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In this paper we study the existence of positive large solutions for the equation �pu +
λ|∇u|p−1 = ρ(x) f (u) in R

N , where f is a non-negative non-decreasing function and ρ is
a non-negative continuous function. We show under some hypotheses detailed below the
existence of positive solutions which blow up at infinity.
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1. Introduction and the main result

There is by now a rich literature on blow-up problems. It is known that the first results on blow-up were obtained by
Rademacher and Bieberbach [13,1] for the following problem{

�u = ρ(x) f (u) in Ω,

u(x) → +∞ as dist(x, ∂Ω) → 0,
(1.1)

where ρ = 1 and f is the exponential function. Later, in [7,12], Keller and Osserman extended the results of [1,13] and
proved that

∞∫
1

1√
F (t)

dt < ∞, where F (t) =
t∫

0

f (s)ds

is both necessary and sufficient condition for the existence of blow-up solution. In [4], Ghergu and Rǎdulescu considered
a more general blow-up problem{

�u + |∇u| = ρ(x) f (u) in Ω,

u(x) → +∞ as dist(x, ∂Ω) → 0,
(1.2)

where f is a non-decreasing function satisfying f ∈ C 0,ν [0,∞), f (0) = 0, f > 0 on (0,∞) and Λ = supt�1 f (t)/t < ∞.

The authors proved that when Ω is a smooth bounded domain, the problem (1.2) has no solution. When Ω = R
N , there is

a positive solution of (1.2) if and only if
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∞∫
1

e−tt1−N

( t∫
0

essN−1 min|x|=s
ρ(x)ds

)
dt = +∞.

Let us announce that several authors have studied extensively the semi-linear case and given various sufficient conditions
for existence of blow-up solution under some assumptions on f and ρ . See [3,7,8,12].

Motivated by paper [4], we consider{
�pu + λ|∇u|p−1 = ρ(x) f (u) for x ∈ Ω,

u(x) → +∞ as dist(x, ∂Ω) → 0,
(1.3)

where �pu = div(|∇u|p−2∇u), p > 2. When λ = 0, the problem (1.3) was investigated by many authors (see [5,10,11]).
When λ �= 0, under some conditions related to the functions ρ and f , the boundary blow-up problem (1.3) has no positive
solution (see [6]). In the present work, we study the problem (1.3) with Ω = R

N . Namely, we are mainly concerned with
existence of solutions u ∈ C 1,ν

loc (RN ), with 0 < ν < 1, of the problem{
�pu + λ|∇u|p−1 = ρ(x) f (u) in D′(

R
N)

,

u(x) → +∞ as |x| → ∞.
(1.4)

Throughout this paper we will always assume that ρ is non-negative continuous function such that α := infx∈RN ρ(x) > 0
and λ ∈ R\{0}. The function f satisfies the following hypotheses.

(H1) f ∈ C 1[0,∞), f ′ � 0, f (0) = 0, f > 0 on (0,∞).

(H2) sups>0
f ′(s)
sq−1 < ∞, where 1 < q < p − 1.

(H3) infs�0( f (s + t) − f (s)) > 0 for all t > 0.

The main result of this paper is the following theorem.

Theorem 1.1. Suppose that (H1)–(H3) hold. Then problem (1.4) has a positive solution if and only if

∞∫
1

(
e−λtt1−N

t∫
0

eλssN−1φ(s)ds

) 1
p−1

dt = +∞, (1.5)

where φ(r) := inf|x|=r ρ(x).

2. Auxiliary results and proof of Theorem 1.1

We need some auxiliary results. We start with the following lemma.

Lemma 2.1. Suppose that (H1)–(H2) hold. Then the equation

�p w + λ|∇w|p−1 = φ
(|x|) f (w) in R

N (2.1)

has a positive radial solution w(|x|). If in addition, (1.5) is satisfied then w(|x|) → ∞ as |x| → ∞.

