Campath-1H (alemtuzumab) is used during conditioning to prevent graft-versus-host disease and improve engraftment. Pharmacokinetic data have shown that a commonly employed dose of alemtuzumab (20 mg/day x 5, total dose 100 mg) results in potentially lympholytic alemtuzumab levels for >50 days post-transplant. Delayed alemtuzumab clearance might contribute to increased incidence of viral infections. We therefore studied the effect of a reduced dose of alemtuzumab (20 mg/day x 2, total dose 40 mg) on CMV reactivation. Nine patients (6 male, 3 female; median age 41 yrs, range 22-55 yrs) underwent allogeneic stem cell transplantation (7 MUD, 2 MRD) for a variety of hematologic malignancies after conditioning with thiotepa/TBI/alemtuzumab (7 patients) or fludarabine/melphalan/alemtuzumab (2 patients). Five patients were at risk for CMV reactivation (patient or donor CMV seropositive). Alemtuzumab was administered IV on day -5 and -1 prior to stem cell infusion. CMV reactivation was checked weekly by CMV pp65 antigenemia testing in at-risk patients. All patients received leukocyte depleted blood products (third generation filter). All patients engrafted. Four out of five patients at-risk (80%) developed CMV reactivation at a median of 28 (range 17-32) days post-transplant. No CMV infection occurred in low-risk patients (patient and donor both CMV seronegative). CMV reactivation was treated with IV ganciclovir induction for a minimum of two weeks, followed by IV or PO (val)ganciclovir maintenance. Two patients had a febrile illness at the time of CMV reactivation, however no evidence of CMV disease was found on imaging studies and/or biopsies. Repeated reactivation of CMV reactivation, however no evidence of CMV disease was found on imaging studies and/or biopsies. Repeated reactivation of CMV reactivation at the time of IVIG. No patient died from CMV related complications. We conclude that early CMV reactivation remains a frequently encountered problem after conditioning regimens containing reduced dose alemtuzumab. CMV prophylaxis should be considered in at-risk patients.

SEX STEROID ABLATION THERAPY RESTORES THYMIC FUNCTION AND ENHANCES HEMOPOIESIS AND LYMPHOPOIESIS FOLLOWING ALLOGENEIC AND AUTOLOGOUS STEM CELL TRANSPLANTATION

Sutherland, J.S.1, Goldberg, G.L.1, Heng, T.1, Muirhead, J.L.1, Prince, M.2, Schwarer, A.P.2, Boyd, R.L.1 1. Dept Path. Immunol. Monash University Medical School, Prahran, VIC, Australia; 2. Bone Marrow Transplantation, Alfred Hospital, Prahran, VIC, Australia; 3. Haematology and Medical Oncology, Peter MacCallum Cancer Institute, Melbourne, VIC, Australia.

Opportunistic infection, morbidity and mortality are common following HSC transplantation because of the failure to regenerate an adequate immune system. This is due to the severe sex steroid induced thymic atrophy that occurs with age. Using surgical or temporary chemical (LHRH/GnRH) castration we have shown that blocking sex steroids profoundly enhances thymus function and immune capacity in adult and aged mice. This involved triggering proliferation of the early thymocyte precursors, reduction of apoptotic cells and restored thymic architecture. In addition, in mouse BMT models there was a significant enhancement of BM function and levels therein of HSC in castrated mice. The HSC were readily incorporated into the marked regeneration of the thymus. Thus, sex steroid ablation enhances immune regeneration both at the HSC (BM) and intrathymic levels. We then examined prostate cancer patients undergoing routine sex steroid ablation therapy. They had a significant increase in blood T lymphocytes (importantly CD4+ naive TREC+ and NK cells, by 4-months post-treatment). This lead to clinical trials using an LHRH agonist to ablate sex steroids in patients receiving allogeneic or autologous peripheral blood HSC transplantation (PBST). Compared to control patients (no LHRH-A treatment), there was firstly a significantly decreased time to engraftment with both autologous and allogeneic PBST LHRH-A recipients showing significant increases in neutrophil counts, total WBC and lymphocyte counts within the first month post-transplant compared to controls. In addition there was a significant increase in CD34+ stem cell numbers and NK cells in the autologous transplant recipients who had received the LHRH-A. Importantly the allogeneic recipients in particular showed an increase in total and naive (CD45RA-CD62L-CD45RO-; TREC+T) cell numbers in the blood at all time-points post-transplant compared to controls. Patients receiving the LHRH-A treatment also demonstrated a significantly increased in vitro proliferative responsiveness to TCR stimulation and Tetanus Toxin. These studies set a fundamentally new approach for the treatment of many clinically based T-cell disorders.

