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Summary

Clinical complexity, anatomic diversity and molecular heteroge-
neity of cholangiocarcinoma (CCA) represent a major challenge
in the assessment of effective targeted therapies. Molecular and
cellular mechanisms underlying the diversity of CCA growth pat-
terns remain a key issue of clinical concern. Crucial questions
comprise the nature of the CCA-origin, the initial target for cellu-
lar transformation as well as the relationship with the cancer
stem cells (CSC) concept. Additionally, since CCA often develops
in the context of an inflammatory milieu (cirrhosis and cholangi-
tis), the stromal compartment or tumour microenvironment
(TME) likely promotes initiation and progression of this malig-
nancy, contributing to its heterogeneity.

This review will emphasize the dynamic interplay between
stem-like intrinsic and TME-extrinsic pathways, which may rep-
resent novel options for multi-targeted therapies in CCA.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
Key Points

• Cholangiocarcinoma is characterized by complex
molecular heterogeneity, stressing the difficulty of
optimal clinical management
Introduction

Cholangiocarcinoma (CCA) is a highly malignant and heteroge-
neous adenocarcinoma of biliary-epithelial cells. CCA arises in
the biliary epithelium [1] and together with hepatocellular carci-
noma (HCC), represents the major primary liver cancer in adults.
Over the past two decades, the incidence and mortality rate of
CCA has increased worldwide, accounting for approximately
10% of primary liver cancer. For 70% of patients, tumours are
Journal of Hepatology 20

Keywords: Cholangiocarcinoma; Cancer stem cells; Tumour microenvironment;
Tumour associated macrophages.
Received 16 July 2014; received in revised form 30 August 2014; accepted 3
September 2014
⇑ Corresponding authors. Addresses: Liver Unit and Center for Autoimmune Liver
Diseases, Humanitas Clinical and Research Center, Via Manzoni 113, 20089
Rozzano (MI), Italy. Tel.: +39 02 8224 5127 (C. Raggi). Biotech Research and
Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen
DK-2200N, Denmark. Tel.: +45 353 25834 (J.B. Andersen).
E-mail addresses: chiara.raggi@humanitasresearch.it (C. Raggi), jesper.ander-
sen@bric.ku.dk (J.B. Andersen).
Abbreviations: CCA, cholangiocarcinoma; CSC, cancer stem cell; HPC, hepatic
progenitor cell; TME, tumour microenvironment; TAM, tumour-associated
macrophages; iCCA, intrahepatic CCA; PSC, primary sclerosing cholangitis.
unresectable, advanced and metastatic. The 5-year survival rate
for these patients is 0% to 10% [2].

CCA comprises several pathological entities that differ in gross
clinical appearance and tumour localization (ILCA guidelines
2013 [3]): intrahepatic CCA (iCCA) develops in small intrahepatic
bile ducts, whereas extrahepatic ductules give rise to both
tumours in the bifurcation of the common bile duct (perihilar,
pCCA) and in the distal biliary tree (dCCA) [2] (reviewed in [4]).
These subtypes of CCA show partly different epidemiological
behaviour and are associated to some degree with different risk
factors, diverse origins and dissimilar backgrounds [5–7]. These
malignancies are very heterogeneous in terms of cellular mor-
phology, genomic alterations and response to drug-therapy. Thus,
the CCA molecular classification (reviewed in [8,9]) is still inten-
sely debated and currently not adapted to clinical trial design as
well as decision-making. Several recent molecular classifications
were proposed, enriching patient groups based on receptor tyro-
sine kinase (EGFR and HER2), MET, JAK/STAT, RAS/MAPK PI3K/
AKT/mTOR, and inflammation (e.g., COX2) [10,11].

This review will focus on the current understanding of the
pathobiological and molecular aspects of CCA initiation and pro-
gression, taking into consideration acquisition of stem-like prop-
erties and the cell-of-origin concept. Furthermore, we aim to
emphasize the key role of CCA-associated inflammation and the
biliary tumour microenvironment (TME) in the onset of this
malignancy that may represent a potential therapeutic target.
• Therapeutic progress in liver cancer is hampered by 
genetic diversity and a lack of clear oncogene
addiction. However, deep sequencing has identified
several recurrent somatic mutation

• This malignancy often develops in the context of an
inflammatory milieu e.g., cirrhosis and primary biliary
or sclerosing cholangitis

• The tumour microenvironment or stromal compartment
may represent a novel target option (e.g., JAK/STAT
pathway, COX2 and NF-κB)
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Multiple cell origin of CCA

The cellular origin of CCA has been intensely debated in the last
years. In this category of tumours, molecular similarity is clini-
cally important for therapeutic decisions and efficacy. Detailed
analysis of the CCA spectrum has demonstrated the existence of
rare mixed tumour types, such as CCA-HCC (CHC), with interme-
diate characteristics between HCC and iCCA [12]. This suggests
that at least a subset of liver cancers could share a common hepa-
tic stem/progenitor cell origin [13–18].