Proof. To prove this result, we introduce the following radial problem⎧⎨
⎩

(∣∣w ′∣∣p−2
w ′)′ + N − 1

r

∣∣w ′∣∣p−2
w ′ + λ

∣∣w ′∣∣p−1 = φ(r) f (w),

w(0) = a, w ′(0) = 0,

(2.2)

where a > 0. Firstly, we prove the existence of positive large solution of (2.2). This will be done in two steps.
Step 1. Local existence. The proof is based on the fixed point theorem. By integrating (2.2), we obtain

w(r) = a +
r∫

0

A
(

F
(

w(s)
))

ds, r � 0,

where A(s) = |s| 2−p
p−1 s and F (w(s)) = s1−N

∫ s
0 tN−1[−λ|w ′(t)|p−1 + φ(t) f (w(t))]dt.

Consider the following space

Ea = {
ϕ ∈ C 1([0, ra],R

)
/‖ϕ‖a � c

}
,
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where c and ra are positive constants, which will be determined later and

‖ϕ‖a = max
(‖ϕ − a‖∞,

∥∥ϕ′∥∥∞
)
.

We define the mapping T on Ea as follows

T (ϕ)(r) = a +
r∫

0

A
(

F
(
ϕ(s)

))
ds.

For c < a, we denote

γ ≡ γ (c,a) := sup
t∈[a−c,a+c]

f ′(t).

Thus for all ϕ ∈ Ea and s ∈ (0, ra], we have∣∣ f
(
ϕ(s)

) − f (a)
∣∣ � γ

∣∣ϕ(s) − a
∣∣ � γ c. (2.3)

Therefore α( f (a) − cγ ) � φ(s) f (ϕ(s)). Hence

α( f (a) − γ c)

N
s � s1−N

s∫
0

tN−1φ(t) f
(
ϕ(t)

)
dt,

that is

F
(
ϕ(s)

)
�

⎧⎨
⎩

α( f (a)−γ c)−λcp−1

N s if λ > 0,

α( f (a)−γ c)
N s if λ < 0.

(2.4)

By (H2), there exists M > 0 such that

γ � M sup
t∈[a−c,a+c]

tq−1

� M(a + c)q−1

� M(2a)q−1. (2.5)

Choose c such that

c <

⎧⎨
⎩

inf(1,a,
α f (a)

2(Mα(2a)q−1+λ)
) if λ > 0,

inf(1,a,
α f (a)

2Mα(2a)q−1 ) if λ < 0.

In the case λ > 0, it follows from (2.5) that c(αγ + λcq−1) � α f (a)
2 . Therefore

α f (a)

2
+ λ

(
cq − cp−1) � α

(
f (a) − cγ

) − λcp−1.

Since q < p − 1,

α f (a)

2N
� α( f (a) − cγ ) − λcp−1

N
.

Also in the case λ < 0, it is clear that

α f (a)

2N
� α( f (a) − cγ )

N
.

According to (2.4), we obtain

0 < Λs � F
(
ϕ(s)

)
, for all 0 < s � ra, (2.6)

where Λ = α f (a)
2N .

Claim 1. T maps Ea into itself. Indeed, let ϕ ∈ Ea and r ∈ [0, ra]. First, it is easy to see that T (ϕ) ∈ C 1([0, ra],R). On the
other hand, we have
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∣∣T (ϕ)(r) − a
∣∣ �

r∫
0

∣∣A
(

F
(
ϕ(s)

))∣∣ds

�
r∫

0

(
F
(
ϕ(s)

)) 2−p
p−1 F

(
ϕ(s)

)
ds.

Since the function s �→ s
2−p
p−1 is non-increasing in (0,∞), it follows from (2.6) that

∣∣T (ϕ)(r) − a
∣∣ �

r∫
0

(Λs)
2−p
p−1 F

(
ϕ(s)

)
ds. (2.7)

On account of (2.3), we have

f
(
ϕ(s)

)
� f (a) + cγ .