LEUKEMIA

157

BONE MARROW ANGIogenesis decreases after stem cell transplantation for treatment of leukemia

Sharifzadeh, A.1, Tavangar, M.2, Ghodsehkan, S.1, Alamoghadam, K.1, Ghasemzadeh, A.2 1. Dr Shariati Hospital, Tehran, Tehran, Islamic Republic of Iran; 2. Dr Shariati Hospital, Tehran, Tehran, Islamic Republic of Iran.

Background: Bone marrow transplantation is an important mode of therapy in adult leukemia patients. Increased bone marrow angiogenesis is shown to participate in the progression of leukemia by direct stimulatory effect of the cytokine secreted by endothelial cells on the proliferation of leukemia cells, thus the bone marrow angiogenesis might be a contributory factor in relapse and also response to therapy. Previous studies have shown that bone marrow angiogenesis might decrease after stem cell transplantation in multiple myeloma patients. Aims: To study whether bone marrow transplantation for the treatment of leukemia affects the bone marrow vascular density and to clarify its clinical significance. Materials and methods: Pre- and post-transplant (30 days after transplantation) bone marrow biopsy samples of 13 patients (3 autologous, 10 allogenic) including 9 AML and 4 ALL patients were evaluated using immunohistochemical staining for vWF. All the vessels in the bone marrow biopsy core were counted and results were corrected for the bone marrow biopsy length. The correlation between the degree of decrease in angiogenesis and relapse and Graft-Versus-Host-Disease was also studied. Results: The bone marrow angiogenesis was significantly decreased after one month of chemotherapy (Mean pre-transplant vascular number = 5.6/mm +/-0.9 SEM, Mean post-transplant vascular number = 1.6/mm, +/- 0.26 SEM, P < 0.001). There was no correlation between the degree of angiogenesis and bone marrow cellularity (which returned to near-normal levels at the time of post-transplant biopsy). The changes in bone marrow vascular density also did not correlate with the type of transplant, relapse or the occurrence of Graft-Versus-Host-Disease. Discussion: A significant and robust decrease in the bone marrow angiogenesis after stem cell transplantation for leukemia was shown. This might be a contributing factor in excellent results of bone marrow transplantation for leukemia by decreasing proliferation stimulatory cytokines from the endothelial cells. The lack of correlation between relapse and decrease in bone marrow density might be attributable to the multifactorial nature of relapse in leukemia.

158

AML TRANSPLANTATION: AUTOLOGOUS VS ALLOGENEIC

Introduction: There are two types of Blood and Marrow transplantation, which are performed in treating course of patients with AML. Assessment of outcome, efficacy and adverse effects of each method is very important, in choosing the right protocol for patients. Method: 138 transplanted patients 68 (49.3%) male and 70 (50.7%) female, with diagnosis of AML were included in present study during 1992-2003. The median age was 23 (ranged 3-58 yrs). Seventy-three patients (52.9%) patients received transplantation as Allogeneic and 65 (47.1%) patients as Autologous. The source of stem cells was Bone marrow in 40 (29 %), Peripheral blood in 97 (70.3 %) and BM plus PBSC in 10 (0.7%) patients respectively. Conditioning regimen for the Allogeneic was Busulphan 4 mg/kg for 4 days plus Cyclophosphamide 60 mg/kg for 2 days and for Autologous were ARA-C 100 mg/m2/BD for 3 days plus VP16 500 mg/m2 for 3 days and Cyclophosphamide 60 mg/kg for 2 days. Results: 50 out of 138 (36.2%) patients were died. The most common leading causes of death were relapse in 26 (18.8%) cases and the acute and chronic GVHD in 7 (5%) cases. 10 years overall survival (which was test by Kaplan-Meier) in Allogeneic and Autologous transplantation was 52%, The relapse frequency in Allogeneic and Autologous was 11 % and 28 % respectively, which was statistically significant by Pearson Chi-Square test (P-value = 0.01 and Odds Ratio = 3.91). Patients in allogeneic and Autologous groups were compared according to confounding factors such as age, sex and stem cell source and there were not any significant difference. Conclusion: Despite a remarkable difference in relapse frequency among these two groups we showed that there were not any significant difference in 10 years overall survival between allogeneic and autologous cases. Furthermore we conclude that Autologous PBSCT transplantation is easier, cost effective and has less morbidity.