Hepatic progenitors cells (HPCs) reside in the smallest
branches of the intrahepatic biliary tree: ductules and canals of
Hering. HPCs act as a reserve cell compartment and are activated
when hepatocytes and/or cholangiocytes are damaged (e.g., cho-
lestasis) or their replication inhibited [19,20].

HPCs, situated in the canal of Hering, are bipotential; conse-
quently, they can differentiate into hepatocytes or cholangio-
cytes. Interestingly, Kitade et al. recently described the role of
the EGFR/NOTCH1 positive feedback-loop for HPC commitment
towards the biliary epithelial cell lineage, while hepatocyte dif-
ferentiation is driven by MET signalling [21]. After differentia-
tion into malignant cells, bipotential HPCs undergo maturation
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arrest and transformation, giving rise to a complete spectrum
of tumour phenotypes with diverse hepatocellular and cholan-
giocellular differentiation characteristics e.g., cholangiocellular
carcinoma (CLC) and CHC collision tumours. CLC is a subtype
of CCA, in which more than 90% of the tumour is composed of
small monotonous and/or anastomosing glands [20]. Besides
its CCA-cellular region, these tumours also contain an HCC-like
trabecular area, demonstrating the coexistence of multiple neo-
plastic phenotypes, which complicate CCA biology and ulti-
mately treatment strategies. Since CLC tumours present both
hepatocytic and cholangiocytic phenotypes, Komuta et al. pro-
posed that CLCs might originate from HPCs [13,19,20]. In addi-
tion, CHC tumour cells simultaneously express hepatocytic (AFP)
and cholangiocytic (CEA or CK19) markers along with the hae-
matopoietic stem cell marker c-Kit [22], which leads to the con-
clusion that the primary liver intermediate carcinoma may be a
distinct subtype that arises from bipotential HPCs. Thus, consis-
tent with a progenitor cell origin, a whole range of phenotypic
traits, unique to hepatocytes and cholangiocytes as well as pro-
genitor cells, can be seen in CHC. Recently, a novel HCC subtype
with molecular similarity to CCA (CCA-like HCC, CLHCC) was
characterized by genomic analysis and stratified as an HCC-type
CLC                                    CCA

itor cell

C

r cancer
tic phenotypes

alterations

Cholangiocyte

Notch1
EGFR
IDH1, IDH2

D)
P53 loss
Notch (NICD)
KRASG12D

FIG-ROS
FGFR2 gene fusion

Poor prognosis

ay originate by deregulation of oncogenic programs in a range of liver lineages.
nesis (dedifferentiation theory, red arrow). CCA heterogeneity may derive from
e dynamic differentiation/de-differentiation processes among different tumour
CCA-HCC tumour types; CLHCC, CCA-like HCC; S-HCC, scirrhous HCC, a variant of

5 vol. 62 j 198–207 199



Review

tumour that expresses CCA-like genes [23]. The authors found
that CLHCC co-expressed characteristics of embryonic stem cells
and hepatoblast-like genomic traits, suggesting its derivation
from bipotential HPCs. Furthermore, this study provided
insights into the heterogeneous progression of liver cancer,
which imply a common cellular origin from different develop-
mental stages. This paradigm was recently supported in a
meta-analysis, which suggested that both iCCA and HCC share
common genetic alterations, such as copy number variations
(CNVs), including chromosomal gains (1q, 8q, and 17q) and
losses (4q, 8p, 13q, and 17p), with high-level amplifications of
11q-13 [8]. This suggests that iCCA and HCC may be closely
related at the molecular level. Indeed, a close genomic similarity
between iCCA and a subset of HCCs with progenitor cell charac-
teristics was shown in several recent studies [9–11]. Moreover,
genomic [24,25] and genetic [26–28] analyses of CHC show clo-
sely related molecular alterations, suggesting that acquisition of
CCA-like characteristics play a critical role in the heterogeneity
of liver tumours with poor outcome and limited therapeutic
potential.