Choosing ra � 1, we get

F
(
ϕ(s)

)
� |λ|cp−1 + β1( f (a) + cγ )

N
s,

where β1 = supt∈[0,1] φ(t). This and the inequality (2.7) imply that

∣∣T (ϕ)(r) − a
∣∣ � |λ|cp−1 + β1( f (a) + cγ )

N
Λ

2−p
p−1

r∫
0

s
1

p−1 ds

� |λ|cp−1 + β1(p − 1)( f (a) + cγ )

Np
Λ

2−p
p−1 r

p
p−1

a .

By choosing

ra � r1 :=
[

Npc

|λ|cp−1 + β1(p − 1)( f (a) + cγ )
Λ

p−2
p−1

] p−1
p

, (2.8)

we obtain∣∣T (ϕ)(r) − a
∣∣ � c, for all r ∈ [0, ra]. (2.9)

In just the same way, we arrive at

∣∣T (ϕ)′(r)
∣∣ � |λ|cp−1 + β1( f (a) + cγ )

N
Λ

2−p
p−1 r

1
p−1

a .

So, choose

ra � r2 :=
[

Nc

|λ|cp−1 + β1( f (a) + cγ )
Λ

p−2
p−1

]p−1

. (2.10)

Therefore∣∣T (ϕ)′(r)
∣∣ � c, for all r ∈ [0, ra].

From this last inequality and (2.9), we deduce that T (ϕ) ∈ Ea and the claim follows.
Claim 2. T is a contraction. In fact, let ϕ,ψ ∈ Ea and r ∈ [0, ra]. Then

∣∣T (ψ)(r) − T (ϕ)(r)
∣∣ �

r∫
0

∣∣A
(

F
(
ψ(s)

)) − A
(

F
(
ϕ(s)

))∣∣ds.

Set G(s) = min(F (ϕ(s)), F (ψ(s))). Then

0 < Λs � G(s), for all 0 < s � ra.
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It is easy to see that

∣∣A
(

F
(
ψ(s)

)) − A
(

F
(
ϕ(s)

))∣∣ � G(s)
2−p
p−1

∣∣F
(
ψ(s)

) − F
(
ϕ(s)

)∣∣. (2.11)

Also by a simple calculation, we get∣∣(ψ ′(s)
)p−1 − (

ϕ′(s)
)p−1∣∣ � (p − 1)cp−2

∥∥ψ ′ − ϕ′∥∥∞
and

φ(s)
∣∣ f

(
ψ(s)

) − f
(
ϕ(s)

)∣∣ � γ β1‖ψ − ϕ‖∞.

Therefore

∣∣F
(
ψ(s)

) − F
(
ϕ(s)

)∣∣ � |λ|(p − 1)cp−2‖ψ ′ − ϕ′‖∞ + γ β1‖ψ − ϕ‖∞
N

s.

Combining this last inequality with (2.11), we obtain

∣∣T (ψ)(r) − T (ϕ)(r)
∣∣ � |λ|(p − 1)cp−2 + γ β1

N
‖ψ − ϕ‖a

r∫
0

G(s)
2−p
p−1 s ds

� |λ|(p − 1)cp−2 + γ β1

N
Λ

2−p
p−1 ‖ψ − ϕ‖a

r∫
0

s
1

p−1 ds

� (p − 1)(|λ|(p − 1)cp−2 + γ β1)

Np
Λ

2−p
p−1 r

p
p−1

a ‖ψ − ϕ‖a.

By choosing

ra � r3 :=
[

Np

2(p − 1)(|λ|(p − 1)cp−2 + γ β1)
Λ

p−2
p−1

] p−1
p

, (2.12)

we get

∣∣T (ψ)(r) − T (ϕ)(r)
∣∣ � 1

2
‖ψ − ϕ‖a. (2.13)

On the other hand, we have∣∣T (ψ)′(r) − T (ϕ)′(r)
∣∣ �

∣∣A
(

F
(
ψ(r)

)) − A
(

F
(
ϕ(r)

))∣∣
� G(r)

2−p
p−1

∣∣F
(
ψ(r)

) − F
(
ϕ(r)

)∣∣
� |λ|(p − 1)cp−2 + γ β1

N
‖ψ − ϕ‖aG(r)

2−p
p−1 r

� |λ|(p − 1)cp−2 + γ β1

N
Λ

2−p
p−1 r

1
p−1

a ‖ψ − ϕ‖a.

