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Linear Least Squares (LLS) problems are particularly difficult to solve because they are

frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS prob-

lems are commonly seen in mathematics and geosciences, where regularization algo-

rithms are employed to seek optimal solutions. For many problems, even with the use of

regularization algorithms it may be impossible to obtain an accurate solution. Riley and

Golub suggested an iterative scheme for solving LLS problems. For the early iteration

algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate

the convergence at the same time. Aiming at this problem, self-adaptive iteration algo-

rithm (SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The

algorithm is different from other popular algorithms proposed in recent references. It

avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation

parameter according to the rate of residual error decline in the iterative process. Example

shows that the algorithm can greatly reduce iteration times, accelerate the convergence,

and also greatly enhance the computation accuracy.

© 2015, Institute of Seismology, China Earthquake Administration, etc. Production and

hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A linear or linearized model is expressed as

L ¼ AX� V; covðVÞ ¼ s2
0Q; P ¼ Q�1 (1)

where L2Rn is an observation vector contaminated by an error

vector V2Rn with normal distribution of mean zero and
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covariance matrix s2
0Q; P is a positive-definite weight matrix;

A2Rn�m is a matrix with full column rank connected to an

unknown vector X2Rm and generally n >m. We are concerned

with the solution of least-squares problems:

min
X2Rm

kAX� Lk (2)

where k,k denotes the Euclidean vector norm, X is the un-

known vector to be solved. If the matrix A is well-conditioned,
.
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the least-squares solution has the best unbiased estimation to

this over determined system of equation (1) which is given as� ðATPAÞX ¼ ATPL

X ¼ �
ATPA

��1�
ATPL

� (3)

However, ATPA may be a severely ill-conditioned matrix,

thus it cannot be inverted. Problems of this kind are referred to

ill-posed problems. Due to the ill-conditioning of ATPA, these

problems are difficult to solve accurately [1]. Inverting ill-

conditioned large matrices is a challenging problem involved

in a wide range of applications, including inverse problems

and partial differential equations [2]. Global Navigation

Satellite System (GNSS) is a fast, dynamic, high precision

positioning technique that has been attracting more and

more attention in modern geodesy. In the static positioning

of GNSS, the carrier phase ambiguity and other parameters

are set as unknown for solving. A linear observational

equation system for real-time GNSS carrier phase ambiguity

resolution is often severely ill-posed, in the case of poor

satellite geometry [3]. Generally, in order to improve the

precision and reliability of the solution, a long time for GNSS

observing is usually needed. GNSS satellites belong to high

orbit satellite, and the angle velocity is small. If the

observation period is not long enough, the directions of

the receivers to the satellites will see little change, and the

distances between stations and satellites vary little in

the whole observing session. Thus observation equations of

the same satellites and different epochs are almost similar,

so to rapidly determine phase ambiguity is a typical ill-

condition problem.

Linear discrete ill-posed problems are difficult to solve

numerically, because their solution is very sensitive to per-

turbations which may stem from errors in the data, round-off

errors and discretization errors during which introduced the

solution process [4,5]. Severely ill-conditioned matrix invert-

ing problems abound in the geosciences, especially in the data

processing of modern survey. In the numerical algorithm, all

the cases of inappropriate function model or inappropriate

calculating method, a morbid or singular iteration matrix and

so on, will lead to inaccurate solutions. For singular matrix

and ill-posed problems, there are a large number of research

results, such as regularization methods. Among all regulari-

zationmethods, perhaps the best known andmost commonly

used is the TikhonovePhillips method, which was originally

proposed by Tikhonov and Phillips in 1962 and 1963 [6]. It's
possible that the best understood regularization method is

due to Tikhonov [7]. The Tikhonov regularization method is

one of the most popular approaches to determine an

approximation of X. This method replaces the linear system

of equation (2) by a penalized least-squares problem of the

form [8e12]:

min
X2Rm

n
kAX� Lk2 þ mkTXk2

o
(4)

where m > 0 is known as the regularization parameter, T is

some suitably chosen Tikhonov matrix. Ill-posed problems

must be first regularized if one wants to successfully attack

the task of numerically approximating their solutions. It is

often said that the art of applying regularization methods

consist always in maintaining an adequate balance between
accuracy and stability [13]. As to regularizationmethods, there

are three drawbacks: (1) these methods destroy the

equivalence relation of the equation (3); (2) a regularized

solution is well-known to be biased [14]; and (3) to determine

the optimal regularization parameter is rather difficult.