The phenotypic complexity and presence of progenitor cell
features in CCA can potentially be explained in two ways: either
the cell-of-origin is a progenitor cell and/or alternatively tumours
dedifferentiate to acquire progenitor features during transforma-
tion (dedifferentiation theory (reviewed in [29–31]). To this end,
Fan et al. [32] recently suggested that iCCAs grow by lineage con-
version, a process thought to occur during malignant transforma-
tion of hepatocytes through the simultaneous activation of e.g.,
NOTCH1 and AKT signalling. This study showed that dedifferenti-
ation of transformed hepatocytes can form the basis for a malig-
nant conversion into a cholangiocellular differentiation path,
potentially contributing to the acquisition of stem/progenitor cell
characteristics, which have been proposed to drive the growth of
iCCA. Intriguingly, Holczbauer et al. [33] recently provided direct
evidence that any cell in the hepatic lineage has the potential to
be the designated cell-of-origin, and can give rise to the complete
spectrum of liver cancers. In this study, the authors were able to
perform a side-by-side comparison of liver tumourigenesis after
transducing mouse primary HPCs, lineage-committed hepato-
blasts and differentiated adult hepatocytes with transgenes
encoding the oncogenes H-Ras and SV40LT. In support of the
hypothesis that multiple cell types can be transformed and
Table 1. List of stemness-related pathways in CCA.
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converted to iCCA, Sekiya and Suzuki used the thioacetamide
mouse model, and showed that in the early stages of tumour
formation, Notch-mediated conversion of hepatocytes into biliary
lineage cells could give rise to iCCA [34]. However, recently in the
context of chronic biliary inflammation and p53 loss, Guest et al.
emphasized the role of the biliary epithelium as the target of
transformation and origin of iCCA formation [35]. This study
further supports the evidence of Notch as a driver of biliary onco-
genesis, demonstrating active signalling within the ductular
tumour epithelium.

Although a marked diversity/plasticity of the underlying
cell-of-origin is emerging from recent studies, current evidence
suggests that most iCCA tumours are derived from undifferenti-
ated cells with a stem-like capability (Fig. 1).
Stemness features of CCA

Currently, the concept of stemness-driven carcinogenesis has
added a new level of complexity in understanding CCA heteroge-
neity and drug resistance. Cancer stem cells (CSCs) represent a
therapeutic challenging subpopulation, responsible for tumour
initiation, progression and relapse. Based on similar properties
of normal stem cells, CSCs are capable to self-renew, produce het-
erogeneous progeny, and divide unlimited (reviewed in [36]). It is
equally plausible that CSCs may be derived from a restricted pro-
genitor cell as well as from a more differentiated cell type. Nota-
bly, the cell-of-origin represents a stem-like cell that has acquired
a cancer-promoting genetic or epigenetic alteration, and is not
necessarily associated with the CSC-concept. Although, it has
already been shown that HCC progression is driven by CSCs
[37–40] very few studies have indicated that CCAs harbour phe-
notypic features of stem/progenitor cells (reviewed in [41]). Con-
sistently, CSC-surface markers were recently proposed in CCA
and include the expression of CD133 [42], CD24 [43], EpCAM
[44], CD44 [45], and CD117 [46].

In order to develop novel CCA target strategies, it is important
to shed light on the pathobiological and clinical aspects of puta-
tive stem-like features in this malignancy. Despite the molecular
and phenotypic heterogeneity of CCA, in the next section we aim
to highlight key regulatory pathways involved in promoting and
maintaining CCA stem-like traits (Table 1).
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Regulatory pathways involved in CCA-associated stemness:
Emerging therapeutic targets

Notch pathway

The Notch canonical signalling pathway is a highly conserved
pathway controlling cell differentiation, proliferation and apopto-
sis, as well as maintenance of stem cells (including hepatic pro-
genitor cells) ([41,47], reviewed in [48]) and morphogenesis of
bile ducts (reviewed in [49]). In mammals, Notch receptors
(Notch 1-4) are activated by five ligands (Jagged1, Jagged2, and
Delta-like ligands 1, 3, and 4), responsible for the switch-on of
downstream target genes, such as Hes1 and Hey1. The expression
of Notch receptors 1 and 3 correlates with cancer progression and
poor survival in CCA [41], whereas the overexpression of Notch
receptors 1 and 4 in HCC may exert tumourigenic effects [50].
Recently Fan et al. demonstrated that activated Notch e.g., the
Notch intracellular domain (NICD), and Akt deregulation deter-
mined an oncogenic phenotypic switch from adult hepatocytes
into precursors of iCCA, which express cholangiocyte markers,
such as CK19 and SOX9 [32]. Since Notch signalling can contrib-
ute to either CCA or HCC, Villanueva et al. suggested that Notch
could be deregulated in bipotential HPCs that are able to differen-
tiate into either hepatocytes or cholangiocytes, depending on the
supportive microenvironment [47]. Interestingly, Zender et al.
convincingly showed that overexpression of the NICD in mouse
livers caused the onset and development of iCCA [51]. Impor-
tantly, these tumours retained plasticity and features of bipoten-
tial HPCs; at 7 months, small epithelial/gland-like lesions in the
livers stained positive for CK7, CK8, CK17, CK18, CK19, and
CD34. The surrounding liver tissue showed a desmoplastic reac-
tion similar to what is often observed in human iCCA (reviewed
in [52]). Also, NICD, overexpressing bipotential HPCs, subcutane-
ously transplanted gave rise to tumours with CCA characteristics,
whereas progenitor cells, overexpressing c-MYC/AKT, gave rise to
HCC/hepatoblastoma-like tumours.