Choose

ra � r4 :=
[

N

2(|λ|(p − 1)cp−2 + γ β1)
Λ

p−2
p−1

]p−1

. (2.14)

Therefore∣∣T (ψ)′(r) − T (ϕ)′(r)
∣∣ � 1

2
‖ψ − ϕ‖a. (2.15)

Combining (2.13) with (2.15), we get

∥∥T (ψ) − T (ϕ)
∥∥

a � 1

2
‖ψ − ϕ‖a.

Finally, we choose ra � inf(1, r1, r2, r3, r4). Consequently, T is a contraction. According to the Banach contraction theorem,
the existence of a unique solution of problem (2.2) in [0, ra] follows.
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Step 2. Global existence. Let w ≡ w(.,a) be the maximal solution of (2.2) defined on [0, rmax). First, note that by conti-
nuity of w , there exists r0 > 0 such that w(r) � a/2 for r ∈ [0, r0). So, using the fact that f is non-decreasing, we get

φ(r) f
(

w(r)
)
� α f (a/2) > 0, ∀r ∈ [0, r0).

Since w ′(0) = 0, we can find 0 < r′
0 � r0 such that

−λ
∣∣w ′(r)

∣∣p−1 + φ(r) f
(

w(r)
)
> 0, ∀r ∈ [0, r′

0).

Hence, integrating (2.2), we obtain

rN−1
∣∣w ′∣∣p−2

w ′(r) =
r∫

0

tN−1[−λ
∣∣w ′(t)

∣∣p−1 + φ(r) f
(

w(t)
)]

dt

> 0, ∀r ∈ (
0, r′

0

)
,

which implies w ′ > 0 in (0, r′
0). Particularly, by using the fact that w ′(0) = 0, we deduce that w is convex in [0, r′′

0), r′′
0 < r′

0.

Next, we have w ′ � 0 in [0, rmax). In fact, suppose by contradiction that w changes the monotonicity, then there is some
b > r′′

0 such that w ′(b) = 0 and (|w ′|p−2 w ′)′(b) � 0. It follows from (2.2) that (|w ′|p−2 w ′)′(b) = φ(b) f (w(b)) > 0, which is
impossible and the desired result follows. Finally, suppose again by contradiction that rmax < ∞. It is clear that w(r) → ∞
as r → rmax. Recal that w ′ � 0 in [0, rmax). Thus, (2.2) gives

(
eλrrN−1(w ′)p−1)′ = eλrrN−1φ(r) f (w).

Integrating this equality, we get

w(r) = a +
r∫

0

(
e−λtt1−N

t∫
0

eλssN−1φ(s) f
(

w(s)
)

ds

) 1
p−1

dt, r � 0. (2.16)

In view of (H2) and according to w is non-decreasing in [0, rmax), we have

w(r) � a + C
[

w(r)
] q

p−1

r∫
0

(
e−λtt1−N

t∫
0

eλssN−1φ(s)ds

) 1
p−1

dt

� a + C
[

w(r)
] q

p−1

r∫
0

(
e−λt

t∫
0

eλsφ(s)ds

) 1
p−1

dt,

where C > 0. Using the fact that q < p − 1 and letting r go to rmax, we obtain a contradiction. Consequently rmax = ∞.
Now, we claim that limr→∞ w(r) = ∞. In fact, since f (w) � f (a) > 0, it follows from (2.16) that

w(r) � a + f (a)
1

p−1

r∫
0

(
e−λtt1−N

t∫
0

eλssN−1φ(s)ds

) 1
p−1

dt, r � 0.

