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Abstract

We analyze the spectrum of the massive states for the color flavor locked phase (CFL) of QCD. We show that th
mesons have a mass of the order of the color superconductive gap∆. We also see that the excitations associated with
solitonic sector of the CFL low energy theory have a mass proportional toF2

π /∆ and hence are expected to play no role for
physics of the CFL phase for large chemical potential. Another interesting point is that the product of the soliton mass
vector meson mass is independent of the gap. We interpret this behavior as a form of electromagnetic duality in the
Montonen and Olive. Our approach for determining the properties of the massive states is non-perturbative in nature a
applied to any theory with multiple scales.
 2003 Elsevier B.V.Open access under CC BY license.
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A color superconductivity phase is a reasona
candidate for the state of strongly interacting ma
for very large quark chemical potential [1–5]. Ma
properties of such a state have been investig
for two and three flavor QCD. In some cases th
results rely heavily on perturbation theory, which
applicable for very large chemical potentials.

In this Letter we seek insight regarding the re
vant energy scales of various physical states of
color flavor locked phase (CFL), such as the vec
mesons and the solitons. Our results do not sup
the naive expectation that all massive states ar
the order of the color superconductive gap,∆. Our
strategy is based on exploiting the significant inf
mation already contained in the low-energy effect
theory for the massless states. We transfer this in

E-mail addresses: jackson@alf.nbi.dk (A.D. Jackson),
francesco.sannino@nbi.dk (F. Sannino).
0370-2693 2003 Elsevier B.V.
doi:10.1016/j.physletb.2003.10.099

Open access under CC BY license.
mation to the massive states of the theory by m
ing use of the fact that higher derivative operators
the low-energy effective theory for the lightest sta
can also be induced when integrating out heavy fie
For the vector mesons, this can be seen by conside
a generic theory containing vector mesons and G
stone bosons. After integrating out the vector meso
the induced local effective Lagrangian terms for
Goldstone bosons must match the local contact te
from operator counting. We find that each derivat
in the (CFL) chiral expansion is replaced by a vec
field ρµ as follows

(1)∂ → ∆

Fπ

ρ.

This relation allows us to deduce, among other thin
that the energy scale for the vector mesons is

(2)mv ∼ ∆,
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wheremv is the vector meson mass. Our result is
agreement with the findings in [6,7]. We shall see t
this also suggests that the KSRF relation holds in
CFL phase.

In the solitonic sector, the CFL chiral Lagrangi
[8,9] gives us the scaling behavior of the coefficien
the Skyrme term and thus shows that the mass of
soliton is of the order of

(3)Msoliton∼ F 2
π

∆
,

which is contrary to naive expectations. This is su
gestive of a kind of duality between vector meso
and solitons in the same spirit as the duality ad
cated some years ago by Montonen and Olive for
SU(2) Georgi–Glashow theory [10]. This duality b
comes more apparent when considering the produ

(4)Msolitonmv ∼ F 2
π ,

which is independent of the scale,∆. In the presen
case, if the vector meson self-coupling is̃g, we
find that the Skyrme coefficient,e ∼ ∆/Fπ , can be
identified withg̃. Thus, the following relations hold:

(5)Msoliton∝ Fπ

g̃
and mv ∝ g̃Fπ .

In this notation the electric–magnetic (i.e., vec
meson-soliton) duality is transparent. Since the to
logical Wess–Zumino term in the CFL phase is ide
tical to that in vacuum, we identify the soliton with
physical state having the quantum numbers of the
cleon. If quark–hadron continuity [11] is assumed,
expect that the product of the nucleon and vector
son masses will scale likeF 2

π for any non-zero chem
ical potential for three flavors. Interestingly, quar
hadron continuity can be related to duality. Testing t
relation can also be understood as a quantitative ch
of quark–hadron continuity. It is important to note th
our results are tree level results and that the resu
duality relation can be affected by quantum corr
tions. Our results have direct phenomenological c
sequences for the physics of compact stars with a C
phase. While vector mesons are expected to play a
evant role, solitons can safely be neglected for la
values of the quark chemical potential.
The Lagrangian for CFL Goldstones

When diquarks condense for the three flavor ca
we have the following symmetry breaking:

[SUc(3)] × SUL(3)× SUR(3)×UB(1)

→ SUc+L+R(3).