Wnt/b-catenin signalling pathway

The Wnt/b-catenin pathway plays a crucial role in embryogenesis
and its activation is essential for the maintenance of self-renewal
(reviewed in [53]). Wnt ligands bind to Frizzled receptors, pro-
mote b-catenin translocation, TCF/LEF1 co-activation and induc-
tion of key liver cancer genes such as c-Myc, cyclin D1,
Survivin. Notably, b-catenin is expressed in 58% of CCAs. In 8%
of cases, b-catenin is mutated, which likely promotes the HPC
compartment and is considered an early determinant in CCA-pro-
gression [41]. Additionally, Wnt expression is stimulated by com-
monly used progenitor markers, such as CD133 and EpCAM [54].

Hedgehog signalling pathway

The Hedgehog (Hh) signalling pathway is associated with embry-
onic development, cell differentiation and stem cell biology. Acti-
vation of this pathway promotes CCA proliferation and survival,
in addition to HCC carcinogenesis. Indeed, in 60% of HCCs there
is an overexpression of Sonic Hedgehog (SHH), the predominant
ligand of the Hh pathway in the liver. Importantly, in the context
of stemness, Hh promotes HPC proliferation [41,53].

Further, SHH expression was shown to regulate both PDGF-BB
[55] and Jagged-1 [56] signalling. As such, in a model of bile duct
Journal of Hepatology 201
ligation, Xie et al. demonstrated that impaired Hh signalling,
inhibited the Notch pathway, and that Hh and Notch cooperate
to control cell fate in adult liver repair [57].

Hippo signalling pathway

The Hippo-signalling cascade is an evolutionarily conserved
pathway implicated in multiple events during embryonic devel-
opment and tumour onset [58–60]. Strong evidence also points
to a significant role of Hippo signalling in stem cell regulation
e.g. in HPCs (also termed oval-like cells) [61–63].

Recently Lu et al. [61] demonstrated that differentially regu-
lated transcripts, affected by reduced Hippo-signalling, are in
hepatocytes mostly involved in cell movement and immune
response. This finding is consistent with an inflammatory or oval
cell response, both of which occur following liver injury in situa-
tions where hepatocyte proliferation is attenuated [64–66].

Moreover, Lee et al. demonstrated that livers obtained from
WW45 Liv-cKO mice were markedly larger than those of control
animals, showing a notable increase in the number of immature
progenitor cells (or oval-like cells) in the liver [63]. Importantly,
these mice developed tumours with a mixed CHC-like phenotype,
a tumour type thought to originate from transformed oval cells
[67–69]. Indeed, liver/CHC tumours obtained from WW45 Liv-
cKO mice were enriched in transformed oval cells. Consistently,
Kim et al. provided clinical and pathological evidence that YAP1
(Yes-associated protein 1, a primary effector of the Hippo cas-
cade) is frequently expressed in HCC and CHC mixed tumour
types, which retain stemness-related markers, such as EpCAM
and K19 [62].

Furthermore, recently it was proposed that the constitutive
activation of YAP in the bile duct and in association with AKT is
essential in inducing iCCA in a murine biliary injury model
through a IL-33/ILC2/IL-13 circuit [70].

PI3K/PTEN/AKT network

AKT signalling can be activated downstream of tyrosine kinase
receptors, PI3K constitutive activation and loss of the phospha-
tase and tensin homolog (PTEN) [1]. PTEN is a tumour suppressor
gene that antagonizes PI3K activity. PTEN deletion results in pro-
liferation of CD133+ cells and treatment of this cell population,
using an AKT inhibitor, enhances the efficacy of radiation- and
chemotherapy [41,54]. Fan et al. showed that the co-activation
of AKT and N-Ras oncogenes caused the development of CHC-like
liver tumours [32]. It was speculated that this malignant transfor-
mation could be the result of an expansion of HPCs or even
through malignant conversion of hepatocytes into progenitor-like
cells [32]. As such, the PI3K/AKT/PTEN network holds great prom-
ise as a therapeutic target in CCA and currently several clinical
trials are ongoing (reviewed in [71]).

