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Cavitation is a process where the viscous terms in a relativistic fluid result in reducing the effective pres-
sure, thus facilitating the nucleation of bubbles of a stable phase. The effect is particularly pronounced 
in the vicinity of a (weak) first-order phase transition. We use the holographic correspondence to study 
cavitation in a strongly coupled planar cascading gauge theory plasma close to the confinement/decon-
finement phase transition. While in this particular model the shift of the deconfinement temperature due 
to cavitation does not exceed 5%, we speculate that cavitation might be important near the QCD critical 
point.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Hydrodynamics is a universal framework to describe strongly 
coupled systems at energy scales much lower than their character-
istic microscopic scales (masses, temperature, etc.). A noteworthy 
example, on which we shall lay our focus, is the plasma of quarks 
and gluons produced in relativistic heavy ion collisions. The basic 
hydrodynamic equation is that of the conservation of the stress–
energy tensor

∇μT μν = 0. (1)

For an ideal relativistic fluid the stress–energy tensor takes the 
form

T μν
ideal = Euμuν +P�μν, (2)

where E and P are the energy density and pressure,

�μν = gμν + uμuν,

and uμ is the fluid four-velocity, normalized so that uμuμ = −1. 
The leading viscous corrections are parameterized by the fluid 
shear η and bulk ζ transport coefficients in the viscous tensor 
Πμν :

T μν = T μν
ideal + Πμν, (3)

Πμν = −ησμν − ζ∇u�μν, (4)
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where ∇u ≡ ∇αuα , and we have adopted

σμν = (
�μλ∇λuν + �νλ∇λuμ

) − 2

3
∇u�μν. (5)

Assuming that the relevant microscopic scale is the temperature, 
the leading hydrodynamic approximation is valid provided

|∇μuν |
T

� 1, (6)

otherwise, higher-order gradients (typically infinitely many of 
them) must be included [1–3].

It is easy to see that viscous terms tend to reduce the pres-
sure1 [4]. For example, for fluids comoving in an expanding back-
ground such as an FRW metric,

ds2
4 = −dt2 + a(t)2(d�x)2, (7)

we find

σμν
∣
∣
FRW = 0, ∇u|FRW = 3

ȧ

a
, (8)

resulting in an isotropic reduced effective pressure

Peff = P − ζ∇u. (9)

1 For an expanding quark–gluon plasma fireball, it was argued in [4] that this 
may trigger cavitation, releasing the bunch of droplets that are required by models 
of statistical hadronization.
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In the case of a boost invariant fluid expansion, the pressure is no 
longer isotropic [2]:

Peff⊥ = P + 2η − 3ζ

3τ
, Peff

ξ = P − 4η + 3ζ

3τ
, (10)

where ⊥ and ξ are the transverse and longitudinal directions of the 
boost invariant expansion,2 and τ is the proper time. Notice that 
in this case the spatially averaged pressure, ( 2

3 P⊥ + 1
3 Pξ ), still takes 

the form (9). In what follows, we take (9) as a generic expression 
for the effective pressure.

2. Cavitation and first-order phase transitions

Consider now a system which, in thermal equilibrium, can ex-
ist in one of the two phases A or B . A first-order phase transition 
between these phases implies the existence of a critical tempera-
ture Tc , such that PA > PB for T > Tc , and PA < PB otherwise. 
The phase with the higher pressure is thermodynamically favored, 
and the transition at T = Tc proceeds through nucleation of bub-
bles of the stable phase. If the system flows, the relevant pressure 
determining the stability of a phase is the effective one:

Peff
A/B = PA/B − ζA/B∇u. (11)

We use the first law of thermodynamics, dF = −dP = −SdT , to 
write, close to Tc ,

PA/B = Pc + SA/B(T − Tc) +O
(
(T − Tc)

2), (12)

where SA/B are the entropy densities of the corresponding phases. 
Thus, viscous hydrodynamics effects would shift the transition 
temperature according to

|δTc|
Tc

∼ |ζA − ζB |
|SA − SB |

|∇u|
Tc

� |ζA − ζB |
|SA − SB | , (13)

where the upper bound is enforced from the consistency of trun-
cating hydrodynamics at the first order in the velocity gradients, 
see (6). Notice that cavitation affects the transition temperature 
the more weakly the first-order transition (the smaller the differ-
ence between SA/B ) is, and the larger the bulk viscosity difference 
of the two phases at Tc .

Ideally, we would like to evaluate (13) for QCD close to confine-
ment/deconfinement transition.3 While the recent lattice results 
provide a reliable equation of state [5] (at least at vanishing baryon 
chemical potential), rather than doing it from first principles, one 
has to rely on various models to evaluate transport coefficients of 
gauge theory plasma at strong coupling [6–10]. In what follows we 
present the first self-consistent estimate of (13) for a strongly cou-
pled gauge theory plasma.