The gauge group undergoes a dynamical Higgs m
anism, and nine Goldstone bosons emerge. Neglec
the Goldstone mode associated with the baryon n
ber and quark masses (which will not be important
our discussion at lowest order), the derivative exp
sion of the effective Lagrangian describing the oct
of Goldstone bosons is [8,9]:

(6)L= F 2
π

8
Tr

[
∂µU∂µU†] ≡ F 2

π

2
Tr

[
pµp

µ
]
,

with pµ = i
2(ξ∂µξ

† − ξ†∂µξ), U = ξ2, ξ = e
i

φ
Fπ and

φ is the octet of Goldstone bosons.U transforms
linearly according togLUg

†
R and gL/R ∈ SUL/R(3)

while ξ transforms non-linearly:

(7)ξ → gLξK
†(φ,gL,gR) ≡K(φ,gL,gR)ξg

†
R.

This constraint implicitly defines the matrix,K(φ,gL,

gR). Here, we wish to examine the CFL spectrum
massive states using the technique of integrating in
at the level of the effective Lagrangian.Fπ is the Gold-
stone boson decay constant. It is a non-perturba
quantity whose value is determined experimentally
by non-perturbative techniques (e.g., lattice comp
tion). For very large quark chemical potential,Fπ can
be estimated perturbatively. It is found to be prop
tional to the Fermi momentum,pF ∼ µ, with µ the
quark chemical potential [12]. Since a frame must
fixed in order to introduce a chemical potential, spa
and temporal components of the effective Lagrang
split. This point, however, is not relevant for the vali
ity of our results.

When going beyond the lowest-order term in der
atives, we need a counting scheme. For theories
only one relevant scale (such as QCD at zero che
cal potential), each derivative is suppressed by a fa
of Fπ . This is not the case for theories with multip
scales. In the CFL phase, we have bothFπ and the
gap,∆, and the general form of the chiral expansion
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[12]:

(8)L ∼ F 2
π∆

2
( ∂
∆

)k(
∂0

∆

)l

UmU†n.

Following [12], we distinguish between temporal a
spatial derivatives. Chiral loops are suppressed
powers ofp/4πFπ , and higher-order contact term
are suppressed byp/∆ wherep is the momentum
Thus, chiral loops are parametrically small compa
to contact terms when the chemical potential is larg

There is also a topological term which is essen
in order to satisfy the ’t Hooft anomaly conditions [13
15] at the effective Lagrangian level. It is important
note that respecting the ’t Hooft anomaly conditio
is more than an academic exercise. In fact, it requ
that the form of the Wess–Zumino term is the sa
in vacuum and at non-zero chemical potential.
real importance lies in the fact that it forbids
number of otherwise allowed phases which canno
ruled out given our rudimentary treatment of the no
perturbative physics. As an example, consider a ph
with massless protons and neutrons in three-c
QCD with three flavors. In this case chiral symme
does not break. This is a reasonable realization
QCD for any chemical potential. However, it do
not satisfy the ’t Hooft anomaly conditions and hen
cannot be considered. Were it not for the ’t Ho
anomaly conditions, such a phase could compete
the CFL phase.

Gauging the Wess–Zumino term with to respect
electromagnetic interactions yields the familiarπ0 →
2γ anomalous decay. This term [16] can be writt
compactly using the language of differential form
It is useful to introduce the algebra-valued Maure
Cartan one formα = αµ dxµ = (∂µU)U−1 dxµ ≡
(dU)U−1 which transforms only under the le
SUL(3) flavor group. The Wess–Zumino effective a
tion is

(9)ΓWZ[U ] = C

∫

M5

Tr
[
α5].