159

CRI ACUTE MYELOID LEUKEMIA AND HLA-IDENTICAL ALLOGENEIC TRANSPLANTATION (ASCT) PREPARED WITH REDUCED INTENSITY REGIMEN (RIC): LEUKEMIA CONTROL REQUIRES ADEQUATE PRE GRAFT CHEMOTHERAPY AND POST GRAFT GVHD

Faucon, C.1, Baroum, J.M.1, Mohry, M.2, Bay, J.O.1, Perreau, V.2, Bigler, K.1, Vey, N.2, Sniopp, A.M.1, Cou, D.1, Ladaque, P.1, Marraichinchi, D.1, Blacio, D.1, 1. Institut Paul-Calmettes, Marseille, France; 2. Hôpital Haut-Levêque, Pessac, France; 3. Centre Jean Perrin, Clermont Ferrand, France.

We report a prospective investigation of HLA identical ASCT for pts with CRI AML presenting contra-indications to standard ASCT (age > 50 and/or any comorbidity) and/or poor prognostis features. All pts received a RIC: Fludarabin (30mg/m2/j), Busulfan (8mg/kg) and thymoglobulin from 10 to 2.5 mg/m2. On October 2003, with the addition of Methotrexate (1000 mg/m2/bd x 3 days) + Cyclophosphamide (60mg/kg x 2 days) + Etoposide (500mg/m2 x 3 days) and in allogeneic form the main regimen was Busulfan (4mg/kg x 4 days)+ Cyclophosphamide (60mg/kg x 2 days). Other conditioning regimen, which used in 2 patients in allogeneic transplantation, was Fludarabin (40mg/ m2/day/IV infusion x 5 days) + Busulfan (4mg/kg/day x 4 days). Cyclosorpin and Methotrexate were used as prophylaxis drugs for GVHD. The engraftment was evaluated with time of ANC /H11005 after BMT and 76.3% patients (64/76) achieved this state in arsenic groups. Death occurred in 31.5% of patients (24/76) in arsenic and 20.8% of patients (5/24) in BMT group. The total 1, 3 and 5 years overall survival (OS) and disease free survival (DFS) was 79.4%, 66.2%, 66.2% and 85%, 56.6% , 56.6% in BMT group respectively. In Arsenic group the total 1 and 3 years OS and DFS was 82.1%, 79.4% respectively. Allo ASCT was performed without any previous intensive chemotherapy (Group 1: N = 5), after 1 cycle of high dose ara-cytine (3g/m2x2/jx4) + idarubicin (12mg/m2/ jx2) (HIDAC) (Group 2; N = 15) or after HIDAC and an autologous PBSCT prepared with melphanal (140mg/m2) (Group 3: N = 6). Allo PBSCT was performed 30 to 60 days after last chemotherapy. Fludarabine was decreased from 180 to 120 mg/m2 and thymoglobulin from 10 to 2.5 mg/m2. On October 2003, with a follow-up of 19 months (2-59), all pts engrafted achieving full chimerism on day 60(30-90). 6 presented grade ≥1 aGVHD (Cumulative incidence (CI) = 23%) and 10 eGVHD (CI = 42%). Overall 2 pts died from transplant toxicity (TRM) (TRM CI = 8%) and 30 relapsed (Relapse CI = 38%) for an overall 2 year survival (OS) probability of 57%. All pts in group 1 relapsed and 1 is long term survivor after second transplant. Of the 15 pts with HIDAC alone, 5 relapsed (relapse CI = 33%), 1 died from GVHD (TRM CI = 7%) for a 2 year OS 68%. Of the 6 pts with HIDAC and Auto PBSCT, none relapsed and 1 died from GVHD. Relapse was statistically associated with the absence of pre-graft intensive chemotherapy (p = 0.02), the use of higher dose (5-7.5 mg) of ATG (p = 0.003) and the absence of acute and chronic GVHD (p = 0.001). Longer survival was associated with the use pre-graft intensive chemotherapy (p = 0.04). We conclude that in a population of high risk pts, RIC ASCT is associated with a low TRM and a potent GVL effect if adequate prior chemotherapy is delivered and conduct to high Os. Impact of prior Auto PBSCT seems benefic but needs longer follow-up and higher number of pts and is presently evaluated.