By (1.5), the right side of the last inequality goes to infinity as r → ∞ and therefore limr→∞ w(r) = ∞. Consequently w(|x|)
is a positive large solution of (2.1). The proof of lemma is now complete. �

We shall use the following weak maximum principle. Its proof is presented in [6].

Theorem 2.1 (Weak maximum principle). Suppose that (H3) holds. Let Ω ⊂ R
N be a bounded domain and u, v ∈ W 1,p(Ω) satisfy

the following inequality

−�pu − λ|∇u|p−1 + ρ(x) f (u) � −�p v − λ|∇v|p−1 + ρ(x) f (v) in W −1,p′
(Ω). (2.17)

If |∇u|, |∇v| ∈ L∞
loc(Ω), then the inequality u � v on ∂Ω implies u � v in Ω .

The other result that we need is an interior regularity for weak solutions. It is due to DiBenedetto and Tolksdorf [2,14].
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Theorem 2.2. Let Ω ⊂ R
N be a bounded domain. Suppose h(x, t, η) is a measurable in x ∈ Ω and continuous in t and η such that

|h(x, t, η)| � Γ (1 +|η|)p on Ω ×R×R
N . Let u ∈ W 1,p(Ω)∩ L∞(Ω) be a weak solution of �pu = h(x, u,∇u). Given a sub-domain

O ⊂⊂ Ω, there is a ν > 0 and a constant C depending on N, p,Γ,‖u‖∞ and O such that∣∣∇u(x)
∣∣ � C and

∣∣∇u(x) − ∇u(y)
∣∣ � C |x − y|ν, x, y ∈ O. (2.18)

Lemma 2.2. Let Ω ⊂ R
N be a bounded domain. Let u ∈ W 1,p(Ω) ∩ L∞

loc(Ω) be a solution of

−�pu − λ|∇u|p−1 + ρ(x) f (u) = 0 in D′(Ω).

Then |∇u| ∈ L∞
loc(Ω).

Proof. Let O be a subset compact and Ω ′ be a sub-domain of Ω such that O ⊂ Ω ′ ⊂⊂ Ω and define

hM(x, t, η) =
{−λ|η|p−1 + ρ(x) f (t) if t � M,

−λ|η|p−1 + ρ(x) f (M) if t > M,

where ‖u‖∞,Ω ′ � M.

Then, for x ∈ Ω ′ ,∣∣hM(x, t, η)
∣∣ � |λ||η|p−1 + ρ(x) f (M)

�
(|λ| + ‖ρ‖∞,Ω ′ f (M)

)(
1 + |η|p−1)

� Γ
(
1 + |η|)p

.

It is clear that u is a weak solution of �pu = hM(x, u,∇u) in Ω ′. By Theorem 2.2, it follows that |∇u(x)| � C , ∀x ∈ O.

Consequently |∇u| ∈ L∞
loc(Ω) and the proof of lemma is complete. �

Lemma 2.3. Suppose that the hypotheses of Theorem 1.1 hold. Then for each k = 1,2, . . . , the problem

(
Pk) {

L(u) := −�pu − λ|∇u|p−1 + ρ(x) f (u) = 0 in D′(
R

N)
,

u(x) → w(k) as |x| → ∞,

admits a positive solution uk.

Proof. First, let us introduce the following problem

(
Pk

n

) {
L(u) := −�pu − λ|∇u|p−1 + ρ(x) f (u) = 0 for x ∈ B(0,n),

u = w(k) on ∂ B(0,n),

where n � k.
After the transformation u = v + w(k), (Pk

n) becomes

(
Pk

n

)′
{

Lk(v) := −�p v − λ|∇v|p−1 + ρ(x) f
(

v + w(k)
) = 0 for x ∈ B(0,n),

v = 0 on ∂ B(0,n),

therefore

Lk(w
(|x|) − w(k)

) = −�p w
(|x|) − λ

∣∣∇w
(|x|)∣∣p−1 + ρ(x) f

(
w

(|x|))
� −�p w

(|x|) − λ
∣∣∇w

(|x|)∣∣p−1 + φ
(|x|) f

(
w

(|x|)).
By using the fact that w(|x|) is solution of (2.1), we get

Lk(w
(|x|) − w(k)

)
� 0.

