CrnCT =8, Dyn Dy=@, for any i<n, j<m. 
Choose an interpretation of R in IHI such that the Crs and Drs, n < o, i <n, 

are the only interpretations in H of instances of R. (An instance of R is here 
meant to be a formula of the form R(x; h), h E H.) Let H be the structure thus 
obtained, K the category with single object H and single morphism the identity 
on H. It is easy to check that R(x; t) is 2-strongly-equational in K. 

Fix n < O. Consider the sequence (Ei)i<m in cl*(R(x; t))n where EI = CrU 
&-i-l (for simplicity we shall write Cj and Di for Cr and 07 respectively). We 
shall co11sfirllcf the Ci’S and D~‘s in such a way that &,, Ei # 0 and is not equal to 
any proper subintersection. Moreover it will be immediate that this can be done 
for every n < 0, preserving the conditions (i) anJ (ii) above. This then clearly 
implies that clz(R(x; r)) is not strongly equational. 

construction of Ci and Di: let (&), 0 G i, j s n + 1, be pakise disjotit, 
non-empty sukts of H. Present the Bij’S in a (n + 1) X (n + 1).matrix, 

B 2,rc+1 
: 
I 
I 
I 
8 
, 
I 

B: n+l,Y8 +1 

For i < n, let Ci be the union of the i + 1 fust lines of the matrix, while Dd is the 
union of the i + 1 Erst columns of the matrix. 

. 



~9=9(~;r)andletrbeasubtupleofx-r. Clearlywecanczonsider@asa 
inw~ofa~~~inx;Inotherwordsuisnowthetupleoftype 

variables and the rest of the variables become parameter variables. We 
write #” instead of Q to underline the f&t that we consider # as a 

is l-n24w2gly eq2Wional then # is 

We prove (ii); the argument for (i) is similar and is left to the reader (see 
proof). 

# is &equational but not I-m-strongly equational. By Lemma l.l(ii), 
tbereisH,&,..., &nHsuchthatforanyk~m, theformula 

is consistent in H. 
Let bk realize @& in H. We have the following diagram of true statements in H: 

yjqa(); lb()) #(ua; 60) - - - - - - - - - - - #(em; bo) 

!#+o; W~4% w -L--------- 4em; 61) 
I I 
I I 
I I 
I I 
I . 
I I 
‘ I 

!P(@o; L-l, 4aK Ll) - - -lq@m-1; a,-diNen; k-1) 
; 6,) @(al; b,,,) - - - - - - - - $@,,,-I; b,,,)144am; b,) 

Considering the columns of this diagram we obtain that for any l, 0 s I s nz, the 
formula 

is redized in H by uf. That easily implies #* is not k~strongly equational. 0 

Let ri be a noetherian ring with a unit, L the language of rings, 
er the formula #(x; t) = 3s (x = St); for a in R, #(a; t) defines the 



set of divisors of a, while $@;a) defines the set of multiples of (1. 9 is an 
equation in t: for if (a) i ica, is a sequence of elements in R, the ideal (ai; i c cu) is 
finitely generated, hence equals (U~; i C n) for some n. It follows that t divides Oi 
fkxi<luiBtdividesaifori<n. 

However, if R contains an in&rite sequence (a&<a such that ad strictly divides 
Q+~, take for instance R = P X H, and af = (2’; 1), then # is not equational in x. 

(Note that in P x Z there is an element a@ #O such that ai divides a, for every 
i < a, namely o, = (0, l), (in other words {#(x; ai); i c w} is realbed by cr, in 

R)* 

1.9. LRt # = @(x; t), M = lengths, n = length 8 and HE K. Let Lx (resp. LJ be 
tk (obvious) semi-lattice whose underlying set is the class of subsets of Hm (resp. 
H”) which are definable by conjuncts of instances of 41~ (resp. #‘) (an instance of 
#* is a formula of the kind @(u; t), a in H). 

Assume # is &equational in t. We define a map 

The intersection mentioned in the definition of *# above is finite because of 
I-equational@. 