The price which must be paid in order to ma
the action local is that the spatial dimension m
be augmented by one. Hence, the integral mus
performed over a five-dimensional manifold who
boundary (M4) is ordinary Minkowski space. In [8
13,17] the constantC has been shown to be the sam
as that at zero density, i.e.,

(10)C = −i
Nc

240π2 ,

whereNc is the number of colors (three in this cas
Due to the topological nature of the Wess–Zum
term its coefficient is a pure number.

The vector mesons

It is well known that massive states are relevant
low energy dynamics. Consider, for example, the r
played by vector mesons in pion–pion scattering [
in saturating the unitarity bounds. More specifica
vector mesons play a relevant role when describ
the low energy phenomenology of QCD and may a
play a role also in the dynamics of compact st
with a CFL core. In order to investigate the effe
of such states, we need to know their in-medi
properties including their gaps and the strength of th
couplings to the CFL Goldstone bosons. Except
the extra spontaneously brokenU(1)B symmetry, the
symmetry properties of the CFL phase have much
common with those of zero density phase of QC
This fact allows us to make some non-perturba
but reasonable estimates of vector mesons prope
in medium. We have already presented the gen
form of the chiral expansion in the CFL phase. As w
soon become clear, we are now interested in the f
derivative (non-topological) terms whose coefficie
are proportional to

(11)
F 2
π

∆2 .

This must be contrasted with the situation at z
chemical potential, where the coefficient of the fo
derivative term is always a pure number before qu
tum corrections are taken into account. In vacuum,
tree-level Lagrangian which simultaneously descri
vector mesons, Goldstone bosons, and their inte
tions is:

L = F 2
π

2
Tr

[
pµp

µ
] + m2

v

2
Tr

[(
ρµ + vµ

g̃

)2]

(12)− 1

4
Tr

[
Fµν(ρ)F

µν(ρ)
]
,

whereFπ � 132 MeV andvµ is the one formvµ =
i
2(ξ∂µξ

†+ξ†∂µξ) with U = ξ2 andFµν(ρ)= ∂µρν −
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∂νρµ+ ig̃[ρµ,ρν]. At tree level this Lagrangian agree
with the hidden local symmetry results [19].

When the vector mesons are very heavy w
respect to relevant momenta, they can be integr
out. This results in the field contraint:

(13)ρµ = −vµ

g̃
.

Substitution of this relation in the vector meson kine
term (i.e., the replacement ofFµν(ρ) byFµν(v)) gives
the following four-derivative operator with two tim
derivatives and two space derivatives [20]:

(14)
1

64g̃2 Tr
[[αµ,αν]2].

The coefficient is proportional to 1/g̃2. It is also
relevant to note that since we are describing phys
fields we have considered canonically normaliz
fields and kinetic terms. This Lagrangian can also
applied to the CFL case. In the vacuum,g̃ is a number
of order one independent of the scale at tree le
This is no longer the case in the CFL phase. He
by comparing the coefficient of the four-derivati
operator in Eq. (14) obtained after having integra
out the vector meson with the coefficient of the sa
operator in the CFL chiral perturbation theory w
determine the following scaling behavior ofg̃:

(15)g̃ ∝ ∆

Fπ

.

By expanding the effective Lagrangian with the
spect to the Goldstone boson fields, one sees thg̃
is also connected to the vector meson coupling to
pions,gρππ , through the relation

(16)gρππ = m2
v

g̃F 2
π

.

In vacuumgρππ � 8.56 andg̃ � 3.96 are quantities o
order one. Sincevµ is essentially a single derivativ
the scaling behavior ofg̃ allows us to conclude
that each derivative term is equivalent tog̃ρµ with
respect to the chiral expansion. For example, dropp
the dimensionless fieldU , the operator with two
derivatives becomes a mass operator for the ve
meson

(17)F 2
π∂

2
µ → F 2

π g̃
2ρ2

µ ∼ ∆2ρ2
µ.