Riley [15] and Golub [16] suggested an iterative scheme for

solving LLS problems, which has advantages as follows: (1) it

makes the perturbed matrix well-conditioned, and improves

the condition number of matrix in the normal equation; (2) it

keeps the equivalence relation of the equation unchanged;

and (3) the iteration can always converge to the optimal

solution theoretically. For these reasons, it has attracted

attention from geodesists in data processing widely. However,

a few problems are found in its practical application in recent

years [17]. The choice of perturbation parameter will greatly

affect the rate of convergence of the iterative method, and

thus one must choose it with great care [16]. The perturbation

parameter chosen should be large enough to make the

perturbed matrix well-conditioned, yet small enough to

ensure that the error
��X� eX�� is small [18]. If the perturbation

parameter increases, the convergence rates turn out to be

low; but if decreased, the ill-posed matrix cannot be improved

to be well-conditioned. For this reason, based on theoretical

analysis and a large number of experiments, a new self-

adaptive iteration algorithm is proposed in this paper.

The contributions of this paper are as follows: (1) a formula

to determine the initial perturbation parameter is given; (2) a

self-adaptive strategy is proposed to determine the tunable

perturbation parameter dynamically; (3) an optimal termina-

tion point is found to stop the iteration. Comparison results of

some experiments indicate that the algorithm can accelerate

the convergence and improve computation accuracy. The rest

of the paper is organized as follows. Section 2 introduces the

algorithm in detail for severe ill-posed problems. Section 3

gives several experiments to demonstrate the superior

performance of the proposed algorithm. The concluding

remarks are outlined in Section 4.
2. Self-adaptive iteration algorithms

2.1. Implementations of regularization

The ill-posed matrix is generally measured by the condi-

tion number of the matrix. If the condition number of ATPA is

very large, that means the matrix is usually ill-posed. In this

case, finding the inverse matrix of ATPA in equation (3) may

have no stable solution. To solve the problem, many

references [8,18e21] employ an algorithm like this

Xm ¼ �
ATPAþ mI

��1�
ATPL

�
(5)

where m is an arbitrary regularization parameter, I denotes

identity matrix. It is obvious that adding mI to the right side of

equation (5) will destroy the equivalence relation in equation

(3). The solution Xm solved by equation (5) is no longer the

same X in equation (3). Another drawback is that the

condition number of ATPA is much more than that of A,

which requires m to be large enough to control the condition

of the matrix [18]. Moreover, it is difficulty to determine an

http://dx.doi.org/10.1016/j.geog.2015.06.004
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optimal value of m. Study results show that if the

regularization parameter does not grow too fast (not faster

than a geometric sequence), then the scheme converges

with optimal convergence rates [22].

In order to stabilize the solution in such an ill-posedmodel,

an iteration algorithm is suggested as following:� ðATPAþ IÞX ¼ ATPLþ X

Xðkþ1Þ ¼ �
ATPAþ I

��1�
ATPLþ XðkÞ� (6)

where k denotes kth iteration times. In most cases, equation

(6) can solve many general-conditions ill-posed problems

[17]. But in some extremely ill-posed problems, the

iteration is difficult to converge. And even if iteration

converges, the convergence rates will also be rather low,

millions of iteration times are always required to get higher

accuracy.

2.2. Perturbation parameter

In order to accelerate the convergence, a perturbation

parameter is added to equation (6):

Xðkþ1Þ ¼ �
ATPAþ aI

��1�
ATPLþ aXðkÞ� (7)

where a is the perturbation parameter. In equation (7), 0� a� 1.

When a ¼ 0, equations (7) and (3) are equivalent; when a ¼ 1,

equations (7) and (6) are equivalent. So equation (7) contains

both scenarios of (3) and (6). Experiments have shown that

decreasing the value of a may increase the iteration speed.

But if a is too small, then the equations will remain ill-

conditioned. Therefore, how to balance the convergence rates

and matrix condition is a dilemmatic task. For this reason, to

determine perturbation parameter a is rather difficult. An

optimal selection of a must improve both the matrix

condition and accelerate the convergence of equation (7).

2.3. Cholesky decomposition

To invert a severely ill-conditioned matrix, most algo-

rithms will fail to get an optimal solution. Moreover, the

arbitrary selection of a is not appropriate in most cases.