Similarly, if # is I-equational in x, we detie the map *=: Ll+ L*. We have the 
fohowing properties: 

(a) For X. VEL,. XcY$*,(X)=*,(Y). 
(b) If X = &,, @(H; GJ, then & E *#(X) for every i < n. 
(c) Suppose Y = &k #(H; ~j) and S,(X) = nc,, #(hi; H), $ E X. Then, XC 

Yiff&EYforeveryi<niffu~E*,(X)foreveryjCk. 
(d) For X, YE Lx, Xc Ye*&) =) *#(Y). 

hafaf @). We already have one direction (a). Suppose Y = &k #(H; q) and 
et(x) 3 e,(Y). In (b) we have noted that ai E *#(BY) for i < k. Hence, ai E *#(X), 
j < k. By (c), we conclude that Xc Y. 

As a corollary to (d) one gets another proof of Lemma 1,8(i), namely that 
I-height (es) = I-height(@). For it follows from (d) that any chain of elements in 
Lx of length m gives rise to a chain of elements in L, of length m. 

1.10. Proposition. Iif #(.; t) is l-equational in x and t, then *, is a dual 
isomorphism fkom Lx onto L, with inverse **. (By dual we just mean the property 
stated in 1.9(d).) 

We already know from 1.9(d) above that *, is a dual isomorphism from Lx 
into L,. It remains to show that ** is the inverse of *,. 



We show es. *# is the identity on Lt. Let X= &,, #(I!?; uJ. By definition, 

eS l e,(x) = n we ci); G E slob 

2 

give two criteria for equationality using complete types. We then apply 
them to prove that in the category of diIferential fields of characteristic 0, the set 
of di&ential equations is equational; and that in the category of radical 
di&rentiaJly dosed fields of characteristic p (in the language of differential fields 
with one additional unary symbol r(-)) every atomic formula is equivalent to a 
boolean combination of equations. 

Thmugbut this section, S denotes a set of formulas in L closed under 
. . mn of parameter variables. 

2& LetAcBcHEK. 
Given a set A of formulas in L, a set p of formulas in cl(A*) with parameters in 

A~calledaA~~inxoverAifpisw~ntinKoverW; 
A A-type over A is a A-type in some tuple of variables x over A. 
IfpisatypeoverB, welet 

P t A = (4%; a); (I EA, 44.x; a) ep}. 

P 1 A = {4N%; W; 0(x; t) E cW, anti W, 6) up}. 

A A-type p in x over A is A-compkte if p is maximal with respect to inclusion 
among A-types in x over A. If C c H, we let 

i 
tp(C,A;H)==* {~(x,;o),~EA,cEC,H~~(C,~)}. - 

is A-complete ifffor any form& tj~ in cl(b”) over 
A, either #P ot ‘#I belongs to p. 

(b) Ifp is an hmplek L-type over B, then p 1 A 
(resp. A-compkte). 

(resp. p r A) is L-complete 

(c) An L-type over A can always be extendkd to an L-complete L-type over A. 



Until stated otherwise, by type or complete type we mean an L4ype or 
LFcomplete L-type. 

For p a complete type over H let 

23. lbpodth. l%e fobwing assetins are equivaknt: 
(i) S is equational. 
(ii) For any shucn~re H in K, x, and c~mpkte type q in x over H, there is a 

@z&e subset q. of q such that q. kn qs. 

Proof. (i) * (ii) is obvious. 
(ii)_(i). Assume (ii) holds. Let H E K, p a set of formulas in Sx with 

parameters in H. We want to show the existence of pocp, p. kite such that 
PO hf P* 

Up is inconsistent in IC, then clearly such a p. exisfs. Suppose p is amsistent. 
Let P be the set of complete types in x over H con-g p; by Lemma 2.2(c), P 
is not empty. 

Moreover, by assumption, for any q E P we can find qoc q, q. finite and 
qobf9qS* ~tp’=PU{~(Aqo);qW. 

p’ is inconsistent in Ik For if p’ is consistent, we can extend it to a complete 
typeqoverHsoth t a qeP. Butthen,l(/\qO)tzp’cqandqOCq. 

Hence, there are ql,. . . , q” in P and p. a finite subset of p such that 
p. kH Vr& (/\ q&). On the other hand, for any i, 1 <i en, q&t-H qs t=Hp; hence 
wzl (A q&) bHp. We conclude p. k~p, which is what we wanted. 0 

Codany. S is equational iff R = cl+(S) is equatioM1. 