This demonstrates that the vector meson mass g
proportional to the color superconducting gap. T
non-perturbative result is relevant for phenomenolo
cal applications. It is interesting to note that our sim
counting argument agrees with the underlying Q
perturbative computations of Ref. [6] and also with
cent results of Ref. [7]. In [21], at high chemical pote
tial, vector meson dominance is discussed. Howe
our approach is more general since it does not rely
any underlying perturbation theory. It can be appl
to theories with multiple scales for which the counti
of the Goldstone modes is known. Sincem2

v ∼∆2, we
find thatgρππ scales withg̃ suggesting that the KSR
relation is a good approximation also in the CFL ph
of QCD.

CFL-solitons

The low energy effective theory supports soliton
excitations which can be identified with the baryo
sector of the theory at non-zero chemical poten
In order to obtain classically stable configuratio
it is necessary to include at least a four-derivat
term (containing two temporal derivatives) in additi
to the usual two-derivative term. Such a term is
Skyrme term:

(18)Lskyrme= 1

32e2
Tr

[[αµ,αν]2].
Since this is a fourth-order term in derivatives n
associated with the topological term we have:

(19)e ∼ ∆

Fπ

.

This term is the same as that which emerges a
integrating out the vector mesons (see Eq. (1
and one concludes thate = √

2 g̃ [20]. The simplest
complete action supporting solitonic excitations is:

(20)
∫

d4x

[
F 2
π

2
Tr

[
pµp

µ
] +Lskyrme

]
+ ΓWZ.

The Wess–Zumino term in Eq. (9) guarantees
correct quantization of the soliton as a spin 1/2
object. Here we neglect the breaking of Lore
symmetries, irrelevant to our discussion. The Eul
Lagrangian equations of motion for the classic
time independent, chiral fieldU0(r) are highly non-
linear partial differential equations. To simplify the
equations Skyrme adopted the hedgehogansatz which,
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suitably generalized for the three flavor case, re
[20]:

(21)U0(r)=
(
ei τ ·r̂F (r) 0

0 1

)
,

where τ represents the Pauli matrices and the ra
functionF(r) is called the chiral angle. Theansatz is
supplemented with the boundary conditionsF(∞) =
0 andF(0) = 0 which guarantee that the configur
tion possesses unit baryon number. After substitu
theansatz in the action one finds that the classical so
tonic mass is, up to a numerical factor:

(22)Msoliton∝ Fπ

e
∼ F 2

π

∆
,

and the isoscalar radius,〈r2〉I=0 ∼ 1/(F 2
πe

2)∼ 1/∆2.
Interestingly, due to the non-perturbative nature of
soliton, its mass turns to be dual to the vector me
mass. It is also clear that although the vector mes
and the solitons have dual masses, they describe
very distinct types of states. The present duality
very similar to the one argued in [10]. Indeed, af
introducing the collective coordinate quantization,
soliton (due to the Wess–Zumino term) describ
baryonic states of half-integer spin while the vect
are spin one mesons. Here, the dual nature of
soliton with respect to the vector meson is enhance
the fact that, in the CFL state,g̃ ∼ ∆/Fπ is expected
to be substantially reduced with respect to its va
in vacuum. Once the soliton is identified with th
nucleon (whose density-dependent mass is den
with MN(µ)) and assuming quark–hadron continu
we predict the following relation to be independent
the matter density:

(23)
MN(µ)mv(µ)

(2πFπ(µ))2
= MN(0)mv(0)

(2πFπ(0))2
∼ 1.05.

In this way, we can relate duality to quark–hadr
continuity.