TGF-b/IL-6 and JAK/STAT signalling

The transforming growth factor-b (TGFb) pathway plays a key
role in the self-renewal and maintenance of the undifferentiated
stem-cell state (reviewed in [72,73]). Disruption of the TGFb
pathway impairs stem cell differentiation and causes deregulated
proliferation of HPCs, resulting in CCA development [54]. Early
in tumour initiation, TGF-b acts as a tumour suppressor, whereas
at late stages it promotes tumour growth, metastasis and
5 vol. 62 j 198–207 201



Review

epithelial-mesenchymal transition (EMT) [74]. Among the pro-
cesses involved in reprogramming, EMT likely plays an important
role in the maintenance of stem-cell features. Sato et al. have
demonstrated that TGF-b1/Snail activation induces EMT in CCAs
in vitro and in vivo in resected CCAs, showing a strong correlation
with an aggressive phenotype of CCA [74]. As such, inhibition of
the TGF-b/IL-6 pathway in HPCs may represent a novel therapeu-
tic target in the clinical management of CCA [54].

Isomoto et al. previously demonstrated that IL-6-mediated
STAT3 signalling is sustained in human CCA cells [75]. Binding
of IL-6 to the gp130 receptor phosphorylates and activates the
JAK/STAT pathway. STAT3 induces the transcription of target
genes essential for cellular growth, differentiation and prolifera-
tion (reviewed in [9,71]. Furthermore, Zheng et al. showed
that Gankyrin is an essential regulator of CCA tumour growth
and metastasis [76]. This was achieved by activation of the
IL-6/STAT3 signalling axis.

RAS/RAF/MEK/ERK signalling pathway

The RAS/RAF/MEK/ERK cascade is a highly conserved signal
transduction axis, whose activation results in a number of differ-
ent physiological outcomes, including HPCs proliferation [41]. A
global genomic and mutational profiling by Andersen et al.
revealed a poor outcome of patients with mutated KRAS, charac-
terized by deregulation of oncogenic signalling pathways
together with an enrichment for CCA stem cell-like signatures
[10]. Therefore, targeting the RAS/RAF/MAPK cascade using a
MEK1/2 inhibitor e.g., selumetinib, originally used against meta-
static biliary cancers [77], may represent an attractive therapeu-
tic alternative in some iCCA cases.

Importantly, KRAS mutations have been detected in 30% of
bile, taken from patients with primary sclerosing cholangitis
(PSC), suggesting that it might be a potential event contributing
to the malignant transformation of cholangiocytes [78].
CCA-associated inflammation

Dissection of the molecular mechanisms underlying iCCA devel-
opment has revealed a strong link between inflammation and
tumourigenesis. During the course of chronic inflammation and
cholestasis the biliary microenvironment releases endotoxins
(e.g., lipopolysaccharides (LPS), pro-inflammatory cytokines
(tumour necrosis factor-a, TNF-a) and various interleukins
(IL-1b, IL6) [79], which render the hepatic microenvironment
favourable and permissive for cancer initiation, progression and
resistance to anticancer therapeutics. In addition, recent studies
have shown that cholangiocytes produce and release cytokines,
such as IL-6, IL-8, TGF-b, TNF-a, and the platelet-derived growth
factor B chain (PDGF-B), all of which interact with the biliary epi-
thelium in an autocrine/paracrine manner, thus regulating biliary
cell homeostasis (reviewed in [80,81]). It is clear that this inter-
play between inflammatory signals and bile duct homeostasis
plays an important role in biliary carcinogenesis [82]. An expla-
nation of the phenomenon may be that intracellular cholangio-
cyte signalling, which elicits the development and growth of
biliary tract cancers is altered during the course of malignancy
in response to cytokine and growth factor stimuli.

Canonical IKKb-dependent NF-jB signalling, a regulator of cell
survival, immunity and inflammation, is a key pathway during
202 Journal of Hepatology 201
liver injury and inflammation (reviewed in [83]). Recent studies
have shown that NF-jB and STAT3 signal transduction is engaged
in extensive crosstalks in liver injury, inflammation and cancer
formation [82]. Moreover, Anson et al. showed that by activating
pro-inflammatory (e.g., IFN-c) and anti-inflammatory (e.g., IL-4)
mediators, b-catenin signalling produces an inflammatory milieu,
responsible for aggressive liver tumour growth [84]. Further,
altered cytokine profiles (CCL2, CCL5, CXCL10) may elicit a
response not only in tumour cells but also in the surrounding
liver parenchyma. As such, in a recent gene profile Andersen
et al. laser micro-dissected a subset of tumours from iCCA
patients and identified a stromal signature associated with poor
prognosis [10]. This signature was characterized by upregulation
of IL6 and TGFb3 gene expression and deregulation of chemokine
receptors and ligands (CXCR4, CCR7, CCL2, CCL5, CCL19, CCL21),
cytokine receptors (IL3RA, IL7R, IL10RA, IL18RAP) and interleukins
(IL6, IL16, IL33). In addition, Sia et al. stratified iCCAs into two
prognostic patient subsets with ‘‘inflammation’’ or ‘‘proliferation’’
phenotypic characteristics and enriched for immune-related sig-
nalling and STAT3 activation or oncogenic addiction (RAS, MAPK,
and MET activation), respectively [11].