Proof. Indeed, let HE K and q a complete type in x over H. Then clearly 
QR -Has. Since S is equational, ‘here is a kite subset q. of q such that 
qR -n qs -H qo. We conclude by Frai-asition 2.3 that R is equational. 0 

The following application 6f Proposition 2.3 is somewhat typical. It relies on 
the existence of a ‘division rule’. A similar argument could be applied to the 
category of fields F to prove directly without the use of Hilbert’s theorem (see 
0.4(i)) that the set of algebraic equations in IC variables is equational. 

Let DF, be tie category of differential fields of iharacteristicp with differential 
field embeddings. L is then the language of fields plus a unary operation symbol 

d(-) representing the derivation function. 

. With K= 
s is equafioM1. 

and S the set of atomic formulas in Y = (x0, . . . , x,,), 
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Let H be a diBreutial field. Recall that a di#emtial polynomial P in x 
with cme&ieaNs in H is a polynomial in a sequence of variables X with coe&ients 
inHwherexisofthebrm: 

X=(Xo,...,xnrdXo,...,dm ,..., d”xo ,..r, d”x,), 
for some m < o. Let ord P (order of P in xm) be the highest number m such that 
85x, occurs uon4rivially iu P; let up = bmx, br m = ord P. 

Thus, we c~tl w&e the formai equality of polynomiak P= &,&u’p where 4, 
for 06 Gr, is a polynomial in the sequence of vatiabii 

bb ,...,x,,dq) ,..., dx* ,..., P-‘x, ,..., CFX,), 

m = ord P; lee lP = I, aad Sp = & &&‘. 
Noteikstthat,sincea ntial equation over H can be considered as an 

algebraic equation over H (H as a field) and since algebraic equations are 
equatioual iu the category of fields it follows immediately that a Merential 
equation is equational in the category of differential fields (of any characteristic). 

However, this does not entail that the set S of all differential equations is 
equational. To show that S is equational we need a division rule on di#erential 
equations. Such a rule is given by Lemma 5 of Chapter I.8 in [2] which we 
reproduce below: 

(cf. [2* 1.81). F or auy diffenential polyn4xnbl P and m, OC m < 0, 
PP - Sp d”u, has lower order &an d”up. 

. Write P = &&4~ Then, 

dP = SP dup + 2 d(Quh 
i=O 

Since every derivative of x,, present in 4, is strictly lower than up (i.e., 4 has a 
lower order than up) and up has a lower order than dup, we find that dP - Sp dup 
has lower order than dup. This proves the lemma for m = 1. The lemma for 
d&my m follows quickly by induction on m. 

to Let HE I&. Expanding polynomial expressions and using 
the properties of the derivation, every atomic fonuula #(x; 4) with coefficients in 
9, can be written in a natural way in the form: . 

where P*(x) is a dBerential polyuomial iu x with coefficients in H. (P# is uniquely 
determined up to form of polynomials.) Let ord $J, 4, Se, u# denote 
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Let p be a complete type in x over H; let 

PS={~(x;u);Q,ES,uEH,p~~~}, 

Q = {# cps; (4# =O) $p, U# #O!, 

p1= {# Eps; u* = 0). 

p1 is the set of atomic formulas in p which do not mention (non-trivially) x,. By 
induction hypothesis, we can assume pl equivalent in K to a finite subset. Let 
m=min{ordQt;~~~};let~beanelementofqwithord~=mandsuchthatP, 
has lowest possible degree, say r, in d”x,. Let P = P#. 

cllrrim. (Se =O) $pS. 

For, either r > 1, in which case ord S+ =m, the degree of S+ in d*x,, is strictly 
less than r, Is, =r l &,, whence (I, = 0) $p (since (4 = 0) #p), and therefore Se 
cannotbelongtopbytheminimalchoiceof~;orr=1inwhichcaseS~=~and 
(S*=O)$psin~tpEq. 