Aiming at the problems, we use a tunable self-adaptive

perturbation parameter a and avoid inverting an ill-condi-

tioned matrix by Cholesky decomposition. The proposed al-

gorithm based on equation (8), gives X and a an initial value,

then adjusts the value of a in next iteration.(
ðATPAþ aIÞXðkþ1Þ ¼ ATPLþ aXðkÞ

Xð0Þ ¼ 0
n�1

(8)

In equation (8), the value of a is determined by a self-

adaptive way. If a is reduced to a small value, the condition

number of the coefficient matrix will increase. In order to

avoid inverting ATPA þ aI matrix, Cholesky decomposition is

adopted to solve equation (8). In the early version of our

algorithm [23], we use LU decomposition in the process. It is

reported in many references that Cholesky decomposition

would be better than LU decomposition. Then we revised our

algorithm to use Cholesky decomposition, and don't do any

more comparison between these two methods. The merits of

Cholesky decomposition can be found in many references.
In linear algebra, Cholesky triangle is a decomposition of a

Hermitian, positive-definite matrix into the product of a lower

triangular matrix and its conjugate transpose. It was discov-

ered by Andr�e-Louis Cholesky for real matrices. When it is

applicable, the Cholesky decomposition is roughly twice as

efficient as the LU decomposition for solving systems of linear

equations [24]. Cholesky decomposition is much simpler than

the eigenvalues and SVD methods. It needs fewer arithmetic

operations and less computational time. Cholesky

decomposition is a direct decomposition method without

inversion. At the same time, a large matrix can be computed

in parallel, thus it has advantages in solving a large normal

equation. Especially targeted to solve an ill-posed problem,

Cholesky decomposition has the significant advantage of its

simplicity and does not need to invert the matrix comparing

with other inverse methods.

2.4. Initial value of the perturbation parameter

If d is a lower bound of the smallest non-zero singular

value, Golub suggested that a should be chosen as

a

aþ d2
<0:1 (9)

This means at each stage, there will be at least one more

place of accuracy in the solution [16]. At the beginning of

iteration, we give the initial value of a according to equation

(10)�
l ¼ minðjeigðATPAÞjÞ

a ¼ l100:5jlogðlÞjþ1 (10)

In equation (10), eig is themultiple eigenvalue of thematrix

ATPA; min means the minimal value; log is logarithm at the

base 10; l is the smallest eigenvalue of the matrix ATPA; j,j is
the absolute value, it is necessary for the eig may be a

negative number. The initial value of a is determined by lmin,

when lmin ¼ 10�10, a ¼ 10�4; when lmin ¼ 0.01, a ¼ 1. Equation

(9) is suitable for the matrix with lmin ≪ 0.01.

The purpose we set the initial value of a as equation (10) is

to balance the matrix condition and the convergence. The

condition number of M is cond(M) ¼ lmax/lmin. As to a

severely ill-conditioned matrix M, lmin z 0, so cond(M) is

usually a very big number. Assuming li is the multiple

eigenvalue of the matrix ATPA, then the multiple eigenvalue

of the matrix ATPA þ aI is li þ a. The role of the perturbation

parameter a is to change the condition number fromlmax/lmin

to lmax þ a/lmin þ a. A proper a can decrease the condition

number and improve the matrix condition.

2.5. Iteration algorithm

Now we give the steps of the proposed algorithm, which

are as follows:

(1) Setting NX ¼ W. Assuming N, W are:

N ¼ ATPAþ aI (11)

W ¼ ATPLþ aXðkÞ (12)

http://dx.doi.org/10.1016/j.geog.2015.06.004
http://dx.doi.org/10.1016/j.geog.2015.06.004
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N can be decomposed into the product of a lower triangular

matrix C and its conjugate transpose CT, i.e., N¼ CCT. This will

yield an equation (CCT)X ¼ W.

(2) Assuming the initial value of C is:

C ¼ 0
n�n

(13)

where 0 is zero matrix; n � n is the size of N.

(3) According to Cholesky decomposition, computing ma-

trix element of C by following equations (14) and (15):

�
Cð1; 1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nð1; 1Þp
Cði; 1Þ ¼ Nði; 1Þ=Cð1; 1Þ ; i ¼ 2 � n (14)

8>>>><>>>>:
Cðj; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðj; jÞ � Pj�1

k¼1

Cðj; kÞ2
s

Cði; jÞ ¼
"
Nði; jÞ � Pj�1

k¼1

Cði; kÞ � Cðj; kÞ
#,

Cðj; jÞ
; j ¼ 2 � n;

i ¼ jþ 1 � n

(15)

(4) Letting Y¼ CTX. Then solving Y by the equation CY¼W:

8<:
YðiÞ ¼ WðiÞ=Cði; iÞ; i ¼ 1 � n

YðiÞ ¼ YðiÞ �Pi�1

j¼1

Cði; jÞ=Cði; iÞ � YðjÞ; i ¼ 2 � n (16)

(5) Letting U ¼ CT, taking the values of Y and solving X by

the equation UX ¼ Y. This will give the solution X in the

equation NX ¼ W.