Furthermore, it is known that patients affected by biliary atre-
sia retain high serum level of IL33. Consistently, IL33 is present in
murine bile ducts with experimental biliary atresia. Li et al.
recently demonstrated that administration of IL-33 to mice mark-
edly increased the growth of cholangiocytes [70]. Notably, induc-
tion of the IL-33/ILC2/IL-13 circuit, in association with a
constitutive activation of AKT and YAP in bile ducts, promotes
iCCA in a murine model of biliary injury [70].

Although our current understanding of the immune-
component in CCA is still limited, recent evidence strongly sug-
gests a potential role of the inflammatory-controlled microenvi-
ronment in CCA onset, progression and clinical severity.
Biliary tumour microenvironment

Molecular changes that regulate cell proliferation; survival and/
or differentiation are well-known ‘initiators’ of tumour develop-
ment. These events occur in the specific context of the tumour
stroma. The tumour microenvironment (TME) represents a
dynamic and actively causal component that supports aggressive
tumour growth. It augments tumour heterogeneity and as such
contributes to tumour progression, invasion and drug resistance.

All subtypes of CCAs are associated with rapid proliferation of
tumour-associated stromal cells, which contribute to the desmo-
plastic nature of this cancer. Cancer-associated fibroblasts (CAF)
are key players in CCA invasiveness and in the generation of a
desmoplastic reaction in CCA. Stromal cells, isolated from surgi-
cally resected CCAs, were recently characterized, and showed
vimentin/a-SMA-positivity and CK7/CK19-negative staining
[85]. Primary cultures of human bile duct epithelial and stromal
cells from CCA surgical specimens are in development, and these
could represent powerful tools to investigate CCA tumour epithe-
lial/stromal interactions [85]. Tumour spread requires that tightly
adherent epithelial cells convert in to a more motile phenotype,
expressing several mesenchymal features. During this process,
typical mesenchymal programs are stimulated, including activa-
tion of specific molecules such as S100A4, a member of the
S100 family of small calcium-binding proteins. S100A4 is com-
monly expressed by mesenchymal cells, macrophages as well
5 vol. 62 j 198–207
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as epithelial cells during EMT [86]. Recently, Fabris et al. showed
that after surgical resection nuclear S100A4 could be used as a
prognostic marker for a subset of CCA patients [87]. Nuclear
expression of S100A4 promotes invasiveness and metastasis of
CCA cells, indicating that S100A4 is a potential therapeutic target.
The role of CAFs or myofibroblasts (MFs) has recently demanded
more attention since a crosstalk between MFs and the tumour
epithelium itself may be promoting tumour growth (reviewed
in [52]), and even correlate with CCA survival [88,89]. In the liver,
MFs are derived from e.g., activated hepatic stellate cells
(HSC), whose transition is stimulated by Hh signalling [90]. The
MF-to-CCA crosstalk furthermore involves several signalling
pathways, such as PLK [91], PDGF [92,93], Hh [56], and Notch
[56,57]. In particular, Cadamuro et al. indicated that CCA cells
recruit CAFs by secreting PDGF-D, which stimulates fibroblast
migration through PDGFRB, Rho GTPase and JNK activation
[94]. Recently, a key role of PLK2 was identified that links PLK
and Hedgehog signalling in TRAIL-induced cell death, by demon-
strating the ability of Hh to regulate PLK2 expression [91]. This
event stabilizes Mcl-1, and thus convenes resistance to TRAIL.
Fingas et al. concluded that targeting either Hh or PLK signalling
might restore CCA cell susceptibility to TRAIL-induced apoptosis
[91,92]. Besides the involvement of several signalling pathways
with potential therapeutic aim, which impact CAFs’ role in
tumour progression, CAFs themselves have been highlighted as
a target. In two recent studies, BH3 mimetics were demonstrated
in animal models to reduce the tumour burden by effectively tar-
geting the stroma [95,96].

In addition to CCA–associated fibroblasts, the TME is enriched
in a wide spectrum of immune cells that may exert a dual role in
tumour development and progression. Indeed, immune cells can
directly eliminate tumour cells or participate in the induction of
an antitumoural immune response (reviewed in [97]). However,
immune cells can also be recruited and appropriately pro-
grammed by tumour cells to favour growth and progression
(reviewed in [97]). Tumour-associated macrophages (TAMs) are
characterized by a distinct phenotypic polarization referred as
‘‘M1 and M2’’. M1-polarized macrophages manifest high levels
of pro-inflammatory cytokines (IL-1, TNF-a, IL-6, and IL-23), high
production of reactive nitrogen (NO�) and oxygen (ROS) interme-
diates that contribute to their tumouricidal activity and antitu-
mour immunity. On the other hands, M2 macrophages serve as
the main players, facilitating parasite containment, tissue remod-
elling and immune tolerance, which may be linked to tumour
progression ([98–100], reviewed in [101]). Although many stud-
ies have shown the contribution of TAMs to tumour development
and poor prognosis, the significance of TAM infiltration in human
CCA is still unclear. However, Hasita et al. recently described an
association between the ratio of CD68+/CD163+ macrophages,
regulatory T cells (Tregs) and vessel number in iCCA [102]. This
study showed that the degree of microvascularization and
tumour-infiltrating Treg cells was more intimately correlated
with the number of CD163+ M2 macrophages than with CD68+