Furthermore, w(|x|) = w(n) � w(k) on ∂ B(0,n) and Lk(−w(k)) = 0. On the other hand, set

hk(x, s, η) = −λ|η|p−1 + ρ(x) f
(
s + w(k)

)
,

thus ∣∣hk(x, s, η)
∣∣ � |λ||η|p−1 + ρ(x) f

(
s + w(k)

)
� |λ||η|p−1 + ρ(x) f

(
w

(|x|)),
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for −w(k) � s � w(|x|) − w(k). It is clear that

p − 1 <
p

(p�)′
and ρ(x) f

(
w

(|x|)) ∈ L∞(
B(0,n)

)
.

Then, we apply Theorem 2.2 in [9] to (Pn
k )′ taking −w(k) � w(|x|) − w(k) as the ordered pair of sub- and super-solution.

There exists a solution between −w(k) and w(|x|) − w(k). So, problem (P k
n) admits a weak solution denoted by uk

n such
that

0 � uk
n(x) � w

(|x|), x ∈ B(0,n). (2.19)

According to Lemma 2.2, |∇uk
n| ∈ L∞

loc(B(0,n)). Since L(uk
n) = 0 � L(w(k)) in W −1,p′

(B(0,n)) and uk
n = w(k) on ∂ B(0,n), the

maximum principle implies

uk
n(x) � w(k), x ∈ B(0,n), for all n � k. (2.20)

This implies uk
n+1 � w(k) = uk

n on ∂ B(0,n). Since L(uk
n) = L(uk

n+1) = 0 in W −1,p′
(B(0,n)), applying again the maximum

principle, we obtain

uk
n+1 � uk

n in B(0,n), for all n � k.

Let ϕ ∈ C∞
0 (RN ). Choose n0 � k such that suppϕ := K ⊂ B(0,n0/2). Then, the sequence {uk

n}∞n=n0
is non-increasing and

bounded below by 0 and hence converges in B(0,n0). The remainder of the proof is similar to the proof of Lemma 2.1
in [10]. In view of (2.20), un(x) � w(k), x ∈ B(0,n0), for all n � n0. So, by proceeding as in the proof of Lemma 2.2 with the
aid of Theorem 2.2, there is a ν > 0 and C > 0 such that for every n � n0,∣∣∇uk

n(x)
∣∣ � C and

∣∣∇uk
n(x) − ∇uk

n(y)
∣∣ � C |x − y|ν, x, y ∈ B(0,n0/2). (2.21)

Therefore the sequences {uk
n}∞n=n0

and {∇uk
n}∞n=n0

are equicontinuous in B(0,n0/2) and hence, there is a subsequence still

denoted by uk
n such that uk

n → uk and ∇uk
n → vk uniformly on compact subsets of B(0,n0/2) for some uk ∈ C(B(0,n0/2))

and vk ∈ C(B(0,n0/2))N . So, vk = ∇uk in B(0,n0/2) and ∇uk ∈ C 0,ν (B(0,n0/2)). By (2.21),∣∣∇uk
n

∣∣p−1|∇ϕ| � C |∇ϕ| in K.

Since η �→ |η|p−2η is continuous, it follows that∣∣∇uk
n(x)

∣∣p−2∇uk
n(x)∇ϕ(x) → ∣∣∇uk(x)

∣∣p−2∇uk(x)∇ϕ(x), x ∈ K.

According to dominated convergence theorem, we deduce∫ ∣∣∇uk
n

∣∣p−2∇uk
n∇ϕ →

∫ ∣∣∇uk
∣∣p−2∇uk∇ϕ.