8<:
XðiÞ ¼ YðiÞ=Uði; iÞ; i ¼ n � 1

XðiÞ ¼ XðiÞ �Piþ1

j¼n

Uði; jÞ=Uði; iÞ � XðjÞ; i ¼ n� 1 � 1 (17)

(6) Adjusting the value of a, doing steps (1)e(5) again, and

stopping the iteration when the termination criterion

err(k)/err(k�1) > 1 is satisfied, where err(k) ¼ kNX(k) � Wk.
2.6. Adjusting a self-adaptively

In the iterative process, the value of a is not fixed. It is

adjusted automatically by a “double or half” strategy ac-

cording to the rate of residual reduction [25]. If the ratio of

kth iteration residuals to (k � 1)th is over 0.75, which

means the iteration residuals cannot be effectively

reduced, i.e., err(k)/err(k�1) > 0.75. If the iteration satisfies
the condition, then reduced the value of a to its half, i.e.,

a(kþ1) ¼ a(k)/2.

But in some cases, we also find that the iteration residuals

decrease quickly, i.e., err(k)/err(k�1) < 0.25. Then we double the

value of a in the next iteration, i.e., a(kþ1) ¼ a(k) � 2.

If an appropriate value of a can make the iteration residual

error decrease steadily, then a remains unchanged and iter-

ation continues.

2.7. Terminating the iteration

The iteration will be terminated as soon as the iteration

meets the precision requirements, or satisfies a stopping rule

related to the discrepancy principle. Let

eðkÞ ¼ Xðkþ1Þ � XðkÞ (18)

It is easy to see that

eðkþ1Þ ¼ a
�
ATPAþ aI

��1
eðkÞ (19)

It is obvious that
��eðkþ1Þ�� should be less than

��eðkÞ��. Golub
suggested that a good termination procedure is to stop iter-

ating as soon as
��eðkÞ�� increases or does not change [16].

The discrepancy principle prescribes that the iterations

should be terminated as soon as an iteration xk that satisfies

the stopping criterion kAxk � bk � hd has been found, where

h > 1 is a user-specified constant independent of d [1,26]. In

order to terminate the iteration at an idea point, we have

traced the process of iteration residual errors at different

iteration times in many experiments. In most cases, we can

find that the processes of iteration residual errors include

two parts: one is the monotonically decreasing process, the

other is the monotonically increasing process, as shown in

Fig. 1.

Obviously, the idea terminating point satisfies err(k)/

err(k�1) > 1, which will be adopted as the iteration termination

criterion. So the (k � 1)th iteration results can be accepted as

the final solutions.
3. Example and comparative analyse

In this section, a twenty order Hilbert ill-conditioned ma-

trix is solved, to demonstrate the performance of the proposed

algorithm SAIA, and comparing it with other solutions, which

include least-squares solution, Tikhonov solution, and trun-

cated SVD solution.

The typical Hilbert matrix is defined as

Hn ¼ �
hij

�
n�n

; hij ¼ 1
iþ j� 1

(20)

Hilbert is a symmetric positive definite matrix. With the

increase of its order, it becomes more seriously ill-condi-

tioned. A twenty order Hilbert matrix H20, its determinant

value is �9.9312 � 10�197, and its condition number is

2.0383 � 1018. Thus H20 is a severely ill-conditioned matrix. By

increasing the order of Hilbert matrices respectively, more

experiments are made for the proposed algorithm. SARA is

still a successfulmethod. It can obtain precise solutions after a

few iterations, and solutions are reliable.

http://dx.doi.org/10.1016/j.geog.2015.06.004
http://dx.doi.org/10.1016/j.geog.2015.06.004


Fig. 1 e Process chart of iteration residual error. The red dot, where err(k) > err(k¡1), denotes the optimal iteration terminating

point.
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Let X20 � 1 ¼ [11…1]T, we can get B20�1 ¼ H20$X20�1. X is a

known 20 � 1 matrix, whose elements all are 1. Using H and B

to solveX, the solutions are shown in Table 1, and the iteration

process is shown in Fig. 2.