macrophages. Strikingly, patients with elevated levels of
CD163+ macrophages had a shorter disease-free survival
compared to patients with CD68+ [102]. Ohira et al. found that
exposure of human macrophages to tumour cell-conditioned
medium, derived from three different iCCA cell lines, resulted
in a significant upregulation of CD163+ macrophages as well as
STAT3 expression and activation [103,104]. Supernatant, derived
from HuCCT-1 cells, strongly induced STAT3-activation and
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macrophage-polarization towards the M2-class with an increased
expression of M2-type cytokines, such as IL-10, VEGF-A, TGF-b,
and MMP-2 [102]. These results suggest that in iCCA, macrophage
differentiation into the M2-phenotype together with the contri-
bution to angiogenesis and immunosuppression are dependent
on STAT3-signalling. Further, the study determined that TNF-a,
released by TAMs in vivo, could act on iCCA cells to increase the
expression of CXCR4, which in turn was associated with an
increased migration and invasion potential [103,104]. Techasen
et al. suggested that various cytokines, secreted by activated mac-
rophages, such as IL-4, IL-6, IL-10, TGF-b, and TNF-a, consistent
with a M2-phenotype, could induce EMT in CCA by enhancement
of Snail nuclear translocation and reduction of E-cadherin expres-
sion. Indeed, addition of macrophage-conditioned medium to
CCA cells reduced E-cadherin and CK19 expression, whereas it
induced expression of the mesenchymal markers S100A4 and
MMP-9 [86,105].

Bile duct tumours are surrounded by a rich vascular network,
which provides an adequate support of oxygen and metabolites
to malignant cholangiocytes in order to enhance tumour growth.
This angiogenic potential is favoured by overexpression of the
vascular endothelial growth factor C (VEGF-C), a protein that,
stimulated by TGF-b and b-catenin, is expressed by the surround-
ing mesenchyme as well as the malignant cells (reviewed in
[106]). This suggests the existence of an autocrine/paracrine
mechanism in the production of VEGF by malignant cholangio-
cytes, and further indicates that TAMs play an important role in
regulating angiogenesis through VEGF. Interestingly, in HCC
Zhuang et al. showed that increased peritumoural expression of
VEGF-C in association with VEGFR-1 and VEGFR-3 correlated
with an enhanced peritumoural distribution of macrophages,
poorer overall survival and earlier tumour recurrence [107].
Moreover, it was suggested that VEGF autocrine and paracrine
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effects support the expansion of the HPC-niche by stimulating
HPCs as well as endothelial cell proliferation. This aspect could
have important implication in pro-fibrotic processes and carcino-
genesis [108] (Fig. 2).
Future directions: Regulators of the CSC-niche

Corresponding to normal stem cells, CSC-features (e.g., self-
renewal and differentiation) are regulated by the ‘‘CSC-niche’’
through complex undefined interactions (cellular components,
soluble factors, cytokines and growth factors) [109,110]. The
CSC-niche represents a unique microenvironment that supports
self-renewal, regulates stemness and enhances drug resistance.
The microenvironment surrounding CSCs has multiple important
functions, including a mechanical anchorage and crosstalk inter-
action, mediated by direct contact and/or indirect extracellular
factors. As such, the extracellular matrix may be an essential
non-cellular component of the adult stem cell niche [111]. In
HCC, increasing matrix stiffness promotes proliferation and
resistance to chemotherapy, whereas surviving cells from ‘‘soft
supports’’ have a significantly enhanced clonogenic capacity and
increased expression of CSC-related markers, including CD44,
CD133, KIT, CXCR4, OCT4, and NANOG [112]. Recently, Rag-
gi et al. [39] used a 3D culture system to investigate the impact
of epigenetics on the local microenvironment and reprogramming
of hepatic CSCs. A combination of 2D cell density with a tran-
sient DNMT1-depletion, using the demethylating agent zebular-
ine [37,113], altered the functional stem–like properties of HCC
cells. This suggests that the cellular context is a critical determi-
nant in the response to epigenetic alteration, which results in a
long-term malignant reprogramming with enhanced antitumour
effect.