Conclusions

We have shown that the vector mesons in the C
phase have masses of the order of the color su
conductive gap,∆. On the other hand, the soliton
have masses proportional toF 2

π/∆ and hence shoul
play no role for the physics of the CFL phase at la
chemical potential. We have noted that the produc
the soliton mass and the vector meson mass is i
pendent of the gap. This behavior reflects a form
electromagnetic duality in the sense of Montonen
Olive [10]. Combining duality and quark–hadron co
tinuity we have predicted that the nucleon mass tim
the vector meson mass scales as the square of the
decay constant at any non-zero chemical potentia
the presence of two or more scales provided by the
derlying theory the spectrum of massive states sh
very different behaviors which cannot be obtained
assuming a naive dimensional analysis.

Acknowledgements

It is a pleasure to thank R. Casalbuoni for disc
sions and J. Schechter for careful reading of the m
uscript. The work of F.S. is supported by the Ma
Curie fellowship under contract MCFI-2001-00181

References

[1] B.C. Barrois, Nucl. Phys. B 129 (1977) 390.
[2] F. Barrois, Nonperturbative effects in dense quark ma

Ph.D. Thesis, Caltech, UMI 79-04847-mc, Microfiche.
[3] D. Bailin, A. Love, Phys. Rep. 107 (1984) 325.
[4] M. Alford, K. Rajagopal, F. Wilczek, Phys. Lett. B 422 (199

247, hep-ph/9711395.
[5] R. Rapp, T. Schäfer, E.V. Shuryak, M. Velkovsky, Phys. R

Lett. 81 (1998) 53, hep-ph/9711396.
[6] R. Casalbuoni, R. Gatto, G. Nardulli, Phys. Lett. B 498 (200

179;
R. Casalbuoni, R. Gatto, G. Nardulli, Phys. Lett. B 517 (20
483, Erratum, hep-ph/0010321.

[7] M. Rho, E.V. Shuryak, A. Wirzba, I. Zahed, Nucl. Phys. A 6
(2000) 273, hep-ph/0001104.

[8] D.K. Hong, M. Rho, I. Zahed, Phys. Lett. B 468 (1999) 26
hep-ph/9906551.

[9] R. Casalbuoni, R. Gatto, Phys. Lett. B 464 (1999) 11;
R. Casalbuoni, R. Gatto, Phys. Lett. B 469 (1999) 213.

[10] C. Montonen, D.I. Olive, Phys. Lett. B 72 (1977) 117.
[11] T. Schafer, F. Wilczek, Phys. Rev. Lett. 82 (1999) 3956, h

ph/9811473.
[12] See T. Schafer, hep-ph/0304281, and references therein

concise review on theµ dependence ofFπ(µ).
[13] F. Sannino, Phys. Lett. B 480 (2000) 280, hep-ph/0002277
[14] S.D. Hsu, F. Sannino, M. Schwetz, Mod. Phys. Lett. A

(2001) 1871, hep-ph/0006059.
[15] F. Sannino, hep-ph/0301035.
[16] J. Wess, B. Zumino, Phys. Lett. B 37 (1971) 95.



138 A.D. Jackson, F. Sannino / Physics Letters B 578 (2004) 133–138

01)

996)

997)

17.
cent

p-
[17] R. Casalbuoni, Z. Duan, F. Sannino, Phys. Rev. D 63 (20
114026, hep-ph/0011394.

[18] F. Sannino, J. Schechter, Phys. Rev. D 52 (1995) 96;
M. Harada, F. Sannino, J. Schechter, Phys. Rev. D 54 (1
1991;
M. Harada, F. Sannino, J. Schechter, Phys. Rev. Lett. 78 (1
1603.
[19] M. Bando, T. Kugo, K. Yamawaki, Phys. Rep. 164 (1988) 2
[20] See J. Schechter, H. Weigel, hep-ph/9907554, for a re

review on the subject and references therein.
[21] C. Manuel, M.H. Tytgat, Phys. Lett. B 501 (2001) 200, he

ph/0010274.


	Duality in the color flavor locked spectrum
	The Lagrangian for CFL Goldstones
	The vector mesons
	CFL-solitons
	Conclusions
	Acknowledgements
	References