Consider now an element + of ps\pl. Write 

P,=Q=&, UQ = dk,,. 
i=O 

Case 1: 1 >m. Then, let 

R. z sp . Q - IQ l &-mp l (d’-mup)k-’ 

= ‘2 Sp& + s,lou; - I, . d’-‘“p l uz-1 
i=O 

=y s I i p l Ub + IQ l U&-’ g (Sp l UQ - d”“P). 
i=O 

By the lemma above we see that either ord R. < l or the degree of R. in uQ is 
strictly less than k (recall k is the degree of Q in uQ). 

Moreover, since (Q = 0) A (P = 0) I-,, (R. = 0), (R. = 0) belongs to ps. On the 
other hand 

(Ro=O)~(P=O)~(Sp#O)I-H(Q=O). 

If ord R. > m, we repeat the same process with R. instead of Q and obtain RI. 
Ultimately we find Ro, Rl, . . . , Ri, j < 0,. Rj epS, 

(Rj=O)A(P=O)I\(Sp#O)~~ 

(R j-~=O)A(P=O)A(Sp#O)k~*.*b~(Q=O), and ordR+m. 

Thus we have come down to the case of I G m. 
Case 2: 1 = m and k 2 r. Clearly then, if Q. = IpQ - IQP l z&‘, the degree of 

Qo in up is strictly less than k. Moreover (Q. = 0) eps and 

(Q~=O)A(P=O)A(I~+O)~~(Q=O). 



G. Smw 

ofQ*isgreaterorequaltorandordQ~=mwerepeatthesame‘ 
with Q0 instead of Q to obtain Q,. Ultimately we find, d CO, 

(Q~=O)A(P=O)A(~~#O)~~(Q=O), 

, either ordQ,+<m or [ordQd =mandthedegreeofQ~inu,isstrictlyless 

3= l<mot[l=madkct]. 

Hence, either choice of P, (Q = 0) cannot belong to q, 
0) epl, or (4 =0) opt, in which case 

(I,=Ob(Qo=WdQ=0) 
S where Q = Qo+ i&i ((Qo= 0) up ); by induction on the order 

degree of Q in 4 we can assume p&(Qo=O) and since plkH(&=O), we 
co- PI k (Q = o)- 

of Q and the 

combining the three cases above we deduce that 

Since p1 is equivalent to a finite subset, 

(P=o&p, (&#cj my” and (I’ZO) up, 

it follows that there is a finite &set p. of p such that p. kHps. By Proposition 2.3 
we conclude that S is equational. 13 

Let us say temporariiy that a category K is elementary if 
(i) Obj(KJ is the class of models of a first-order theory Tin the language L. 

(ii) Mar(K) is the class of models of a first-order theory R in the 2-sorted 
language L” = L U ff} (say with sorts Y and Z), where L is interpreted in both Y 
and 2 andfis a l-ary function symbols from Y into 2. (In fact, closure of Nor(K) 
under ultraproducts could be seen to be sufkient for our purposes.) 

(iii) MO@) inchxks all elementary embeddine between objects in K. 
=Mud(T) and has homomorphisms for morphisms, 

. (i) If $(Z; y’) is an eqzution, then the form& *(y’; f) = 
;~)isaneq~nin~,forpny8inL. 
is ekmentary in the sense given above. Then #(Z, x; j) is an 

~~nin~-xiffdtereisneosuch~foreveryHinK,band(di)i~IinH 
there exists JcI, and H kVg (/l.& #@, b, 6,)+ #(Z, b, 6,)) for every 

, a = (aI, . . . , a,,) and (E,x<, in H there exists m C o 
, ej) for every j < 0, where q(X, y, 2) 9 =a 
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VZ (& q@;x, jiJ+ #(z; x, Z)), y = (yl, . . . , yn). (Note that the conditions 
abovcaremetif~isanequationin~andJIisanequationinxorinx-y.) 

Raof. (i) LetHbeinKand(ii) i jgq) a sequence of elements in H. Since # is an 
equation, there is n < o such that /\,i<” #(Z; &) kzr @@; tij) for every j < m. It is 
easy then to check that /&,, q@; isJ I-* ~(v-; u]) for every j < a~. We conclude 
that ly is an equation in ji. 

(ii) One direction is similar to (i). Suppose the right-hand side of the 
equivalence holds. 