Recently, experimental evidence across diverse tumour mod-
els has shown that CSCs constitute their own local microenviron-
ment by recruiting and activating specific cell types, including
immune components. Work by Jinushi et al. identified the milk
fat globule-EGF factor 8 (MFGE8) as a macrophage-derived factor,
which potently increases tumour-initiating properties of murine
colon and lung carcinoma cell lines [114]. This gene mainly acti-
vates STAT3 and SHH pathways in CSCs and further amplifies
their drug resistance in cooperation with IL-6. These pathways
(JAK/STAT and Hh) are major contributors in triggering tumouri-
genicity as well as resistance to therapy. These data suggest that
TAMs play a key role in CSC maintenance and/or expansion. A
recent study by Mitchem et al. showed that blockade of CCR2
or CSF1R in established tumours not only resulted in a significant
decrease in tumour infiltration by macrophages, but also reduced
the frequency of CD44+/ALDH1+ pancreatic CSCs [115].

Therefore, since chronic liver inflammation (primary biliary
cirrhosis, primary sclerosing cholangitis) and biliary tumour
microenvironment have a key role in CCA-onset and clinical
severity, a role of the TME unique to e.g., liver damage or back-
ground inflammatory state could be hypothesized. Indeed, it
has been demonstrated that stem cell activators such as Wnt/b-
catenin, TGFb, Notch and Hh signalling pathways may also
advance liver cancer [116]. For these reasons, the interplay
between the CSC-niche and the inflammatory component need
to be elucidated in CCA and might open new venues in CCA-com-
bination therapy.
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Concluding remarks and clinical implications

The prognostic consequence for patients diagnosed with CCA is
very dismal. The incidence of iCCA has increased alarmingly in
the past decade, and we still only have a limited understanding
of the complex molecular pathogenesis that causes drug resis-
tance in this disease. Experiment evidence suggests that CCA
may originate from multiple cells-of-origin, and that these con-
tribute to the tumour heterogeneity and its complexity. Indepen-
dent of origin, all cell stages of the hepatic lineage, including
bipotential HPCs, dedifferentiation of non-CSCs and even sponta-
neous malignant conversion of adult hepatocytes may give rise to
CCA. The regulatory signals that mediate this biological hierarchy
may present novel opportunities in diagnosis and therapy. Prom-
ising targets include for example members of the Wnt/b-catenin,
Notch and Hh pathways [117,118]. However, as more molecular
studies are published, a multitude of promising therapeutic can-
didates will complicate traditional clinical management, under-
scoring the need for more individualized approaches. These
pathways may involve targeting the microenvironment e.g., stro-
mal compartment of the tumour, which includes inhibition of sig-
nals from CAFs, MFs, and TAMs as well as targeting the CSC-niche.
For example, the HPC population is elevated in the setting of
chronic liver disease, a condition of long-term inflammation
and continued liver regeneration, which promotes CCA. This is
furthermore likely supporting the CSC-niche. These observations
emphasize the preventive nature and benefit of treating the
underlying chronic liver inflammation by targeting e.g., NF-kB
or COX2. The interaction between inflammatory, profibrotic sig-
nals and tumourigenesis mediated in part by interaction of the
epithelial compartment with MFs and TAMs may present prom-
ising treatment options. Looking forward, innovative multi-
targeted strategies, focused towards CCA-intrinsic pathways
and TME-extrinsic mediators, will likely enhance the therapeutic
efficacy and improve the potential with beneficial impact on the
disease.

Insight into the environmental risk factors, molecular altera-
tions, tumour plasticity and the epithelial-to-stromal crosstalk
have shed light on potential new approaches for early detection
and therapy, but require further translational and preclinical
evaluation. Novel candidates for targeted therapy currently
include the MET, FGFR2, JAK/STAT, RAS/RAF/MAPK, PI3K/AKT/
mTOR pathways and isocitrate dehydrogenase (IDH) mutations.
Besides, recent sequencing studies have highlighted FGFR2 gene
fusions in the progression of iCCA [119–122]. Of significance,
FGFR2 expression results in activation of the MAPK pathway,
emphasizing potential therapeutic opportunities. Interestingly,
epigenetic-driven therapy, affecting both DNA methylation and
aberrantly expressed micro-RNAs, hold great promise in the
treatment of liver diseases. IDH variants have been identified
in up to 35% of CCA cases, making this one of the most preva-
lent hotspot mutations. In a recent study, Saha et al. showed
that mutations in IDH, through hepatocyte nuclear factor
4-alpha (HNF4a), block HPCs from differentiating into the
hepatocytic lineage [123]. Understanding the contribution of
the TME as a driver in the pathogenesis of CCA is in its infancy
but represents a promising option for ‘‘broad spectrum’’ treat-
ment schemes. As such, future treatment strategies may likely
be aimed towards the inflammatory and stromal tumour
compartment.
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