In the similar way, we get∫ ∣∣∇uk
n

∣∣p−1
ϕ →

∫ ∣∣∇uk
∣∣p−1

ϕ.

On the other hand, we have

0 � f
(
uk

n+1

)
� f

(
uk

n

)
and f

(
uk

n(x)
) → f

(
un(x)

)
, x ∈ K,

thanks to the monotone convergence theorem, we conclude∫
ρ f

(
uk

n

)
ϕ →

∫
ρ f

(
uk)ϕ.

Consequently,

−
∫ ∣∣∇uk

∣∣p−2∇uk∇ϕ + λ

∫ ∣∣∇uk
∣∣p−1

ϕ =
∫

ρ f
(
uk)ϕ, ∀ϕ ∈ C∞

0

(
R

N)
.

Finally, we have uk
n = w(k) on ∂ B(0,n). Thus, it follows that uk

n(x) → w(k) as |x| → ∞ and uk is a positive solution of (Pk).
The proof of lemma is now complete. �
Proof of Theorem 1.1. Sufficient condition. In view of Lemma 2.3, for each k = 1,2, . . . ,

lim uk(x) = w(k).
|x|→∞
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Since w(k) < w(k + 1), there exists R0 > 0 such that uk(x) � uk+1(x) for |x| � R0. Thereby,{
L
(
uk) = L

(
uk+1) in W −1,p′(

B(0, R0)
)
,

uk � uk+1 on ∂ B(0, R0).

Then, again by the maximum principle, uk � uk+1 in B(0, R0). Which implies that uk � uk+1 in R
N . By (2.19), we deduce

0 � uk(x) � w(|x|) for x ∈ R
N . Then uk → u as k → ∞ such that 0 � u(x) � w(|x|) for x ∈ R

N .

Let ϕ ∈ C∞
0 (RN ) and R > 0 such that suppϕ := K ⊂ B(0, R/2). Recalling that w is non-decreasing, thus uk(x) � w(R)

for x ∈ B(0, R). So, as in the proof of Lemma 2.3, there is ν > 0 and C > 0 such that uk → u ∈ C(B(0, R0/2)), ∇uk → ∇u on
compact subsets of B(0, R/2) and |∇uk| � C . Moreover ∇u ∈ C 0,ν (B(0, R/2)). Similar to the above proof, we obtain

−
∫

|∇u|p−2∇u∇ϕ + λ

∫
|∇u|p−1ϕ =

∫
ρ f (u)ϕ, ∀ϕ ∈ C∞

0

(
R

N)
.

Since uk(x) → w(k) as |x| → ∞ and w(k) → ∞ as k → ∞, it follows that u(x) → ∞ as |x| → ∞ and problem (1.1)
admits a positive solution u ∈ C 1,ν

loc (RN ).
Necessary condition. Suppose that

∞∫
1

(
e−λtt1−N

t∫
0

eλssN−1φ(s)ds

) 1
p−1

dt < ∞ (2.22)

and the problem (1.4) has a positive solution u ∈ C 1,ν
loc (RN ). Choose w(0) = a > u(0), with w a solution of (2.2). Then, there

is a ball B(0, R) such that

w
(|x|) > u in B(0, R). (2.23)

In view of (2.16), we have

w(r) � a + C
[

w(r)
] q

p−1

∞∫
0

(
e−λtt1−N

t∫
0

eλssN−1φ(s)ds

) 1
p−1

dt.

Using the fact that q < p −1, we deduce w is bounded. On the other hand, u(x) → ∞ as |x| → ∞ implies there exists A > 0
such that u(x) � sup0�r w(r) for |x| = A. Thus, L(u) = L(w(|x|)) = 0 in B(0, A) and u(x) � w(|x|) for |x| = A. The maximum
principle gives u � w(|x|) in B(0, A). Which is contradictory with (2.23). The proof of Theorem 1.1 is now complete. �
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