We apply Proposition 2.3. Let H be in K and p an L-complete type in R-x 
over H. Let ii - b realize p in some extension F of H and let 

C = {E E H; Fk #(a, b, c’)}. 

By assumption there is a finite subset E of C, IEl <n, such that FI=VZ 
(AzeE @(% b, e’)-+ o(% b, Q) f or every c’ in C. Thus we have iy(x, e, C) EP 

for every c’ in C. By the assumption on $J there exists a finite subset U of C such 
that /\iiov 9(x, e, a) kw #(x, e, 5) for every E E C. Let 

po = {ty(x, e, a); ii E U} u {#(2, x, e-), e E E}. 

Chrly p. I-~ #(g, x, C) for every 5 in Co By Proposition 2.3, we conclude that 
@(f, x;f) is an equation in 2-x. q 

Remark. (aj Proposition 2.4 can be easily generalized to an arbitrary set of 
formulas S instead of just one formula 9. Similar results can also be obtained if 
one works with any of the notions we have defined (I-equations, etc.) instead of 
equations. 

(b) Given that $(X, x; y) is equational in x-x, the passage from 0 to a 
formula like q(x, y, z) in Proposition 2.4(ii) above can be seen as a process 
of ‘elimination’ of the variable 2. For instance, over a field F., if 

#(x0 P*.*# xn-r, Y) = (Ci<fiy& = O), then 

vxo (4+0, l l l 9 &l-1; y)+ #(x0, - l l 9 x,-1; 2)) - K C (YOzi - ZoYih = 0 
OCiCn ) 

V y()=OA~=OA 2 (yi-Z,)Xi=O 
( 

. 
Ocicn )I 

Thus, it is interesting to consider the cases where formulas like $~(x; y, Z) are 
equational in x. 

(c) It might happen in some instances that in addition to #(Z;jj) being an 
equation in x’ we can in fact, whenever given M and (6i)i<, in H, firid J c O, J 
finite, such that for every i< o, &_&(Z; 6,) l-&(Z; 6,), with the latter 
implication of a special kind. For instance, in the case of fields with # an 
algebraic equation, we can choose J such that the @(Z; 61)‘s generate the ideal 
(#(Z; 6,) : i < a), a fact which a priori is stronger than the mere implication given 



2lo G. Stvur 

. . 
by- Ihus, in the case of g@;x, 1) in Froposition 249 let us 
assume the existence of an equational set R in x of formulas of the form 6(x;y, Z) 
such that whenever M E K, u and (6i)id are in M, there exists a family (O&l of 
formulas in R, and Jcl, VI=n, such that HW&z, b;&), b= (6&J), for 
every i ~1, and 61r kH * (tp as in 24ii)). Then, using an argument similar to 

one shows that Q is equational in 3-x once it has height n in 2. 
that once we know Q is equational in f-x, then we know that 6 

x-y so that in principle we could have applied Proposition 24ii) 

In the case where K has elementary embeddings for morphisms, Theorem 2.5 
below is readily proved via the use of indiscemibks as has been suggested by J. 
Baktwin; the argument given below is an adaption of that proof to the general 
case. Our original proof using ultraproducts was more tedious but need only the 
ckIsure of MO@) under ultraproducts. 

(a)+(b)+(c) is immediate. 
For simplicity let us assume the morphisms in K are inclusions. Suppose (c) 

holds but not (a). Then there is a sequence & : G-, G,; n < o) of morph&s in 
K, a sequence (o,:n<o) of elements in G and a sequence (b,:nCo) such 
that 6, E G, and G,, k Ai- #(b,; ai) A l#(b,,; a,J for every n < o (we write a,, 
instead of &a,). (Cf. 1.1.) 

Consider the language L’= LU{U, Us, q,_bP:j3~A}UF, where V, UP are 
new unary predicates, up, bP are new. individual constants and F is a set of 
function symbols. 

Let T’ be the first-order theory in L which says: 
and Us “are modeis of T”, “U c UB” and this inclusion is a morphism 

in 
(5) (IS E U, 6s E Ug and “Up b AY+ #(bp, a,.) A-4@@, a#)” (B s A). 
(iii) Fis a set of Skolem functions of U. 
(iv) for every 6 in L’ and sequence yo, . . . 9 y,, < a, B c I, 
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An immediate application of Ramsey’s theorem to the sequence ( Gm, u,, b, : n c 
co) above (here given 8 EL, (a1 -bI, white if, say, 
G,,~@(b,, a,.+. l . B al)) where G is assumed Skolemized, shows that T’ is 
consistent. 