160

EVALUATION OF BONE MARROW TRANSPLANTATION AND ARSENIC TRIOXIDE IN THE TREATMENT OF AML M3 (AN EXPERIENCE IN IRAN)

Ghavamzadeh, A., Irandani, M., Safavi, M., Gholibehsari, S., Almobghaddam, K., Aghdami, N., Bahar, B., Monauri, A. Hematoology-Oncology & BMT Research Center, an University of Medical Sciences, Tebran, Islamic Repulic of Iran.

Background: Acute promyelocytic leukemia characterized by t(15;17) and PML/RARA gene fusion. Material Methods: From April 1993 till March 2003, 24 patients treated under BMT. Ten Autologous and 14 allogeneic transplantations were done. Sixteen peripheral bloods and 8 bone marrows were used as graft. Disease status before transplantation was CR1: 21, CR2: 1 and 1st relapse: 2. Conditioning regimen in autologous transplantation was Ara–C (1000 mg/m²/d x 3 days) + Cyclophosphamide (60mg/kg x 2 days) + Etoposide (500mg/m² x 3 days) and in allogeneic form the main regimen was Busulfan (4mg/kg x 4 days)+ Cyclophosphamide (60mg/kg x 2 days). Other conditioning regimen, which used in 2 patients in allogeneic transplantation, was Fludarabin (40mg/ m²/day/IV infusion x 5 days) + Busulfan (4mg/kg/day x 4 days). Cyclosorpin and Methotrexate were used as prophylaxis drugs for GVHD. The engraftment was evaluated with time of ANC /H11005 after BMT and 76.3% patients (64/76) achieved this state in arsenic groups. Death occurred in 31.5% of patients (24/76) in arsenic and 20.8% of patients (5/24) in BMT group. The total 1, 3 and 5 years overall survival (OS) and disease free survival (DFS) was 79.4%, 66.2%, 66.2% and 85%, 56.6% , 56.6% in BMT group respectively. In Arsenic group the total 1 and 3 years OS and DFS was 82.1%, 79.4% respectively. Allo ASCT was performed without any previous intensive chemotherapy (Group 1: N = 5), after 1 cycle of high dose ara-cytine (3g/m2x2/jx4) + idarubicin (12mg/m2/ jx2) (HIDAC) (Group 2; N = 15) or after HIDAC and an autologous PBSCT prepared with melphanal (140mg/m2) (Group 3: N = 6). Allo PBSCT was performed 30 to 60 days after last chemotherapy. Fludarabine was decreased from 180 to 120 mg/m2 and thymoglobulin from 10 to 2.5 mg/m2. On October 2003, with a follow-up of 19 months (2-59), all pts engrafted achieving full chimerism on day 60(30-90). 6 presented grade ≥1 aGVHD (Cumulative incidence (CI) = 23%) and 10 eGVHD (CI = 42%). Overall 2 pts died from transplant toxicity (TRM) (TRM CI = 8%) and 30 relapsed (Relapse CI = 38%) for an overall 2 year survival (OS) probability of 57%. All pts in group 1 relapsed and 1 is long term survivor after second transplant. Of the 15 pts with HIDAC alone, 5 relapsed (relapse CI = 33%), 1 died from GVHD (TRM CI = 7%) for a 2 year OS 68%. Of the 6 pts with HIDAC and Auto PBSCT, none relapsed and 1 died from GVHD. Relapse was statistically associated with the absence of pre-graft intensive chemotherapy (p = 0.02), the use of higher dose (5-7.5 mg) of ATG (p = 0.003) and the absence of acute and chronic GVHD (p = 0.001). Longer survival was associated with the use pre-graft intensive chemotherapy (p = 0.04). We conclude that in a population of high risk pts, RIC ASCT is associated with a low TRM and a potent GVL effect if adequate prior chemotherapy is delivered and conduct to high Os. Impact of prior Auto PBSCT seems benefic but needs longer follow-up and higher number of pts and is presently evaluated.

BB & MT