3. Cascading gauge theory

Consider N = 1 four-dimensional supersymmetric SU (K + P ) ×
SU (K ) gauge theory with two chiral superfields A1, A2 in the (K +
P , K ) representation, and two fields B1, B2 in the (K + P , K ) [11]. 
This gauge theory has two gauge couplings g1, g2 associated with 
the two gauge group factors, and a quartic superpotential

W ∼ tr(Ai B j Ak B
)ε
ikε j
. (14)

2 Such expansion is conveniently described changing variables from (t, z) to 
(τ , ξ): τ = √

t2 − z2, ξ = arctanh z
t .

3 In the context of the production of quark–gluon plasma by relativistic heavy ion 
collisions, we might remove the absolute values in (13) and, ∇u being positive, it 
will lead to an increase in the temperature. This means that hadronization, if driven 
by cavitation, might start earlier than naively expected.
Fig. 1. (Color online.) The ratio of the bulk viscosity ζ to the entropy density S
in cascading gauge theory plasma (solid curve) and the bulk viscosity bound [9]
(dashed). The dashed vertical line denotes the critical temperature Tc of the con-
finement/deconfinement phase transition.

The theory is not conformal, and develops a strong coupling scale 
Λ through dimensional transmutation of the gauge couplings. In 
the UV/IR it undergoes the cascade of Seiberg dualities [12] with 
K → K ± P . The net result of the duality cascade is that the rank 
K of the theory becomes dependent on the scale E at which the 
theory is probed [13]:

K → Keff(E) ≈ 2P 2 ln
E

Λ
, E � Λ. (15)

While not QCD, the theory shares some of the IR features of the 
latter: when K is an integer multiple of P , the cascade ends in the 
IR with SU (P ) supersymmetric Yang–Mills theory which confines 
with spontaneous breaking of the chiral symmetry.

Cascading gauge theory is always strongly coupled in the UV. 
In the planar limit and for large ’t Hooft coupling of the IR SU (p)

factor, the theory is strongly coupled along its full RG flow, and 
thus can be consistently studied using its holographic dual [11]. 
We focus on the cascading gauge theory in the regime where the 
holographic description is reliable.

Thermodynamics of the cascading gauge theory plasma has 
been studied extensively in the past [14–16]: it simultaneously un-
dergoes (first-order) confinement and chiral symmetry breaking at 
Tc = 0.6141111(3)Λ. Furthermore, the deconfined phase becomes 
unstable towards spontaneous development of a chiral condensate 
at a slightly lower temperature, Tχ sb = 0.882503(0)Tc . Finally, at 
Tu = 0.8749(0)Tc , the deconfined phase of the theory approaches 
a critical point with a divergent specific heat [10].

The shear viscosity of the plasma is universal for all phases and 
at all temperatures [17],

η

S
= 1

4π
. (16)

The bulk viscosity of the theory is technically difficult to com-
pute — so far it is known only to the fourth order in the high 
temperature expansion, (ln T

Λ
)−1 [15], which unfortunately is not 

enough to determine its value at the critical point Tc . In turn, we 
take advantage of the Eling–Oz formula [18,19] to compute the 
bulk viscosity of the deconfined phase of the cascading gauge the-
ory over all temperature range. The results are presented in Fig. 1. 
We find, in particular,

ζ

S

∣
∣
∣∣

T =Tc

= 0.04(8). (17)

Besides, it is worth noticing that the bulk viscosity bound [9] is 
respected all across the phase transition.
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We can now address the central question raised in this paper, 
whether or not cavitation is expected to affect the temperature of 
the confinement/deconfinement transition in a cascading plasma. 
Here, the phase A of a fluid is the deconfined phase of the plasma, 
and B is the confined phase. Since in the planar limit both the 
transport coefficients and the entropy density are suppressed, we 
obtain, combining (13) and (17),

|δTc|
Tc

� ζA

SA
= 0.04(8). (18)

This is an upper bound. Consistency of the hydrodynamics expan-
sion suggests that the left hand side is strictly lower than the right 
hand side.

4. Discussion

In this Letter we asked to which extent cavitation in confin-
ing gauge theories affects the critical temperature of the confine-
ment/deconfinement transition. We used the specific example of 
a cascading gauge theory to argue that in the planar limit and at 
strong coupling the effect is small. It is reasonable to expect that 
the result is universal as it reflects the fact that large-N phase tran-
sitions are typically strong (as opposite to weak) first-order, and 
that the bulk viscosity at the critical point remains finite.

Some phenomenological models suggest [8] that QCD’s bulk 
viscosity might diverge at the critical point of the T − μB phase 
diagram. Since the QCD critical point [20] separates the line of 
first-order phase transitions (at large chemical potential) from 
crossovers (at low chemical potential), both of these effects tend to 
increase the actual value of |δTc |/Tc . This means that hadroniza-
tion in QCD’s expanding quark–gluon fireball, if driven by cavi-
tation, might start earlier than naively expected. Quadratic terms 
in (12), though, may become relevant in that case.
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