Let F be a model of T; and let H, HP, us, bp be the interpretations of U, U@, 
a@, be reqxxtively in F. 

Taking L to be the Skolem hull of {a# :@ <x} in H and p = tp(b,; L) (taken in 
HA). We get a contradiction to (c), since by (iv) for any /3 < A, tp(b,; {a& : a < /3}) 

(taken &) equals Mb7 : { as : a C /3}) (taken in HP) but HP k-#(ba; a@). 0 

Remark. Let K be the category of linearly ordered sets, with embeddings for 
morphisms (L = (>}); let C/J@; t) = (x > t). Then for any singular ca&ind 
A,HEK, cardH=A and type p over H, there is AcH, cardA such that 
p 1 A kHp @‘, but obviously @ is not an equation. 

AppUuWu 1. Suppose K is universal with embeddings (or homomorphisms) for 
morphisms and which admits free amalgams in the following sense: given 
arbitrary morphisms fi : Ho+ Hi, i = 1,2, in K, which can be amalgated in K, 
there exists morphisms hi : Hi+ H such that hI *fi = hz l fi and whenever gi : Hi+ 
G are morphisms such that gl l fi =g2 l fi, then there is a homomorphism 
h:H+G with h*hi=gi, i=1,2. Suppose furthermore that for some regular 
cardinal A the following property holds in K; whenever F is a structure generated 
by HI and Hz, card Hz = A, card HI = K. (or just ‘small’ with respect to A), then 
there exists HO c Hz, card &< A such that F is the free amalgam of H’ and Hz 
over 4, where H’ is the substructure of F generated by Ho U HI. Then, by 
Theorem 2.5, every atomic formula in L is an equation. 

Ap@ica&~n 2. Let L be the language of differential fields with one additional 
unary function symbol r(-), L = { +, l , 0, 1, d, t}; let To be the theory of radical 
differential fields of characteristic p (p # 0), i.e., the theory of differential fields 
+ the axiom: 

0 * [(dx = O)-, (r(x)p =x)] A [(dx +O)* (r(x) = O)]. 

It is known (cf. [13]) that G has the A.P. and has a model completion T which 
has elimination of quantifiers. Given an atomic formula #, let 6 be the formula 
obtained from # by adding as a conjunct the formula (dt = 0) (t a term in L) 
whenever the term r(t) occurs in #. Let S be the set of formulas 8 obtained in 
that manner. Using axiom (*) it is easy to check that every atomic formula in L 
(and hence every formula in L) is equivalent in T to a boolean combination of 
formulas in S. 

p&ion. Every formula in S is an equation. 



2l2 G. Shir 

We will need the f’oUowing result which, stated sligktly Merentiy, is due to 
(cf. [lo, Theorem 91). 

WenotekstthatifGisamodelof Tandfi:e+G, i=l,2, are(L) 
in G, say Gi =fi(e), with fi 1 If,= fi i 4, then there is a ring 
:F-,Gextendingfiandk:thisisduetothefactthat~and~are 

linearly independent over 6. But then f preserves the operation a(-): since, if 
~=Cl~~~,oi~~,bi~~,theIldc=CS~~i+Ci~idoi; hen= 

f(ac)=Cfi4-‘fi(dbi)+Cf2biDfi(acri) i i 

=Cfiaigd(fibi)+Cf26i.dCft~)=dCfC). i i 

Moreover, by the f&t above, f clemly preserves the relation (r(x) = y) A (SC = 0). 
Thus if @(x, r) E tp@ U I$,&; 4) n S; then #(x; r) E tp(G, u Gz, 6; C) n S, 

proves the claim. 

I& 0 realize p in an elementary extension Ej of 4. It is easy to construct 
a way that Q E I;;, Fl is countable, and Fl linearly independent from 4 

over 6, where 6 = F1 n li;. The claim now follows fkom Claim 1. By Theorem 2.5 
we amclude that every formda in S is an equation. 0 
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