Table 1 shows that the severely ill-conditioned Hilbert

matrices cannot be solved directly, for the computing

accuracy of the direct least-squares solution is rather low.

Nearly all of the solutions differ greatly from their true

values, and partial results are distorted severely. The

residual error of Tikhonov solutions (m¼3 � 10�4) is

2.616 � 10�6. The residual error of the truncated SVD

(truncation parameter K ¼ 4) is 2.262 � 10�5. Among four

methods, solutions of the proposed SAIA are relatively

better. It only iterates thirteen times, and the residual error

is 2.488 � 10�6, which is the minimum among four methods.

If we fix a as 10�6, after iterating 100,000 times, the residual
Table 1 e Solutions of Hilbert matrix.

Matrix inverse X ¼ H�1B Tikhonov solution m

X1 �3.47749698162079 0.999906132035

X2 15.6925048828125 0.998085504035

X3 0.989501953125 1.009259703652

X4 1.0625 0.999951891233

X5 0.65625 0.992605432679

X6 1.3125 0.990707371106

X7 1.4375 0.992767213589

X8 2 0.996795187253

X9 10 1.001289150929

X10 �18 1.005295832380

X11 32 1.008278427198

X12 �10 1.009979460072

X13 12 1.010317153347

X14 �56 1.009314707789

X15 �4 1.007054277881

X16 24 1.003647877917

X17 39.5 0.999219440634

X18 �144 0.993894068787

X19 32 0.987791862511

X20 �10 0.981024622513

Residual

error

38.2587 2.616 � 10�6
error is 3.699 � 10�6. These data suggest that iteration times

of SAIA are greatly reduced; in addition, convergence rates

and calculation accuracy are greatly improved.
4. Conclusions

(1) The ill-posed matrix is a basic problem in mathematics

and geosciences. Although there have been many reg-

ularization methods, they destroy the equivalence

relation of the normal equation, and the estimation

results are known to be biased. Furthermore, the

optimal regularization parameter is difficult to deter-

mine. Self-adaptive regularization iteration algorithm

can get an unbiased estimation. It does not change the

equivalence relation of the normal equation. However,
¼ 3 � 10�4 Truncated SVD K ¼ 4 Proposed SAIA

295 0.993484916005128 0.999999999822808

077 1.04427686168369 1.0000000121112

37 0.973558996862218 0.999999802248412

500 0.960144502783415 1.00000128005709

234 0.971565746097472 0.999996282824641

231 0.989348404555657 1.00000407253213

953 1.00590053450885 1.00000154275461

857 1.01856243381075 0.99999477735415

34 1.02675428986424 1.00000044986221

94 1.03072750808467 1.00000127598629

52 1.03102389280142 0.9999999974566

15 1.02824441853018 1.00000293440795

37 1.02295497280410 0.999998635600596

90 1.01565302674189 1.000000968559

16 1.00676103038321 0.999997484394717

22 0.996630926933501 0.999998792618754

574 0.985552653225642 0.999997483156963

960 0.973763427637823 1.00000458486704

157 0.961456471138547 1.00000242073192

384 0.948788669242438 0.999997202450518

2.262 � 10�5 2.488 � 10�6

http://dx.doi.org/10.1016/j.geog.2015.06.004
http://dx.doi.org/10.1016/j.geog.2015.06.004


Fig. 2 e Process chart shows the iteration residual error and the value of perturbation parameter a. The iteration residual

error is decreased steadily while perturbation parameter a decreased in thirteen iteration times.
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its convergence rates are rather low, and the time for

iteration is quite long, even failing to converge in a

limited iteration times. It is rather difficult to improve

the computation precision. The iteration can be

speeded up by adding a perturbation parameter a, yet

how to determine an optimal a is a hard task. It is

contradictory to improve the well-conditioned matrix

and speed up the convergence at the same time.

(2) The proposed self-adaptive regularization algorithm

SAIA is a new algorithm to treat the ill-posed problem. It

is different from other popular algorithms in some

recent references. The algorithm adopts Cholesky

decomposition to avoid matrix inverting. A formula is

given to determine the initial value of the perturbation

parameter. In the iteration, the perturbation parameter

is adjusted self-adaptively according to the residual

error descent rate. It balances the iteration convergence

rates and well-conditioned matrix simultaneously. The

performance of the proposed algorithm is demon-

strated in the Hilbert example. It can greatly reduce the

iteration times, and also enhance the convergence rates

and computation accuracy greatly.
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